
P
os
te
d
on

29
J
u
l
20
20

—
C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
50
5
79
81
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Efficient Network Telemetry based on Traffic Awareness

Cesar Gomez 1, Abdallah Shami 2, and Xianbing Wang 2

1Western University
2Affiliation not available

October 30, 2023

Abstract

Network Telemetry (NT) is a crucial component in today’s networks, as it provides the network managers with important data

about the status and behavior of the network elements. NT data are then utilized to get insights and rapidly take actions to

improve the network performance or avoid its degradation. Intuitively, the more data are collected, the better for the network

managers. However, the gathering and transportation of excessive NT data might produce an adverse effect, leading to a

paradox: the data that are supposed to help actually damage the network performance. This is the motivation to introduce a

novel NT framework that dynamically adjusts the rate in which the NT data should be transmitted. In this work, we present

an NT scheme that is traffic-aware, meaning that the network elements collect and send NT data based on the type of traffic

that they forward. The evaluation results of our Machine Learning-based mechanism show that it is possible to reduce by over

75% the network bandwidth overhead that a conventional NT scheme produces.

1

 1

Efficient Network Telemetry based on

Traffic Awareness

Abstract Network Telemetry (NT) is a crucial component in today’s networks, as it provides the network managers with important

data about the status and behavior of the network elements. NT data are then utilized to get insights and rapidly take actions to

improve the network performance or avoid its degradation. Intuitively, the more data are collected, the better for the network

managers. However, the gathering and transportation of excessive NT data might produce an adverse effect, leading to a paradox:

the data that are supposed to help actually damage the network performance. This is the motivation to introduce a novel NT

framework that dynamically adjusts the rate in which the NT data should be transmitted. In this work, we present an NT scheme

that is traffic-aware, meaning that the network elements collect and send NT data based on the type of traffic that they forward. The

evaluation results of our Machine Learning-based mechanism show that it is possible to reduce by over 75% the network bandwidth

overhead that a conventional NT scheme produces.

Index Terms— Machine Learning, Network Telemetry, network traffic classification, overhead reduction, telemetry control.

I. INTRODUCTION

ITH the advancement of Software-Defined Networks
(SDN) paradigm and the development of its

programmable data plane (PDP) technologies, the network
telemetry (NT) notion has emerged differing from the traditional
network measurement schemes, as it comprises an automated
procedure for remotely gathering and processing network data
[1]. Moreover, traditional network monitoring technologies
usually rely on active probes that are protocol-specific, such as
Internet Control Message Protocol (ICMP) and Simple Network
Management Protocol (SNMP) packets, or passive methods of
measurements, which are based only on observations of
undisturbed and unmodified packet streams of interest [2]. That
is why NT is deemed as a suitable answer to the challenges that
the traditional network measurement technologies face in terms
of adequate network visibility with better scalability, accuracy,
and coverage, as well as hardware and protocol independencies.

The study of how to get high-quality network measurement
data at low cost is important, since NT produces massive data in
real network environments. The main goal of any NT scheme is
to generate and collect measurement data locally at network
nodes, depending on different service requirements, and

transmit those data to a centralized controller for enabling an
optimal network management. Therefore, an efficient telemetry
deployment strategy is needed to compensate for the network
performance loss due to the impact of gathering and transmitting
the telemetry data themselves. Networks’ failures and
performance problems can have a variety of causes, which
requires different types of information to diagnose. That is why
the ideal telemetry scenario contemplates the gathering of all the
fine-grained data at a fine time scale. However, this means a
high cost in terms of communication overhead. On the other
hand, network managers need to get the telemetry information
in a timely manner to quickly identify, isolate, and fix
performance problems in order to minimize the impact on users
and organization’s revenue. Yet, it is difficult to measure many
flows and packets with constrained resources at the network
elements, which focus more on control functions such as packet
forwarding. Since NT not only processes all the packets but also
stores information about the packets, NT sometimes requires
even more resources than the control functions do.

Today’s NT practices follow a bottom-up approach, i.e.
network managers collect data from network elements,
aggregate it in a centralized collector, and extract the
information they need. This approach poses several problems
like having too many data to process. For this reason, a new
approach is needed, one that provides network managers with
abstractions of the metrics they are interested in [3]. Based on
those interests, the granularity of the measurements should be
different allowing to minimize the overhead produced by the
telemetry data’s transmission. In this way, different levels of
measurement accuracy can also be obtained considering the
network resources’ limitations. Nevertheless, the task of
matching network managers’ desires with specific telemetry

Cesar A. Gomez, Member, IEEE, Abdallah Shami, Senior Member, IEEE, and Xianbin Wang, Fellow, IEEE

W

Paper submitted for review on July 26, 2021.
C. A. Gomez is a PhD candidate with the Department of Electrical and

Computer Engineering, Western University, 1151 Richmond Street London,

Ontario, Canada (e-mail: cgomezsu@uwo.ca).
A. Shami is a professor with the Department of Electrical and Computer

Engineering, Western University, 1151 Richmond Street London, Ontario,

Canada (e-mail: abdallah.shami@uwo.ca).
X. Wang is a professor with the Department of Electrical and Computer

Engineering, Western University, 1151 Richmond Street London, Ontario,

Canada (e-mail: xianbin.wang@uwo.ca).

granularities might be challenging due to the network’s
changing conditions.

Moreover, NT applications only care about the telemetry
data, instead of how to obtain those data. Then, a sort of
telemetry tasks orchestration should be used in order to achieve
efficient tasks distribution and telemetry data acquisition. In
addition to upper-level monitoring applications, the
orchestration of NT tasks should consider real-time and
changing network flows. Nevertheless, how to achieve high-
quality network measurement at low cost according to the
existing network status is a key issue of NT that needs further
research and development [1].

We then propose to address the problem of efficiently
gathering NT data through a modular framework that is
independent of the NT scheme in use. The core of our solution
is Machine Learning-based NT Controller, which autonomously
decides the granularity of the measurements to be transmitted.
This decision is made by taking into account the network
managers’ needs and the traffic that a network element is
experiencing. To achieve so, we consider an anomaly detection
mechanism, which aims to discover unexpected events in the
traffic data. In this way, several types of traffic are identified and
the telemetry data are selectively transmitted based on those
traffic types.

Accordingly, our proposed mechanism utilizes a classifier to
detect anomalous behaviours in the traffic that a network
element is forwarding. The classification model considers the
traffic characteristics that common cyberattacks expose, so that
the flows are segmented in different types (including benevolent
traffic) based on those characteristics. Thus, our design aims to
classify the network traffic anomalies and, according to this
segmentation, decides the level of granularity of the telemetry
data that a network element should transmit. Our rationale
behind this proposal is that malicious traffic patterns can be
exploited to determine the frequency in which NT data should
be sent. In other words, when normal patterns of flows are
detected, there is no need for a very fine granularity in the NT
data gathering. In this way, for example, the queue occupancy
measurements are not to be transmitted very frequently unless
malicious traffic is negatively affecting the network elements’
buffers. In fact, this kind of approach has been researched in the
literature. For instance, authors in [4] study the behaviour of
some network performance metrics, such as the buffer
occupancy, as a consequence of malevolent traffic produced by
attacks like Denial of Service (DoS), Distributed Denial of
Service (DDoS), and SYN/TCP flooding (a type of DoS/DDoS
flood attack using the TCP protocol). Therefore, we aim to take
advantage of such a relationship between the traffic patterns that
typical cyberattacks pose and the metrics that an NT mechanism
usually collects and transmits.

For the reasons explained above, we denote our solution as
Traffic-Aware Network Telemetry, or TANT for short. A
general overview of the TANT solution is shown in Fig. 1. As
can be seen, the main components of the system at the network
elements are a traffic flow classifier and an NT controller, which
operates according to the telemetry standard in use. The NT
controller determines the granularity of the telemetry data to be
transmitted depending on the outcomes of the local traffic

classifier. In summary, the main contributions of the TANT
scheme and this work are:

• A flexible framework to achieve efficient NT that can be
adapted to a variety of NT schemes regardless their way of
operation (in-band or out-of-band).

• A proof-of-concept on a non-static NT mechanism, which
can be intelligently adjusted to mitigate the network
overhead that NT data gathering and transmission produce.

• The design of a lightweight traffic classifier that does not
consider the classical 5-tuple (protocol type, source IP
address and port, and destination address and port) to
identify different types of traffic.

• A methodology to evaluate and implement inference
acceleration of ML algorithms making predictions in real-
time scenarios, such as the NT use case presented in this
paper.

• An open-source environment for real-time evaluation whose
code is publicly available for further research and
development.

It is important to point out that, although the TANT
framework could be applied in networking setups, such as Wide
Area Networks (WAN) and Internet Service Providers (ISP)
networks, its application would be more representative in
networks delimited by the local management of a single
organization, like enterprises or campuses networks. Also, the
implementation of the TANT framework and the utilization of
its NT data to tackle inter-domain scenarios’ problems, like the
one presented in [5], needs further research that is out of the
scope of this work.

A. Related Work

The challenges that NT poses have been addressed by the
research community, in both academic and industry settings,
with diverse approaches that generally fell in one of these two
main categories: in-band telemetry and out-of-band telemetry.
In-band telemetry refers to the case when the NT data
transmission usually shares the same link, path, or packet with
the users’ data whereas the transportation of out-of-band
telemetry data does not [1]. The in-band telemetry solutions

Fig. 1. TANT system overview. Each network element comprises a traffic

classifier and an NT controller, which transmits the NT data to the NT engine.

 3

reviewed in this subsection are related to the In-band Network
Telemetry (INT) Dataplane Specification [6]. This specification
defines the monitoring system as a system that collects telemetry
data sent from different network elements. The components of
the monitoring system may be physically distributed but
logically centralized. Additionally, with INT, the original data
packets are monitored and may be modified to carry INT
instructions and INT metadata (telemetry data). It is important
to highlight that there are other in-band telemetry specifications
different from the INT standard. For this reason, we make the
distinction between these two terms.

Existing NT systems usually trade off expressiveness
(accuracy of the measurements) for scalability (amounts of the
telemetry data collected), or vice versa. That is why most of the
INT-based schemes aim to reduce the telemetry data
transportation overhead and, at the same time, try to avoid losing
too much measurement accuracy. Accordingly, authors in [7]
present a sampling-based INT mechanism, in which the source
node inserts INT headers into the packets at a configurable rate
to reduce the overhead. To compensate for the accuracy, their
solution also supports a sampling based on events, in which
metadata is inserted only when the latency difference between
the last hop and the current hop exceeds a predefined threshold.
Similarly, Chowdhury et al. propose a lightweight INT-based
scheme to reduce the overhead by trying to estimate the amount
of error that can be introduced at the INT collector if the
requested telemetry data are not piggybacked on the current
packet [8]. For estimating this error, a predictor function based
on Exponentially Weighted Moving Average is used for each
telemetry data item of interest.

By encoding the requested data on multiple packets, authors
in [9] introduce a probabilistic INT method that bounds the per-
packet overhead as low as one bit. The solution supports several
aggregation operations that allow efficient encoding of the
aggregated data onto packets: per-packet aggregation, static per-
flow aggregation, and dynamic per-flow aggregation.
Conversely, Wang et al. introduce a bandwidth-efficient INT
system by tracking the rules matched by the packets of a flow in
a previous period [10]. Their proposed solution assigns globally
unique IDs to every rule and stores rule-changed INT reports in
a database server so that the rate of generated INT reports is
reduced. In contrast, [11] considers the overhead not only at the
data plane, but also at the control and management planes while
employing INT. The authors model the INT orchestration as an
optimization problem and propose two heuristic algorithms to
produce feasible solutions in polynomial computational time
with respect to the network size and number of flows. From [11],
we find interesting the idea of taking into account the three SDN
planes to reduce the INT overhead in an orchestrated manner.
Finally, Kim et al. present a selective INT scheme where an
algorithm adjusts the insertion ratio of packets to be monitored
according to the frequency of significant changes in network
data [12].

What all the solutions reviewed above have in common is
the goal to make NT efficient in terms of the usage of the
network resources, such as bandwidth and network elements’
computational limitations. However, those schemes delimit their
applicability to the INT specification, as the per-packet NT data
overhead is assumed as the main issue to solve. Although INT

is becoming the mainstream telemetry standard, we advocate for
a more generalized framework that can also be applied to other
in-bound telemetry mechanisms or even out-of-band ones. On
the other hand, [7] and [12] are the schemes that relates the most
to our proposed framework in terms of the adjustment of the NT
data granularity (or rate) to reduce overhead.

II. TANT TRAFFIC CLASSIFIER

The traffic classification process involves the identification
of both normal and different types of abnormal traffic flows. We
then design the traffic classifier of our solution using the
CICIDS2018 dataset as a benchmark [13]. This and other
datasets from the Canadian Institute for Cybersecurity (CIC) at
the University of New Brunswick have been widely used by
researchers worldwide to evaluate their network traffic-related
methods, such as Internet traffic classification. The
CICIDS2018 dataset contains benign and common attacks,
which resembles true real-world network data. It also includes
the results of the network traffic analysis with labeled flows
based on the time stamp, source and destination IP addresses,
source and destination ports, and protocols. The dataset was
generated with realistic background traffic to profile the abstract
behavior of human interactions and includes benign traffic. The
final dataset was gathered from different attack scenarios whose
attacking infrastructure considers 50 machines and the victim
organization has 420 hosts and 30 servers. More than 80
statistical features are extracted from the network traffic in
forward and backward directions, as described in [13].

Therefore, the traffic classifier considers multiple classes,
including benign traffic and the malicious traffic described by
these attacks: DoS-Hulk, DoS-SlowHTTP, DDoS-HOIC,
DDoS-LOIC, FTP-BruteForce, and SSH-BruteForce. We chose
these attacks because they are the most representative classes in
the CICIDS2018 dataset and encompass both TCP and UDP
flows. A description of these attacks and the methodology used
to obtain their traffic data can be found in [14]. After merging
and cleaning the data subsets corresponding to the chosen
attacks, the final dataset ended up containing 4,723,155 samples.
For the training and test of the traffic classifier, the final dataset
is split into 70% and 30%, respectively.

On the other hand, one of our goals is to design a lightweight
and protocol-independent scheme to identity network traffic. To
achieve so, we first perform an explainable feature engineering
process. As we are interested in controlling the granularity of the
NT, there is an initial feature selection that considers all time-
related features, 27 in total, which are based on traffic flows’
metrics (see Table I). It is important to highlight that, in the
context of this work, we consider a traffic flow according to the
IETF’s RFC 7011, Specification of the IP Flow Information
Export (IPFIX): “A Flow is defined as a set of packets or frames
passing an Observation Point in the network during a certain
time interval. All packets belonging to a particular Flow have a
set of common properties.” [15]. Those common properties
include the packet header fields, i.e. the 5-tuple of source IP
address, destination IP address, source port, destination port, and
protocol type. Similarly, we point out that the data used for our
analysis and proposed solution correspond to the RFC 7011’s
definition of Flow Records, which contain measured properties
of the flows at the Observation Point. In this way, the features

of the input data for the traffic classifier are based on the Flow
Records but not on the flows’ common properties themselves,
such as the 5-tuple.

As a next step in the feature engineering process, we
normalized the values of the preselected features and perform a
correlation analysis of them. Intuitively, one can suppose that
several time-related features described in Table I are strongly
correlated. For example, some of the forward-direction metrics
should have a significant correlation with their backward-
direction counterparts, since the majority of the traffic data
correspond to TCP flows. For this reason, we perform another

feature selection using the Pearson correlation coefficients.
These coefficients are a statistical measure of the linear
dependency between two vectors, which are assumed to be
normally distributed and to contain 𝑛 elements each [16]. Thus,
the Pearson correlation coefficients are calculated as follows:

where 𝑥1 and 𝑥2 are the vectors of the two features being
analyzed, 𝑥̅1 and 𝑥̅2 the mean values of those feature vectors,

respectively, and 𝑥𝑗
(𝑖)

 refers to the value of the instance 𝑖 from

feature 𝑗 . For each coefficient, 𝑟(𝑥1, 𝑥2) ∈ [−1, 1] and a
positive number close to 1 means that an increase or decrease in
the values of 𝑥1 is met with the same trend, increase or decrease,
in the values of 𝑥2. Accordingly, we discard one of the features
whose values have a correlation greater than 0.9 with another
feature. The resulting 14 features and their coefficients after
carrying out the correlation analysis are shown in Fig. 2.

For the traffic flows classifier, we consider the following
classification techniques, which are deemed by ML researchers
and practitioners as efficient methods for multi-class problems:
Logistic Regression with Stochastic Gradient Descent training
(LR-SGD), linear Support Vector Machines with Stochastic
Gradient Descent training (SVM-SGD), Random Forest (RF),
Extra Trees (ET), Light Gradient Boosting Machine
(LightGBM), and Extreme Gradient Boosting (XGBoost). In
order to compare the outcomes of these methods, we use the F1-
score as the statistical measure of the classification quality, since
the dataset happens to be imbalanced. The F1-socre is defined
by the harmonic mean of the precision and the recall [17], as
follows:

TABLE I. TIME-RELATED TRAFFIC FEATURES

Feature Description

Active Max
Maximum time a flow was active before

becoming idle

Active Mean
Mean time a flow was active before becoming

idle

Active Min
Minimum time a flow was active before
becoming idle

Active Std
Standard deviation time a flow was active before

becoming idle

Bwd IAT Max
Maximum time between two packets sent in the

backward direction

Bwd IAT Mean
Mean time between two packets sent in the
backward direction

Bwd IAT Min
Minimum time between two packets sent in the
backward direction

Bwd IAT Std
Standard deviation time between two packets sent

in the backward direction

Bwd IAT Total
Total time between two packets sent in the

backward direction

Bwd Packets/s Number of backward packets per second

Flow Byte/s Number of flow bytes per second

Flow duration Duration of the flow in microseconds

Flow IAT Max
Maximum time between two packets sent in the
flow

Flow IAT Mean Mean time between two packets sent in the flow

Flow IAT Min
Minimum time between two packets sent in the

flow

Flow IAT Std
Standard deviation time between two packets sent

in the flow

Flow Packets/s Number of flow packets per second

Fwd IAT Max
Maximum time between two packets sent in the

forward direction

Fwd IAT Mean
Mean time between two packets sent in the

forward direction

Fwd IAT Min
Minimum time between two packets sent in the
forward direction

Fwd IAT Std
Standard deviation time between two packets sent

in the forward direction

Fwd IAT Total
Total time between two packets sent in the

forward direction

Fwd Packets/s Number of forward packets per second

Idle Max
Maximum time a flow was idle before becoming

active

Idle Mean
Mean time a flow was idle before becoming

active

Idle Min
Minimum time a flow was idle before becoming

active

Idle Std
Standard deviation time a flow was idle before
becoming active

𝑟(𝑥1, 𝑥2) =
∑ (𝑥1

(𝑖)
− 𝑥̅1)(𝑥2

(𝑖)
− 𝑥̅2)𝑛

𝑖=1

√∑ (𝑥1
(𝑖)

− 𝑥̅1)
2

𝑛
𝑖=1

√∑ (𝑥2
(𝑖)

− 𝑥̅2)
2

𝑛
𝑖=1

(1)

Fig. 2. Correlation matrix of the selected features based on the Pearson

coefficients.

 5

where the recall, 𝑅, represents the ratio between the number of
correct positive results and the number of all relevant samples,
and the precision, 𝑃 , is the relation between the number of
correct positive results and the number of positive results. Fig. 3
shows the comparison of the F1-scores of the abovementioned
classifiers before and after performing the feature selection
based on the Pearson correlation analysis.

As can be seen, the accuracy of the LightGBM, ET, and
XGBoost classifiers are slightly lower when almost half of the
features (14 out of 27) are used. In contrast, although faster in
training, LR-SGD and linear SVM-SGD algorithms are
outperformed by the other three in both cases. It is important to
highlight that we are more interested in the inference times,
rather than the training times, as our goal is to come up with a
lightweight traffic classifier to efficiently make predictions in
real time. That is why we are not comparing the training times
that the algorithms take, however, the inference times will be
compared in the performance evaluation of the proposed
solution. For the classifier design, we intent to engineer a
method that employs a reduced number of features without
sacrificing the accuracy too much, so that its complexity is
lowered, especially when inferencing traffic anomalies for the
NT control process.

As a further step, we complete another feature extraction
based on the importance analysis, which helps identify what the
most informative features are during the classification process.
In this way, we could reduce even more the number of features
needed for the inference, if the accuracy is not significantly
degraded. We explore this possibility by calculating the
Permutation Feature Importance (PFI): a model inspection
technique and especially useful for non-linear classifiers. This
technique is agnostic to any model and breaks the relationship
between the feature and the target. The PFI for a feature 𝑥𝑗 is

defined as the average increase in prediction loss, ℒ, when the
feature is permuted in training or test dataset [18], as follows:

where 𝑓(𝑥(𝑖)) and 𝑦(𝑖) refer to the model predictions and the

targets, respectively , 𝑥̂𝑗
𝑚(𝑖)

 is a permutation of 𝑥𝑗 , 𝑀 is the

number of repeated permutations, and 𝑥𝑗̃ refers to the

complementary feature space. Fig. 4 shows the PFI coefficients
calculated for the classification algorithm with the highest F1-
score, i.e. XGBoost, over the test subset (meaning 𝑛 =
1,416,947) and with 𝑀 = 15. As can be seen, the first nine
features in importance contribute to over 95% of the
classification process.

Finally, we test the LightGBM, ET, and XGBoost classifiers
only with the top nine features selected from the PFI analysis.
The new F1-scores are compared with the previous ones in
Table II, which reveals that the changes in the classification
accuracy are minuscule, especially for the LightGBM and
XGBoost algorithms. This explainable feature space reduction
allows the traffic identification process to be less complex and,
as a result, to achieve shorter inference times for the NT control
mechanism at each network element. The inference performance
will be evaluated and discussed in the next subsection. For that
evaluation, we compare the best two techniques in terms of
accuracy in the reduced feature space, i.e. LightGBM and
XGBoost, which yield F1-scores of 0.899 and 0.897,
respectively, after tuning their hyperparameters. Note that we
avoid overturning the hyperparameters that add complexity and
make the models more likely to overfit, such as the maximum
depth and the maximum leaves of the trees. In this way, we keep
the structure of both the LightGBM and XGBoost models
comparable for the inference performance benchmarking as well
as more generalized for making predictions on unseen data.

A. Inference Acceleration

As explained earlier, the main goal of having a reduced
feature space without significantly sacrificing the traffic
classification accuracy is to decrease the model’s complexity
and, therefore, the inference time. In achieving so, the classifier

Fig. 3. Classifiers’ scores comparison before and after first feature selection.

Fig. 4. Feature ranking based on PFI calculation.

𝐹1 = 2
𝑃∙𝑅

𝑃+𝑅
 (2)

𝑃𝐹𝐼𝑗 =
1

𝑀
∑

1

𝑛

𝑀

𝑚=1

∑ (ℒ (𝑦(𝑖), 𝑓 (𝑥̂𝑗
𝑚(𝑖)

, 𝑥𝑗̃
(𝑖)

)) − ℒ (𝑦(𝑖), 𝑓(𝑥(𝑖))))

𝑛

𝑖=1

(3)

may be implemented in more realistic network scenarios and
operate in real time. We go further towards this goal by utilizing
an ML inferencing accelerator. For this work, we employ the
tools from the Open Neural Network Exchange (ONNX)
framework to improve the performance of our model. ONNX is
an open ecosystem that provides a standard format for
representing the prediction function of trained ML models [19].
It defines an extensible computation graph model and the
models trained using several ML frameworks can be exported to
ONNX. With ONNX, each computation dataflow graph is
structured as a list of nodes that form an acyclic graph, a process
known as serialization. As a result, ONNX offers a convenient
interoperability of ML models across frameworks and that is
why it is widely backed by important companies in the Artificial
Intelligence (AI) industry.

We then operationalize the optimized traffic classifier by
ONNX with the ONNX Runtime: a high-performance and
resource-efficient inference engine for ML models that takes
advantage of the specific hardware capabilities where the model
is run on [20]. ONNX Runtime can perform inference for any
prediction function converted into the ONNX format and its
cross-platform nature allows it to be run on different hardware
and operating systems. In this manner, ONNX Runtime tries to
parallelize the model’s operations and optimizes the model
graph by applying graph transformation, that is, elimination and
fusion of graph nodes.

Accordingly, we assess the efficiency of the LightGBM and
XGBoost classifiers when making predictions for one
observation at a time, a common situation in computer
networking scenarios such as the use case for this work. To
achieve so, we take 15,000 random samples from the resulting
dataset after reducing the feature space, as explained in the
previous subsection, and measure the processing time that each
model takes to predict the type of traffic flow (one sample
corresponds to one flow). Similarly, we trace the allocated
memory to process each prediction.

Fig. 5 shows the averaged computation times and the
averaged RAM usage over the 15,000 samples. Note the
logarithmic scale used for comparing the processing times. As
can be seen, XGBoost algorithm achieves faster predictions than
LightGBM on batches of one sample in size. More importantly,
it is evident that ONNX optimization does accelerate the
inference time by a factor of 4.9x and 3.6x for LigthGBM and
XGBoost, respectively. Similarly, the memory usage is
significantly reduced when ONNX is employed, being nearly
the same for both algorithms and improved by a factor of 15.9x,
for LigthGBM, and a factor of 15.3x, for XGBoost. All these
measurements were obtained by running the ONNX inference
calls on a machine with Intel® Xeon® CPU E5-2686, four cores
@ 2.30 GHz, and Ubuntu 18.04.4. We also point out that these

measured values correspond to the complexity exhibited by a
single flow and that complexity grows linearly with the number

of flows, 𝑁𝑓 , meaning a time complexity of 𝒪(𝑁𝑓) when

multiple flows are considered.

It is important to highlight that several research works have
reported lower processing times of LightGBM, although with
lower accuracy scores too, when compared to XGBoost.
However, LightGBM may be faster when being trained or
making batch predictions, but not when inferencing on one
observation at a time. This is due to the hyperparameter tuning
that the LightGBM needs in order to get similar or higher
accuracy than XGBoost. That tuning might result in a more
complex model, which significantly affects the inferencing
performance. Therefore, we consider the XGBoost algorithm for
our proposed efficient telemetry scheme and the performance
assessments in the rest of this work. Again, as we discussed in
the introduction, we are more interested in attaining a reasonable
traffic identification accuracy with an algorithm that provides
fast inference in a single call.

III. TANT CONTROLLER

Network applications require NT to be elastic enough in
order to efficiently use the network resources and reduce the
performance degradation. Also, routine network monitoring
should cover the entire network with low data sampling rate.
However, NT data rate may be boosted when issues arise or
trends emerge [21]. That is the ultimate goal of the Network
Telemetry Controller module in our scheme. As a use case, we
evaluate our solution by means of a postcard-like telemetry
mechanism, such as the Postcard-Based Telemetry (PBT) or the
INT in eXport Data mode (INT-XD). In this mode, INT nodes
directly export metadata from their dataplane to the monitoring
system based on the INT instructions configured at their Flow
Watchlists. A Flow Watchlist is a dataplane table that matches
on packet headers and applies INT instructions on each matched
flow. The instructions indicate which INT metadata to collect at
each INT node and they are either configured at each INT-
capable node’s Flow Watchlist or written into the INT header.
Although INT-XD is a valid mode of operation, it does not
represent the classic and the default hop-by-hop INT operation,
where the INT devices embed both instructions and metadata,
i.e. telemetry data, and the packets are modified the most [6].

TABLE II. F1-SCORES COMPARISON AFTER SECOND FEATURE SELECTION

Classifier Feat. = 27 Feat. = 9 Difference

ET 0.89370 0.89102 0.00268

LightGBM 0.89300 0.89232 0.00068

XGBoost 0.89667 0.89585 0.00082

Fig. 5. Computational resources used by the classifier algorithms for inferring

in a single call.

 7

Similarly, the PBT-M, a packet-marking variation of the
PBT, does not require the encapsulation of telemetry instruction
headers, avoiding some of the implementation challenges of the
instruction-based PBT and the default INT, also known as on-
path telemetry in passport mode [22]. PBT-M uses a marking-
bit in the existing headers of user packets to trigger the NT data
collection and export. If an NT node detects the mark, a postcard
(a dedicated packet triggered by a marked user packet) is
generated and transmitted to the NT collector. This postcard
packet contains the data requested and configured by the
management plane. The main advantage of PBT-M is that it
avoids growing user packets with new headers and introducing
new data plane protocols. However, the data plane devices need
to be configured to know what NT data to collect. Another
important benefit of PBT-M is that the collected NT data can be
transported independently through in-band or out-of-band
channels and the types of data collected from each node may be
different according to the application requirements and nodes’
capabilities. Nevertheless, since each postcard packet has its
own header, the overall network bandwidth overhead of PBT
may be higher than the passport-based NT, depending on the
number of postcards to be transmitted.

For the reasons explained above, our TANT solution is
designed as a PBT-M-like scheme that additionally takes into
account the granularity of the NT data to be transported, so that
the network bandwidth overhead is minimized. To achieve so,
we assume that the levels of granularity can be marked through
some or all of the 8 bits of the Type of Service (ToS) field of a
standard IP packet header. In this way, a network device acting
as the NT Source detects the type of traffic that is forwarding
and, based on it, marks the level of granularity needed. Then,
both NT Source, NT Transit, and NT Sink devices send postcard
packets to the NT Monitoring Engine. Finally, the NT Sink
unmarks the IP headers. It is important to highlight that, similar
to the PBT-M scheme, TANT assumes that the NT devices are
instructed on what kind of NT data collect and transmit by the
management plane beforehand.

With respect to the granularity levels of the NT data, we
analyze the packets’ Inter-Arrival Time (IAT) of the types of
traffic identified by the classifier. To this end, we explore the
values of the attribute describing the average IAT between two
packets sent in the forward direction (Fwd IAT Mean) from the
whole CICIDS2018 dataset. We point out that, by selecting
these IAT values, our analysis is more realistic so that the
granularity levels are applicable to real-time scenarios. Also, the
selection of the IAT values in the forward direction is consistent
with the NT specifications described above, in which a network
element triggers the telemetry tasks and forwards the NT
instructions to the next elements ahead. On the other hand, the

packet IAT values have a significant relationship with the type
of traffic that a network element is forwarding and cannot be
easily obfuscated or manipulated [23]. For this reason, the IAT
characteristics of packets have been used to detect malicious
traffic patterns, such as the one described by DDoS attacks [24].
Consequently, we define five levels of NT granularity according
to values of the Fwd IAT Mean feature for each traffic class, as
shown in Table III. Note that this attribute is not part of the group
of nine features finally selected for the proposed traffic classifier
(see Fig. 4).

IV. EXPERIMENTATION AND EVALUATION RESULTS

In this section, we provide the details about the
experimentation setup for the evaluation of our proposed
solution. The network topology for our experiments is similar to
the one presented in [12], although we consider one path only
for the NT Transit devices, instead of two, Fig. 6. The reason
why is because their experiments focus on the path changes
whereas ours are focused on the variations of the types of traffic.
Nevertheless, the ultimate goal is the same: to compare the
performance of the proposed NT mechanism against INT when
the traffic flows are affected, either by the paths they are being
transported on or the specific traffic type they are carrying.
Likewise, we use the Mininet emulator as the software tool to
implement and evaluate the TANT prototype in the described
network topology [25]. Mininet is a suitable tool for our use
case, as it allows a flexible SDN environment with high degree
of confidence for real-time tests [26].

On the other hand, we use Scapy [27] as the tool to
manipulate the standard IP packets in the TANT
implementation. Scapy can be used to construct packets of a
variety of existing or new protocols, send and receive them,
match requests and replies, and more [28]. Accordingly, the NT
Source, NT Transit, and NT Sink devices transmit manipulated
PBT-M-like packets to the NT Monitoring Engine, as described
in the previous section, by means of Scapy’s protocol stacking
and fields manipulation functionalities. More specifically, an IP
packet is created with the standard IP header and 12 bytes are
stacked as the payload of that packet. The rationale behind
having a 12-byte payload is that we intend to compare our
TANT solution to the conventional INT and the solution
presented in [12], which is a scheme based on INT, although
with modifications. According to that work, three types of INT
metadata are considered as examples for its evaluation: switch
ID, hop latency, and queue occupancy. These NT data is inserted

TABLE III. GRANULARITY LEVELS

Granularity (ms) Type(s) of Traffic

100 Benign

10 DDOS attack-HOIC, DoS attacks-Hulk

1 SSH-BruteForce

0.5 DDOS attack-LOIC-UDP

0.1 FTP-BruteForce, DoS attacks-SlowHTTPTest

Fig. 6. Network scenario for the TANT use case evaluation.

into the user data every hop by each network element involved
in the INT process, i.e. the NT Source, the NT Transit, and the
NT Sink. Taking into account the INT specification [6], INT
metadata per measured variable occupy 32 bits (4 bytes).
Therefore, we consider NT data of 12 bytes in length to make it
comparable to the three INT measurements considered in the
experiments of [12].

In relation to the evaluation of both TANT modules working
together, we run the Mininet emulation as follows: the Traffic
Source host picks traffic samples randomly, meaning that any of
the types of traffic described in Table III may be selected. Based
on this random selection, the TANT Traffic Classifier
determines the type of traffic by considering the selected flow
attributes, as explained in Section II: Flow Byts/s, Flow Pkts/s,
Flow IAT Mean, Flow IAT Std, Flow IAT Max, Fwd IAT Tot,
Bwd IAT Min, Bwd IAT Std, and Bwd IAT Tot. Based on the
identified traffic, the NT granularity is established for that flow
according to the levels showed in Table III. Afterwards, the NT
Source creates an IP packet and uses three of the eight ToS bits
to indicate the level of granularity needed, as explained in
Section III. Note that three bits are enough to mark all the five
granularity levels that the TANT scheme considers for the use
case presented in this paper. However, more bits could be used

for that purpose. Additionally, the NT Source inserts the 12-byte
payload and send the NT packet to the NT Monitoring Engine.
As TANT implements a PBT-like NT, all the NT Transits and
the NT Sink perform a similar task in order transmit their NT
data to the NT Monitoring Engine. Recall that, similar to the
PBT-M specification, we are assuming that all the NT nodes
know the measurement data that they need to collect and send a
priori. This could be accomplished by means of instructions
from the management plane. Finally, each NT node starts
transmitting the NT data of the pre-determined measurements in
the granularity intervals specified in the ToS bits of the IP
packet.

In order to determine the network overhead, we measure the
throughput every five seconds using the iPerf tool [29]. More
specifically, we set up a pair of monitor hosts in the emulation
environment, one of them actively logging the measured
throughput by means of sending probe packets to the other one
in 5-second intervals. In this way, we measure the throughput
without transmitting any NT data and, right after that, the
network throughput while the NT data is being transmitted for
another 5 s. The network overhead is then calculated by
subtracting the measured throughput with NT data from the
measured throughput without it. Again, this method is similar to
the one utilized in [12].

Fig. 7 depicts the results of our solution evaluation. As can
be seen, the proposed TANT scheme achieves a substantial
lower overhead when compared to the regular INT mechanism:
the worst-case granularity, i.e. 0.1 ms, represents less than 50%
of the INT’s overhead (Fig. 7a). With respect to the emulation
in real time, TANT attains a reduction of 76.4% in network
overhead, on average (Fig. 7b). Furthermore, this overhead
decrease outperforms the reduction reported in [12], which is
37% less than the conventional INT. It is important to point out
that there are some spikes of the instantaneous measures of
TANT that overpass the INT overhead. These spikes are due to
the abnormal traffic detected by the classifier, which, at the same
time, lowers the granularity. However, our TANT mechanism
adaptively changes the granularity of the NT data when normal
flows or other types of traffic flows are detected. As a result, the
overall network overhead is considerably lesser than that
produced by the per-packet INT’s granularity.

Finally, we would like to mention that the code of the
experiments described in this subsection is publicly available at
[30]. We intent to make our contribution accessible to
researchers and developers who are actively working on similar
problems of efficient NT. Please cite this paper if you use any
posted script for your own works.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented a novel framework for efficient
collection and transportation of network telemetry data by
making the network devices “aware” of the traffic types that they
are forwarding. To accomplish so, our TANT scheme comprises
two principal modules: an ML-based traffic classifier and an NT
controller that adjusts the level of granularity of the telemetry
data. We also showed how the inference process of the classifier
can be accelerated in order to make per-flow predictions in
shorter times and using less memory, important characteristics
for any NT mechanism working in real time. Finally, we

a)

b)

Fig. 7. Evaluation resutls of TANT and its comparison against the classic INT.
a) Network bandwidth overhead reduction per granularity level. b)

Instantaneous and average network overhead measured during 1,200 seconds
of network emulation.

 9

evaluated the performance of the proposed scheme by means of
network emulations and demonstrated that TANT can reduce the
network bandwidth overhead to about ¼ of the overhead caused
by the classic INT scheme.

As a future work, it would be interesting to include
subcategories of benign traffic for the flow classification
process. In this way, other types of traffic can be detected event
if they do not correspond to cyber attacks. These subclasses of
benevolent, but abnormal, traffic might be very useful to detect
and take actions on events that can degrade the network
performance. However, quality datasets of real network traces
that include those situations need to be generated or made
publicly available without compromising private data.
Additionally, it would be worth exploring the application of the
Federated Learning approach to the traffic classifier in the
TANT scheme for use case scenarios such as the one presented
in [5]. In this way, a more scalable solution could be
accomplished by decentralizing the learning process and, as a
result, a more seamlessly deployment across several local
networks or even WANs would be also possible.

REFERENCES

[1] L. Tan et al., “In-band Network Telemetry: A Survey,” Comput. Netw.,

vol. 186, p. 107763, Feb. 2021, doi: 10.1016/j.comnet.2020.107763.

[2] A. Morton, “Active and Passive Metrics and Methods (with Hybrid Types
In-Between),” RFC Editor, 7799, May 2016. doi: 10.17487/RFC7799.

[3] M. Yu, “Network telemetry: towards a top-down approach,” ACM
SIGCOMM Comput. Commun. Rev., vol. 49, no. 1, pp. 11–17, Feb. 2019,

doi: 10.1145/3314212.3314215.

[4] N. Ouroua, W. Bouzegza, and M. Ioualalen, “Formal Modeling and
Performance Evaluation of Network’s Server Under SYN/TCP Attack,”

in Mobile, Secure, and Programmable Networking, Cham, 2017, pp. 74–

87. doi: 10.1007/978-3-319-67807-8_6.
[5] C. A. Gomez, X. Wang, and A. Shami, “Federated Intelligence for Active

Queue Management in Inter-Domain Congestion,” IEEE Access, vol. 9,

pp. 10674–10685, 2021, doi: 10.1109/ACCESS.2021.3050174.
[6] “In-band Network Telemetry (INT) Dataplane Specification,” The P4.org

Applications Working Group, Version 2.1, Oct. 2020. Accessed: Feb. 11,

2021. [Online]. Available: https://github.com/p4lang/p4-
applications/tree/master/docs

[7] D. Suh, S. Jang, S. Han, S. Pack, and X. Wang, “Flexible sampling-based

in-band network telemetry in programmable data plane,” ICT Express,
vol. 6, no. 1, pp. 62–65, Mar. 2020, doi: 10.1016/j.icte.2019.08.005.

[8] S. R. Chowdhury, R. Boutaba, and J. François, “LINT: Accuracy-

adaptive and Lightweight In-band Network Telemetry”.
[9] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M.

Mitzenmacher, “PINT: Probabilistic In-band Network Telemetry,” in

Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures,

and protocols for computer communication, New York, NY, USA, Jul.

2020, pp. 662–680. doi: 10.1145/3387514.3405894.
[10] S.-Y. Wang, Y.-R. Chen, J.-Y. Li, H.-W. Hu, J.-A. Tsai, and Y.-B. Lin,

“A Bandwidth-Efficient INT System for Tracking the Rules Matched by

the Packets of a Flow,” in 2019 IEEE Global Communications
Conference (GLOBECOM), Dec. 2019, pp. 1–6. doi:

10.1109/GLOBECOM38437.2019.9013581.

[11] J. A. Marques, M. C. Luizelli, R. I. Tavares da Costa Filho, and L. P.
Gaspary, “An optimization-based approach for efficient network

monitoring using in-band network telemetry,” J. Internet Serv. Appl., vol.

10, no. 1, p. 12, Jun. 2019, doi: 10.1186/s13174-019-0112-0.
[12] Y. Kim, D. Suh, and S. Pack, “Selective In-band Network Telemetry for

Overhead Reduction,” in 2018 IEEE 7th International Conference on

Cloud Networking (CloudNet), Oct. 2018, pp. 1–3. doi:
10.1109/CloudNet.2018.8549351.

[13] “IDS 2018 | Datasets | Research | Canadian Institute for Cybersecurity |
UNB.” https://www.unb.ca/cic/datasets/ids-2018.html (accessed Mar.

03, 2021).

[14] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.,”

in ICISSp, 2018, pp. 108–116.

[15] P. Aitken, B. Claise, and B. Trammell, “Specification of the IP Flow
Information Export (IPFIX) Protocol for the Exchange of Flow

Information,” RFC Editor, RFC 7011, Sep. 2013. doi:

10.17487/RFC7011.
[16] M. Braschler, T. Stadelmann, and K. Stockinger, Applied Data Science:

Lessons Learned for the Data-Driven Business. Springer International

Publishing, 2019.
[17] O. Campesato, Artificial Intelligence, Machine Learning, and Deep

Learning. Mercury Learning & Information, 2020.

[18] C. Molnar, G. König, B. Bischl, and G. Casalicchio, “Model-agnostic
Feature Importance and Effects with Dependent Features -- A

Conditional Subgroup Approach,” ArXiv200604628 Cs Stat, Jun. 2020,

Accessed: Mar. 29, 2021. [Online]. Available:
http://arxiv.org/abs/2006.04628

[19] “Open Neural Network Exchange,” GitHub. https://github.com/onnx

(accessed Mar. 09, 2021).
[20] “ONNX Runtime.” https://www.onnxruntime.ai/ (accessed Apr. 10,

2021).

[21] H. Song, F. Qin, P. Martinez-Julia, L. Ciavaglia, and A. Wang, “Network
Telemetry Framework,” Internet Engineering Task Force, Internet-Draft

draft-ietf-opsawg-ntf-07, Feb. 2021. Accessed: Apr. 13, 2021. [Online].
Available: https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-ntf-07

[22] H. Song et al., “Postcard-based On-Path Flow Data Telemetry using

Packet Marking,” Internet Engineering Task Force, Internet-Draft (work
in progress) draft-song-ippm-postcard-based-telemetry-09, Feb. 2021.

[Online]. Available: https://datatracker.ietf.org/doc/html/draft-song-

ippm-postcard-based-telemetry-09
[23] C. Rottondi and G. Verticale, “Using packet interarrival times for Internet

traffic classification,” in 2011 IEEE Third Latin-American Conference

on Communications, Oct. 2011, pp. 1–6. doi:
10.1109/LatinCOM.2011.6107404.

[24] O. Osanaiye, K. R. Choo, and M. Dlodlo, “Change-point cloud DDoS

detection using packet inter-arrival time,” in 2016 8th Computer Science
and Electronic Engineering (CEEC), Sep. 2016, pp. 204–209. doi:

10.1109/CEEC.2016.7835914.

[25] “Mininet Overview - Mininet.” http://mininet.org/overview/ (accessed
May 06, 2021).

[26] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid

prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, New York, NY,

USA, Oct. 2010, pp. 1–6. doi: 10.1145/1868447.1868466.

[27] P. Biondi, “Scapy - Packet crafting for Python2 and Python3.”
https://scapy.net/ (accessed May 13, 2021).

[28] R. R. S, R. R, M. Moharir, and S. G, “SCAPY- A powerful interactive

packet manipulation program,” in 2018 International Conference on
Networking, Embedded and Wireless Systems (ICNEWS), Dec. 2018, pp.

1–5. doi: 10.1109/ICNEWS.2018.8903954.

[29] “iPerf - The ultimate speed test tool for TCP, UDP and SCTP.”
https://iperf.fr/iperf-doc.php (accessed Apr. 15, 2021).

[30] C. A. Gomez, cgomezsu/TANT. 2021. Accessed: Jul. 20, 2021. [Online].

Available: https://github.com/cgomezsu/TANT

Cesar A. Gomez (Member, IEEE) received the B.E. degree in electronics
engineering from St. Thomas Aquinas University at Bogota, in 2005, and the

M.E.Sc. degree in telecommunications engineering from the National

University of Colombia, in 2010. He is currently pursuing the Ph.D. in
Electrical and Computer Engineering with Western University, Canada. His

background includes industrial experience for over ten years in several network

engineering roles at companies, such as Siemens, ZTE, and Nortel. His current
research interest includes application of machine learning techniques towards

the realization of the intelligent networking automation paradigm. He is also

the Vice-Chair of the IEEE Computer Chapter, London Section, Region 7.

Abdallah Shami (Senior Member, IEEE) received the B.E. degree in electrical
and computer engineering from Lebanese University, Beirut, Lebanon, in 1997,

and the Ph.D. degree in electrical engineering from the City University of New

York, New York, NY, USA, in 2002. He is currently a Professor with the ECE
Department, Western University. He is also the Director of the Optimized

Computing and Communications Laboratory. His research interests include

performance and optimization modeling, machine learning and data analytics,
the IoT, virtualization, cloud computing, and software-de_ned networks. He has

chaired key symposia for IEEE GLOBECOM, IEEE ICC, IEEE ICNC, and

ICCIT. He was the elected Chair of the IEEE Communications Society
Technical Committee on Communications Software, from 2016 to 2017, and

the IEEE London Section Chair, from 2016 to 2018. He is also an Associate

Editor of the IEEE TRANSACTIONS ON MOBILE COMPUTING, the IEEE NETWORK, and
the IEEE COMMUNICATIONS SURVEYS AND TUTORIALS.

Xianbin Wang (Fellow, IEEE) received the Ph.D. degree in electrical and
computer engineering from the National University of Singapore, in 2001.

From January 2001 to July 2002, he was a System Designer with

STMicroelectronics. From July 2002 to December 2007, he was a Research
Scientist/Senior Research Scientist with the Communications Research Centre

Canada (CRC). He is currently a Professor and a Tier 1 Canada Research Chair

with Western University, Canada. He has over 400 peer-reviewed journal and
conference papers, in addition to 30 granted and pending patents and several

standard contributions. His current research interests include 5G and beyond,

the Internet-of-Things, communications security, machine learning, and
intelligent communications. He is a Fellow of the Canadian Academy of

Engineering and the Engineering Institute of Canada. He has received many

awards and recognitions, including the Canada Research Chair, the CRC
President's Excellence Award, the Canadian Federal Government Public

Service Award, the Ontario Early Researcher Award, and six IEEE Best Paper

Awards. He was involved in many IEEE conferences, including GLOBECOM,
ICC, VTC, PIMRC, WCNC, and CWIT, in different roles, such as symposium

chair, tutorial instructor, track chair, session chair, and TPC co-chair. He is also

serving as the Chair of the IEEE London Section and the Chair of ComSoc
Signal Processing and Computing for Communications Technical Committee.

He was also an Associate Editor for the IEEE TRANSACTIONSONWIRELESS

COMMUNICATIONS, from 2007 to 2011, and the IEEE WIRELESS COMMUNICATIONS

LETTERS, from 2011 to 2016. He currently serves as an Editor/Associate Editor

for the IEEE TRANSACTIONS ON COMMUNICATIONS, the IEEE TRANSACTIONS ON

BROADCASTING, and the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. He is an
IEEE Distinguished Lecturer.

	I. Introduction
	A. Related Work

	II. TANT Traffic Classifier
	A. Inference Acceleration

	III. TANT Controller
	IV. Experimentation and Evaluation Results
	V. Conclusions and Future Work
	References

