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Abstract

Network Telemetry (NT) is a crucial component in today’s networks, as it provides the network managers with important data

about the status and behavior of the network elements. NT data are then utilized to get insights and rapidly take actions to

improve the network performance or avoid its degradation. Intuitively, the more data are collected, the better for the network

managers. However, the gathering and transportation of excessive NT data might produce an adverse effect, leading to a

paradox: the data that are supposed to help actually damage the network performance. This is the motivation to introduce a

novel NT framework that dynamically adjusts the rate in which the NT data should be transmitted. In this work, we present

an NT scheme that is traffic-aware, meaning that the network elements collect and send NT data based on the type of traffic

that they forward. The evaluation results of our Machine Learning-based mechanism show that it is possible to reduce by over

75% the network bandwidth overhead that a conventional NT scheme produces.
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I. INTRODUCTION 

ITH the advancement of Software-Defined Networks 
(SDN) paradigm and the development of its 

programmable data plane (PDP) technologies, the network 
telemetry (NT) notion has emerged differing from the traditional 
network measurement schemes, as it comprises an automated 
procedure for remotely gathering and processing network data 
[1]. Moreover, traditional network monitoring technologies 
usually rely on active probes that are protocol-specific, such as 
Internet Control Message Protocol (ICMP) and Simple Network 
Management Protocol (SNMP) packets, or passive methods of 
measurements, which are based only on observations of 
undisturbed and unmodified packet streams of interest [2]. That 
is why NT is deemed as a suitable answer to the challenges that 
the traditional network measurement technologies face in terms 
of adequate network visibility with better scalability, accuracy, 
and coverage, as well as hardware and protocol independencies. 

The study of how to get high-quality network measurement 
data at low cost is important, since NT produces massive data in 
real network environments. The main goal of any NT scheme is 
to generate and collect measurement data locally at network 
nodes, depending on different service requirements, and 

transmit those data to a centralized controller for enabling an 
optimal network management. Therefore, an efficient telemetry 
deployment strategy is needed to compensate for the network 
performance loss due to the impact of gathering and transmitting 
the telemetry data themselves. Networks’ failures and 
performance problems can have a variety of causes, which 
requires different types of information to diagnose. That is why 
the ideal telemetry scenario contemplates the gathering of all the 
fine-grained data at a fine time scale. However, this means a 
high cost in terms of communication overhead. On the other 
hand, network managers need to get the telemetry information 
in a timely manner to quickly identify, isolate, and fix 
performance problems in order to minimize the impact on users 
and organization’s revenue. Yet, it is difficult to measure many 
flows and packets with constrained resources at the network 
elements, which focus more on control functions such as packet 
forwarding. Since NT not only processes all the packets but also 
stores information about the packets, NT sometimes requires 
even more resources than the control functions do. 

Today’s NT practices follow a bottom-up approach, i.e. 
network managers collect data from network elements, 
aggregate it in a centralized collector, and extract the 
information they need. This approach poses several problems 
like having too many data to process. For this reason, a new 
approach is needed, one that provides network managers with 
abstractions of the metrics they are interested in [3]. Based on 
those interests, the granularity of the measurements should be 
different allowing to minimize the overhead produced by the 
telemetry data’s transmission. In this way, different levels of 
measurement accuracy can also be obtained considering the 
network resources’ limitations. Nevertheless, the task of 
matching network managers’ desires with specific telemetry 
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granularities might be challenging due to the network’s 
changing conditions. 

Moreover, NT applications only care about the telemetry 
data, instead of how to obtain those data. Then, a sort of 
telemetry tasks orchestration should be used in order to achieve 
efficient tasks distribution and telemetry data acquisition. In 
addition to upper-level monitoring applications, the 
orchestration of NT tasks should consider real-time and 
changing network flows. Nevertheless, how to achieve high-
quality network measurement at low cost according to the 
existing network status is a key issue of NT that needs further 
research and development [1]. 

We then propose to address the problem of efficiently 
gathering NT data through a modular framework that is 
independent of the NT scheme in use. The core of our solution 
is Machine Learning-based NT Controller, which autonomously 
decides the granularity of the measurements to be transmitted. 
This decision is made by taking into account the network 
managers’ needs and the traffic that a network element is 
experiencing. To achieve so, we consider an anomaly detection 
mechanism, which aims to discover unexpected events in the 
traffic data. In this way, several types of traffic are identified and 
the telemetry data are selectively transmitted based on those 
traffic types. 

Accordingly, our proposed mechanism utilizes a classifier to 
detect anomalous behaviours in the traffic that a network 
element is forwarding. The classification model considers the 
traffic characteristics that common cyberattacks expose, so that 
the flows are segmented in different types (including benevolent 
traffic) based on those characteristics. Thus, our design aims to 
classify the network traffic anomalies and, according to this 
segmentation, decides the level of granularity of the telemetry 
data that a network element should transmit. Our rationale 
behind this proposal is that malicious traffic patterns can be 
exploited to determine the frequency in which NT data should 
be sent. In other words, when normal patterns of flows are 
detected, there is no need for a very fine granularity in the NT 
data gathering. In this way, for example, the queue occupancy 
measurements are not to be transmitted very frequently unless 
malicious traffic is negatively affecting the network elements’ 
buffers.  In fact, this kind of approach has been researched in the 
literature. For instance, authors in [4] study the behaviour of 
some network performance metrics, such as the buffer 
occupancy, as a consequence of malevolent traffic produced by 
attacks like Denial of Service (DoS), Distributed Denial of 
Service (DDoS), and SYN/TCP flooding (a type of DoS/DDoS 
flood attack using the TCP protocol). Therefore, we aim to take 
advantage of such a relationship between the traffic patterns that 
typical cyberattacks pose and the metrics that an NT mechanism 
usually collects and transmits. 

For the reasons explained above, we denote our solution as 
Traffic-Aware Network Telemetry, or TANT for short. A 
general overview of the TANT solution is shown in Fig. 1. As 
can be seen, the main components of the system at the network 
elements are a traffic flow classifier and an NT controller, which 
operates according to the telemetry standard in use. The NT 
controller determines the granularity of the telemetry data to be 
transmitted depending on the outcomes of the local traffic 

classifier. In summary, the main contributions of the TANT 
scheme and this work are: 

• A flexible framework to achieve efficient NT that can be 
adapted to a variety of NT schemes regardless their way of 
operation (in-band or out-of-band). 

• A proof-of-concept on a non-static NT mechanism, which 
can be intelligently adjusted to mitigate the network 
overhead that NT data gathering and transmission produce. 

• The design of a lightweight traffic classifier that does not 
consider the classical 5-tuple (protocol type, source IP 
address and port, and destination address and port) to 
identify different types of traffic.  

• A methodology to evaluate and implement inference 
acceleration of ML algorithms making predictions in real-
time scenarios, such as the NT use case presented in this 
paper. 

• An open-source environment for real-time evaluation whose 
code is publicly available for further research and 
development. 

It is important to point out that, although the TANT 
framework could be applied in networking setups, such as Wide 
Area Networks (WAN) and Internet Service Providers (ISP) 
networks, its application would be more representative in 
networks delimited by the local management of a single 
organization, like enterprises or campuses networks. Also, the 
implementation of the TANT framework and the utilization of 
its NT data to tackle inter-domain scenarios’ problems, like the 
one presented in [5], needs further research that is out of the 
scope of this work. 

A. Related Work 

The challenges that NT poses have been addressed by the 
research community, in both academic and industry settings, 
with diverse approaches that generally fell in one of these two 
main categories: in-band telemetry and out-of-band telemetry.  
In-band telemetry refers to the case when the NT data 
transmission usually shares the same link, path, or packet with 
the users’ data whereas the transportation of out-of-band 
telemetry data does not [1]. The in-band telemetry solutions 

 

 

Fig. 1. TANT system overview. Each network element comprises a traffic 

classifier and an NT controller, which transmits the NT data to the NT engine. 
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reviewed in this subsection are related to the In-band Network 
Telemetry (INT) Dataplane Specification [6]. This specification 
defines the monitoring system as a system that collects telemetry 
data sent from different network elements. The components of 
the monitoring system may be physically distributed but 
logically centralized. Additionally, with INT, the original data 
packets are monitored and may be modified to carry INT 
instructions and INT metadata (telemetry data). It is important 
to highlight that there are other in-band telemetry specifications 
different from the INT standard. For this reason, we make the 
distinction between these two terms. 

Existing NT systems usually trade off expressiveness 
(accuracy of the measurements) for scalability (amounts of the 
telemetry data collected), or vice versa. That is why most of the 
INT-based schemes aim to reduce the telemetry data 
transportation overhead and, at the same time, try to avoid losing 
too much measurement accuracy. Accordingly, authors in [7] 
present a sampling-based INT mechanism, in which the source 
node inserts INT headers into the packets at a configurable rate 
to reduce the overhead. To compensate for the accuracy, their 
solution also supports a sampling based on events, in which 
metadata is inserted only when the latency difference between 
the last hop and the current hop exceeds a predefined threshold. 
Similarly, Chowdhury et al. propose a lightweight INT-based 
scheme to reduce the overhead by trying to estimate the amount 
of error that can be introduced at the INT collector if the 
requested telemetry data are not piggybacked on the current 
packet [8]. For estimating this error, a predictor function based 
on Exponentially Weighted Moving Average is used for each 
telemetry data item of interest. 

By encoding the requested data on multiple packets, authors 
in [9] introduce a probabilistic INT method that bounds the per-
packet overhead as low as one bit. The solution supports several 
aggregation operations that allow efficient encoding of the 
aggregated data onto packets: per-packet aggregation, static per-
flow aggregation, and dynamic per-flow aggregation. 
Conversely, Wang et al. introduce a bandwidth-efficient INT 
system by tracking the rules matched by the packets of a flow in 
a previous period [10]. Their proposed solution assigns globally 
unique IDs to every rule and stores rule-changed INT reports in 
a database server so that the rate of generated INT reports is 
reduced. In contrast, [11] considers the overhead not only at the 
data plane, but also at the control and management planes while 
employing INT. The authors model the INT orchestration as an 
optimization problem and propose two heuristic algorithms to 
produce feasible solutions in polynomial computational time 
with respect to the network size and number of flows. From [11], 
we  find interesting the idea of taking into account the three SDN 
planes to reduce the INT overhead in an orchestrated manner. 
Finally, Kim et al. present a selective INT scheme where an 
algorithm adjusts the insertion ratio of packets to be monitored 
according to the frequency of significant changes in network 
data [12]. 

What all the solutions reviewed above have in common is 
the goal to make NT efficient in terms of the usage of the 
network resources, such as bandwidth and network elements’ 
computational limitations. However, those schemes delimit their 
applicability to the INT specification, as the per-packet NT data 
overhead is assumed as the main issue to solve. Although INT 

is becoming the mainstream telemetry standard, we advocate for 
a more generalized framework that can also be applied to other 
in-bound telemetry mechanisms or even out-of-band ones. On 
the other hand, [7] and [12] are the schemes that relates the most 
to our proposed framework in terms of the adjustment of the NT 
data granularity (or rate) to reduce overhead. 

II. TANT TRAFFIC CLASSIFIER 

The traffic classification process involves the identification 
of both normal and different types of abnormal traffic flows. We 
then design the traffic classifier of our solution using the 
CICIDS2018 dataset as a benchmark [13]. This and other 
datasets from the Canadian Institute for Cybersecurity (CIC) at 
the University of New Brunswick have been widely used by 
researchers worldwide to evaluate their network traffic-related 
methods, such as Internet traffic classification. The 
CICIDS2018 dataset contains benign and common attacks, 
which resembles true real-world network data. It also includes 
the results of the network traffic analysis with labeled flows 
based on the time stamp, source and destination IP addresses, 
source and destination ports, and protocols. The dataset was 
generated with realistic background traffic to profile the abstract 
behavior of human interactions and includes benign traffic. The 
final dataset was gathered from different attack scenarios whose 
attacking infrastructure considers 50 machines and the victim 
organization has 420 hosts and 30 servers. More than 80 
statistical features are extracted from the network traffic in 
forward and backward directions, as described in [13]. 

Therefore, the traffic classifier considers multiple classes, 
including benign traffic and the malicious traffic described by 
these attacks: DoS-Hulk, DoS-SlowHTTP, DDoS-HOIC, 
DDoS-LOIC, FTP-BruteForce, and SSH-BruteForce. We chose 
these attacks because they are the most representative classes in 
the CICIDS2018 dataset and encompass both TCP and UDP 
flows. A description of these attacks and the methodology used 
to obtain their traffic data can be found in [14]. After merging 
and cleaning the data subsets corresponding to the chosen 
attacks, the final dataset ended up containing 4,723,155 samples. 
For the training and test of the traffic classifier, the final dataset 
is split into 70% and 30%, respectively. 

On the other hand, one of our goals is to design a lightweight 
and protocol-independent scheme to identity network traffic. To 
achieve so, we first perform an explainable feature engineering 
process. As we are interested in controlling the granularity of the 
NT, there is an initial feature selection that considers all time-
related features, 27 in total, which are based on traffic flows’ 
metrics (see Table I). It is important to highlight that, in the 
context of this work, we consider a traffic flow according to the 
IETF’s RFC 7011, Specification of the IP Flow Information 
Export (IPFIX): “A Flow is defined as a set of packets or frames 
passing an Observation Point in the network during a certain 
time interval. All packets belonging to a particular Flow have a 
set of common properties.” [15]. Those common properties 
include the packet header fields, i.e. the 5-tuple of source IP 
address, destination IP address, source port, destination port, and 
protocol type. Similarly, we point out that the data used for our 
analysis and proposed solution correspond to the RFC 7011’s 
definition of Flow Records, which contain measured properties 
of the flows at the Observation Point. In this way, the features 



of the input data for the traffic classifier are based on the Flow 
Records but not on the flows’ common properties themselves, 
such as the 5-tuple. 

As a next step in the feature engineering process, we 
normalized the values of the preselected features and perform a 
correlation analysis of them. Intuitively, one can suppose that 
several time-related features described in Table I are strongly 
correlated. For example, some of the forward-direction metrics 
should have a significant correlation with their backward-
direction counterparts, since the majority of the traffic data 
correspond to TCP flows. For this reason, we perform another 

feature selection using the Pearson correlation coefficients. 
These coefficients are a statistical measure of the linear 
dependency  between two vectors, which are assumed to be 
normally distributed and to contain 𝑛 elements each [16]. Thus, 
the Pearson correlation coefficients are calculated as follows: 

where 𝑥1  and 𝑥2  are the vectors of the two features being 
analyzed, 𝑥̅1  and 𝑥̅2  the mean values of those feature vectors, 

respectively, and 𝑥𝑗
(𝑖)

 refers to the value of the instance 𝑖 from 

feature 𝑗 . For each coefficient, 𝑟(𝑥1, 𝑥2) ∈ [−1, 1]   and a 
positive number close to 1 means that an increase or decrease in 
the values of 𝑥1 is met with the same trend, increase or decrease, 
in the values of 𝑥2. Accordingly, we discard one of the features 
whose values have a correlation greater than 0.9 with another 
feature. The resulting 14 features and their coefficients after 
carrying out the correlation analysis are shown in Fig. 2. 

For the traffic flows classifier, we consider the following 
classification techniques, which are deemed by ML researchers 
and practitioners as efficient methods for multi-class problems: 
Logistic Regression with Stochastic Gradient Descent training 
(LR-SGD), linear Support Vector Machines with Stochastic 
Gradient Descent training (SVM-SGD), Random Forest (RF), 
Extra Trees (ET), Light Gradient Boosting Machine 
(LightGBM), and Extreme Gradient Boosting (XGBoost). In 
order to compare the outcomes of these methods, we use the F1-
score as the statistical measure of the classification quality, since 
the dataset happens to be imbalanced. The F1-socre is defined 
by the harmonic mean of the precision and the recall [17], as 
follows: 

TABLE I. TIME-RELATED TRAFFIC FEATURES 

Feature Description 

Active Max 
Maximum time a flow was active before 

becoming idle 

Active Mean 
Mean time a flow was active before becoming 

idle 

Active Min 
Minimum time a flow was active before 
becoming idle 

Active Std 
Standard deviation time a flow was active before 

becoming idle 

Bwd IAT Max 
Maximum time between two packets sent in the 

backward direction 

Bwd IAT Mean 
Mean time between two packets sent in the 
backward direction 

Bwd IAT Min 
Minimum time between two packets sent in the 
backward direction 

Bwd IAT Std 
Standard deviation time between two packets sent 

in the backward direction 

Bwd IAT Total 
Total time between two packets sent in the 

backward direction 

Bwd Packets/s Number of backward packets per second 

Flow Byte/s Number of flow bytes per second 

Flow duration Duration of the flow in microseconds 

Flow IAT Max 
Maximum time between two packets sent in the 
flow 

Flow IAT Mean Mean time between two packets sent in the flow 

Flow IAT Min 
Minimum time between two packets sent in the 

flow 

Flow IAT Std 
Standard deviation time between two packets sent 

in the flow 

Flow Packets/s Number of flow packets per second 

Fwd IAT Max 
Maximum time between two packets sent in the 

forward direction 

Fwd IAT Mean 
Mean time between two packets sent in the 

forward direction 

Fwd IAT Min 
Minimum time between two packets sent in the 
forward direction 

Fwd IAT Std 
Standard deviation time between two packets sent 

in the forward direction 

Fwd IAT Total    
Total time between two packets sent in the 

forward direction 

Fwd Packets/s Number of forward packets per second 

Idle Max 
Maximum time a flow was idle before becoming 

active 

Idle Mean 
Mean time a flow was idle before becoming 

active 

Idle Min 
Minimum time a flow was idle before becoming 

active 

Idle Std 
Standard deviation time a flow was idle before 
becoming active 

 

𝑟(𝑥1, 𝑥2) =  
∑ (𝑥1

(𝑖)
− 𝑥̅1)(𝑥2

(𝑖)
− 𝑥̅2)𝑛

𝑖=1

√∑ (𝑥1
(𝑖)

− 𝑥̅1)
2

𝑛
𝑖=1

√∑ (𝑥2
(𝑖)

− 𝑥̅2)
2

𝑛
𝑖=1

 

(1) 

 

Fig. 2. Correlation matrix of the selected features based on the Pearson 

coefficients. 
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where the recall, 𝑅, represents the ratio between the number of 
correct positive results and the number of all relevant samples, 
and the precision, 𝑃 , is the relation between the number of 
correct positive results and the number of positive results. Fig. 3 
shows the comparison of the F1-scores of the abovementioned 
classifiers before and after performing the feature selection 
based on the Pearson correlation analysis. 

As can be seen, the accuracy of the LightGBM, ET, and 
XGBoost classifiers are slightly lower when almost half of the 
features (14 out of 27) are used. In contrast, although faster in 
training, LR-SGD and linear SVM-SGD algorithms are 
outperformed by the other three in both cases. It is important to 
highlight that we are more interested in the inference times, 
rather than the training times, as our goal is to come up with a 
lightweight traffic classifier to efficiently make predictions in 
real time. That is why we are not comparing the training times 
that the algorithms take, however, the inference times will be 
compared in the performance evaluation of the proposed 
solution. For the classifier design, we intent to engineer a 
method that employs a reduced number of features without 
sacrificing the accuracy too much, so that its complexity is 
lowered, especially when inferencing traffic anomalies for the 
NT control process. 

As a further step, we complete another feature extraction 
based on the importance analysis, which helps identify what the 
most informative features are during the classification process. 
In this way, we could reduce even more the number of features 
needed for the inference, if the accuracy is not significantly 
degraded. We explore this possibility by calculating the 
Permutation Feature Importance (PFI): a model inspection 
technique and especially useful for non-linear classifiers. This 
technique is agnostic to any model and breaks the relationship 
between the feature and the target. The PFI for a feature 𝑥𝑗 is 

defined as the average increase in prediction loss, ℒ, when the 
feature is permuted in training or test dataset [18], as follows: 

 

 

 

where 𝑓(𝑥(𝑖)) and 𝑦(𝑖) refer to the model predictions and the 

targets, respectively , 𝑥̂𝑗
𝑚(𝑖)

 is a permutation of 𝑥𝑗 , 𝑀  is the 

number of repeated permutations, and 𝑥𝑗̃  refers to the 

complementary feature space. Fig. 4 shows the PFI coefficients 
calculated for the classification algorithm with the highest F1-
score, i.e. XGBoost, over the test subset (meaning 𝑛 =
1,416,947) and with 𝑀 = 15. As can be seen, the first nine 
features in importance contribute to over 95% of the 
classification process. 

Finally, we test the LightGBM, ET, and XGBoost classifiers 
only with the top nine features selected from the PFI analysis. 
The new F1-scores are compared with the previous ones in 
Table II, which reveals that the changes in the classification 
accuracy are minuscule, especially for the LightGBM and 
XGBoost algorithms. This explainable feature space reduction 
allows the traffic identification process to be less complex and, 
as a result, to achieve shorter inference times for the NT control 
mechanism at each network element. The inference performance 
will be evaluated and discussed in the next subsection. For that 
evaluation, we compare the best two techniques in terms of 
accuracy in the reduced feature space, i.e. LightGBM and 
XGBoost, which yield F1-scores of 0.899 and 0.897, 
respectively, after tuning their hyperparameters. Note that we 
avoid overturning the hyperparameters that add complexity and 
make the models more likely to overfit, such as the maximum 
depth and the maximum leaves of the trees. In this way, we keep 
the structure of both the LightGBM and XGBoost models 
comparable for the inference performance benchmarking as well 
as more generalized for making predictions on unseen data. 

A. Inference Acceleration 

As explained earlier, the main goal of having a reduced 
feature space without significantly sacrificing the traffic 
classification accuracy is to decrease the model’s complexity 
and, therefore, the inference time. In achieving so, the classifier 

 

Fig. 3. Classifiers’ scores comparison before and after first feature selection. 

 

Fig. 4. Feature ranking based on PFI calculation. 

𝐹1 = 2
𝑃∙𝑅

𝑃+𝑅
                                     (2) 

𝑃𝐹𝐼𝑗 =
1

𝑀
∑

1

𝑛

𝑀

𝑚=1

∑ (ℒ (𝑦(𝑖), 𝑓 (𝑥̂𝑗
𝑚(𝑖)

, 𝑥𝑗̃
(𝑖)

)) − ℒ (𝑦(𝑖), 𝑓(𝑥(𝑖))))

𝑛

𝑖=1

 

(3) 



may be implemented in more realistic network scenarios and 
operate in real time. We go further towards this goal by utilizing 
an ML inferencing accelerator. For this work, we employ the 
tools from the Open Neural Network Exchange (ONNX) 
framework to improve the performance of our model. ONNX is 
an open ecosystem that provides a standard format for 
representing the prediction function of trained ML models [19]. 
It defines an extensible computation graph model and the 
models trained using several ML frameworks can be exported to 
ONNX. With ONNX, each computation dataflow graph is 
structured as a list of nodes that form an acyclic graph, a process 
known as serialization.  As a result, ONNX offers a convenient 
interoperability of ML models across frameworks and that is 
why it is widely backed by important companies in the Artificial 
Intelligence (AI) industry. 

We then operationalize the optimized traffic classifier by 
ONNX with the ONNX Runtime: a high-performance and 
resource-efficient inference engine for ML models that takes 
advantage of the specific hardware capabilities where the model 
is run on [20]. ONNX Runtime can perform inference for any 
prediction function converted into the ONNX format and its 
cross-platform nature allows it to be run on different hardware 
and operating systems. In this manner, ONNX Runtime tries to 
parallelize the model’s operations and optimizes the model 
graph by applying graph transformation, that is, elimination and 
fusion of graph nodes. 

Accordingly, we assess the efficiency of the LightGBM and 
XGBoost classifiers when making predictions for one 
observation at a time, a common situation in computer 
networking scenarios such as the use case for this work. To 
achieve so, we take 15,000 random samples from the resulting 
dataset after reducing the feature space, as explained in the 
previous subsection, and measure the processing time that each 
model takes to predict the type of traffic flow (one sample 
corresponds to one flow). Similarly, we trace the allocated 
memory to process each prediction. 

Fig. 5 shows the averaged computation times and the 
averaged RAM usage over the 15,000 samples. Note the 
logarithmic scale used for comparing the processing times. As 
can be seen, XGBoost algorithm achieves faster predictions than 
LightGBM on batches of one sample in size. More importantly, 
it is evident that ONNX optimization does accelerate the 
inference time by a factor of 4.9x and 3.6x for LigthGBM and 
XGBoost, respectively. Similarly, the memory usage is 
significantly reduced when ONNX is employed, being nearly 
the same for both algorithms and improved by a factor of 15.9x, 
for LigthGBM, and a factor of 15.3x, for XGBoost. All these 
measurements were obtained by running the ONNX inference 
calls on a machine with Intel® Xeon® CPU E5-2686, four cores 
@ 2.30 GHz, and Ubuntu 18.04.4. We also point out that these 

measured values  correspond to the complexity exhibited by a 
single flow and that complexity grows linearly with the number 

of flows, 𝑁𝑓 , meaning a time complexity of 𝒪(𝑁𝑓)  when 

multiple flows are considered. 

It is important to highlight that several research works have 
reported lower processing times of LightGBM, although with 
lower accuracy scores too, when compared to XGBoost. 
However, LightGBM may be faster when being trained or 
making batch predictions, but not when inferencing on one 
observation at a time. This is due to the hyperparameter tuning 
that the LightGBM needs in order to get similar or higher 
accuracy than XGBoost. That tuning might result in a more 
complex model, which significantly affects the inferencing 
performance. Therefore, we consider the XGBoost algorithm for 
our proposed efficient telemetry scheme and the performance 
assessments in the rest of this work. Again, as we discussed in 
the introduction, we are more interested in attaining a reasonable 
traffic identification accuracy with an algorithm that provides 
fast inference in a single call. 

III. TANT CONTROLLER 

Network applications require NT to be elastic enough in 
order to efficiently use the network resources and reduce the 
performance degradation. Also, routine network monitoring 
should cover the entire network with low data sampling rate. 
However, NT data rate may be boosted when issues arise or 
trends emerge [21]. That is the ultimate goal of the Network 
Telemetry Controller module in our scheme. As a use case, we 
evaluate our solution by means of a postcard-like telemetry 
mechanism, such as the Postcard-Based Telemetry (PBT) or the 
INT in eXport Data mode (INT-XD). In this mode, INT nodes 
directly export metadata from their dataplane to the monitoring 
system based on the INT instructions configured at their Flow 
Watchlists. A Flow Watchlist is a dataplane table that matches 
on packet headers and applies INT instructions on each matched 
flow. The instructions indicate which INT metadata to collect at 
each INT node and they are either configured at each INT-
capable node’s Flow Watchlist or written into the INT header. 
Although INT-XD is a valid mode of operation, it does not 
represent the classic and the default hop-by-hop INT operation, 
where the INT devices embed both instructions and metadata, 
i.e. telemetry data, and the packets are modified the most [6]. 

TABLE II. F1-SCORES COMPARISON AFTER SECOND FEATURE SELECTION 

Classifier Feat. = 27 Feat. = 9 Difference 

ET 0.89370 0.89102 0.00268 

LightGBM 0.89300 0.89232 0.00068 

XGBoost 0.89667 0.89585 0.00082 

 

 

Fig. 5. Computational resources used by the classifier algorithms for inferring 

in a single call. 
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Similarly, the PBT-M, a packet-marking variation of the 
PBT, does not require the encapsulation of telemetry instruction 
headers, avoiding some of the implementation challenges of the 
instruction-based PBT and the default INT, also known as on-
path telemetry in passport mode [22]. PBT-M uses a marking-
bit in the existing headers of user packets to trigger the NT data 
collection and export. If an NT node detects the mark, a postcard 
(a dedicated packet triggered by a marked user packet) is 
generated and transmitted to the NT collector. This postcard 
packet contains the data requested and configured by the 
management plane. The main advantage of PBT-M is that it 
avoids growing user packets with new headers and introducing 
new data plane protocols. However, the data plane devices need 
to be configured to know what NT data to collect. Another 
important benefit of PBT-M is that the collected NT data can be 
transported independently through in-band or out-of-band 
channels and the types of data collected from each node may be 
different according to the application requirements and nodes’ 
capabilities. Nevertheless, since each postcard packet has its 
own header, the overall network bandwidth overhead of PBT 
may be higher than the passport-based NT, depending on the 
number of postcards to be transmitted. 

For the reasons explained above, our TANT solution is 
designed as a PBT-M-like scheme that additionally takes into 
account the granularity of the NT data to be transported, so that 
the network bandwidth overhead is minimized. To achieve so, 
we assume that the levels of granularity can be marked through 
some or all of the 8 bits of the Type of Service (ToS) field of a 
standard IP packet header. In this way, a network device acting 
as the NT Source detects the type of traffic that is forwarding 
and, based on it, marks the level of granularity needed. Then, 
both NT Source, NT Transit, and NT Sink devices send postcard 
packets to the NT Monitoring Engine. Finally, the NT Sink 
unmarks the IP headers. It is important to highlight that, similar 
to the PBT-M scheme, TANT assumes that the NT devices are 
instructed on what kind of NT data collect and transmit by the 
management plane beforehand. 

With respect to the granularity levels of the NT data, we 
analyze the packets’ Inter-Arrival Time (IAT) of the types of 
traffic identified by the classifier. To this end, we explore the 
values of the attribute describing the average IAT between two 
packets sent in the forward direction (Fwd IAT Mean) from the 
whole CICIDS2018 dataset. We point out that, by selecting 
these IAT values, our analysis is more realistic so that the 
granularity levels are applicable to real-time scenarios. Also, the 
selection of the IAT values in the forward direction is consistent 
with the NT specifications described above, in which a network 
element triggers the telemetry tasks and forwards the NT 
instructions to the next elements ahead. On the other hand, the 

packet IAT values have a significant relationship with the type 
of traffic that a network element is forwarding and cannot be 
easily obfuscated or manipulated [23]. For this reason, the IAT 
characteristics of packets have been used to detect malicious 
traffic patterns, such as the one described by DDoS attacks [24]. 
Consequently, we define five levels of NT granularity according 
to values of the Fwd IAT Mean feature for each traffic class, as 
shown in Table III. Note that this attribute is not part of the group 
of nine features finally selected for the proposed traffic classifier 
(see Fig. 4). 

IV. EXPERIMENTATION AND EVALUATION RESULTS 

In this section, we provide the details about the 
experimentation setup for the evaluation of our proposed 
solution. The network topology for our experiments is similar to 
the one presented in [12], although we consider one path only 
for the NT Transit devices, instead of two, Fig. 6. The reason 
why is because their experiments focus on the path changes 
whereas ours are focused on the variations of the types of traffic. 
Nevertheless, the ultimate goal is the same: to compare the 
performance of the proposed NT mechanism against INT when 
the traffic flows are affected, either by the paths they are being 
transported on or the specific traffic type they are carrying. 
Likewise, we use the Mininet emulator as the software tool to 
implement and evaluate the TANT prototype in the described 
network topology  [25].  Mininet is a suitable tool for our use 
case, as it allows a flexible SDN environment with high degree 
of confidence for real-time tests [26]. 

On the other hand, we use Scapy [27] as the tool to 
manipulate the standard IP packets in the TANT 
implementation. Scapy can be used to construct packets of a 
variety of existing or new protocols, send and receive them, 
match requests and replies, and more [28]. Accordingly, the NT 
Source, NT Transit, and NT Sink devices transmit manipulated 
PBT-M-like packets to the NT Monitoring Engine, as described 
in the previous section, by means of Scapy’s protocol stacking 
and fields manipulation functionalities. More specifically, an IP 
packet is created with the standard IP header and 12 bytes are 
stacked as the payload of that packet. The rationale behind 
having a 12-byte payload is that we intend to compare our 
TANT solution to the conventional INT and the solution 
presented in [12], which is a scheme based on INT, although 
with modifications. According to that work, three types of INT 
metadata are considered as examples for its evaluation: switch 
ID, hop latency, and queue occupancy. These NT data is inserted 

TABLE III. GRANULARITY LEVELS 

Granularity (ms) Type(s) of Traffic 

100 Benign 

10 DDOS attack-HOIC, DoS attacks-Hulk 

1 SSH-BruteForce 

0.5 DDOS attack-LOIC-UDP 

0.1 FTP-BruteForce, DoS attacks-SlowHTTPTest 

 

 

Fig. 6. Network scenario for the TANT use case evaluation. 



into the user data every hop by each network element involved  
in the INT process, i.e. the NT Source, the NT Transit, and the 
NT Sink. Taking into account the INT specification [6], INT 
metadata per measured variable occupy 32 bits (4 bytes).  
Therefore, we consider NT data of 12 bytes in length to make it 
comparable to the three INT measurements considered in the 
experiments of [12]. 

In relation to the evaluation of both TANT modules working 
together, we run the Mininet emulation as follows: the Traffic 
Source host picks traffic samples randomly, meaning that any of 
the types of traffic described in Table III may be selected. Based 
on this random selection, the TANT Traffic Classifier 
determines the type of traffic by considering the selected flow 
attributes, as explained in Section II: Flow Byts/s, Flow Pkts/s, 
Flow IAT Mean, Flow IAT Std, Flow IAT Max, Fwd IAT Tot, 
Bwd IAT Min, Bwd IAT Std, and Bwd IAT Tot. Based on the 
identified traffic, the NT granularity is established for that flow 
according to the levels showed in Table III. Afterwards, the NT 
Source creates an IP packet and uses three of the eight ToS bits 
to indicate the level of granularity needed, as explained in 
Section III. Note that three bits are enough to mark all the five 
granularity levels that the TANT scheme considers for the use 
case presented in this paper. However, more bits could be used 

for that purpose. Additionally, the NT Source inserts the 12-byte 
payload and send the NT packet to the NT Monitoring Engine. 
As TANT implements a PBT-like NT, all the NT Transits and 
the NT Sink perform a similar task in order transmit their NT 
data to the NT Monitoring Engine. Recall that, similar to the 
PBT-M specification, we are assuming that all the NT nodes 
know the measurement data that they need to collect and send a 
priori. This could be accomplished by means of instructions 
from the management plane. Finally, each NT node starts 
transmitting the NT data of the pre-determined measurements in 
the granularity intervals specified in the ToS bits of the IP 
packet. 

In order to determine the network overhead, we measure the 
throughput every five seconds using the iPerf tool [29]. More 
specifically, we set up a pair of monitor hosts in the emulation 
environment, one of them actively logging the measured 
throughput by means of sending probe packets to the other one 
in 5-second intervals. In this way, we measure the throughput 
without transmitting any NT data and, right after that, the 
network throughput while the NT data is being transmitted for 
another 5 s. The network overhead is then calculated by 
subtracting the measured throughput with NT data from the 
measured throughput without it. Again, this method is similar to 
the one utilized in [12]. 

Fig. 7 depicts the results of our solution evaluation. As can 
be seen, the proposed TANT scheme achieves a substantial 
lower overhead when compared to the regular INT mechanism: 
the worst-case granularity, i.e. 0.1 ms, represents less than 50% 
of the INT’s overhead (Fig. 7a). With respect to the emulation 
in real time, TANT attains a reduction of 76.4% in network 
overhead, on average (Fig. 7b). Furthermore, this overhead 
decrease outperforms the reduction reported in [12], which is 
37% less than the conventional INT. It is important to point out 
that there are some spikes of the instantaneous measures of 
TANT that overpass the INT overhead. These spikes are due to 
the abnormal traffic detected by the classifier, which, at the same 
time, lowers the granularity. However, our TANT mechanism 
adaptively changes the granularity of the NT data when normal 
flows or other types of traffic flows are detected. As a result, the 
overall network overhead is considerably lesser than that 
produced by the per-packet INT’s granularity. 

Finally, we would like to mention that the code of the 
experiments described in this subsection is publicly available at 
[30]. We intent to make our contribution accessible to 
researchers and developers who are actively working on similar 
problems of efficient NT. Please cite this paper if you use any 
posted script for your own works. 

V. CONCLUSIONS AND FUTURE WORK 

In this work, we presented a novel framework for efficient 
collection and transportation of network telemetry data by 
making the network devices “aware” of the traffic types that they 
are forwarding. To accomplish so, our TANT scheme comprises 
two principal modules: an ML-based traffic classifier and an NT 
controller that adjusts the level of granularity of the telemetry 
data. We also showed how the inference process of the classifier 
can be accelerated in order to make per-flow predictions in 
shorter times and using less memory, important characteristics 
for any NT mechanism working in real time. Finally, we 

 

a) 

 

b) 

Fig. 7. Evaluation resutls of TANT and its comparison against the classic INT. 
a) Network bandwidth overhead reduction per granularity level. b) 

Instantaneous and average network overhead measured during 1,200 seconds 
of network emulation. 
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evaluated the performance of the proposed scheme by means of 
network emulations and demonstrated that TANT can reduce the 
network bandwidth overhead to about ¼ of the overhead caused 
by the classic INT scheme. 

As a future work, it would be interesting to include 
subcategories of benign traffic for the flow classification 
process. In this way, other types of traffic can be detected event 
if they do not correspond to cyber attacks. These subclasses of 
benevolent, but abnormal, traffic might be very useful to detect 
and take actions on events that can degrade the network 
performance. However, quality datasets of real network traces 
that include those situations need to be generated or made 
publicly available without compromising private data. 
Additionally, it would be worth exploring the application of the 
Federated Learning approach to the traffic classifier in the 
TANT scheme for use case scenarios such as the one presented 
in [5]. In this way, a more scalable solution could be 
accomplished by decentralizing the learning process and, as a 
result, a more seamlessly deployment across several local 
networks or even WANs would be also possible. 
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