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Abstract

Many underwater applications that involve the use of autonomous underwater vehicles require accurate navigation systems.

Image registration from acoustic images is a technique that can be used to achieve this task by comparing two consecutive

sonar images and estimate the motion of the vechicle. The use of deep learning (DL) techniques for motion estimation can

significantly reduce the processing complexity and achieve high-accuracy position estimates. In this paper we investigate the

performance improvement when using two sonar sensors compared to using a single sensor. The DL network is trained using

images generated by a sonar simulator. The results show an improvement in the estimation accuracy when using two sensors.
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ABSTRACT
Many underwater applications require precise localization.
This can be achieved by techniques such as image registra-
tion applied to two consecutive acoustic images obtained by
a sonar. However, this can be a complex task to implement
in real time. The use of deep learning (DL) techniques for
motion estimation can significantly reduce the processing
complexity and achieve high-accuracy position estimates. In
this paper we investigate the performance improvement when
using multiple sonar sensors compared to a single sensor.
The DL network is trained using images generated by a
sonar simulator. The results show an improvement in the
estimation accuracy when using two sensors.

Index Terms—Deep learning, motion estimation, underwater
micronavigation.

I. INTRODUCTION
For exploration and surveying in underwater environ-

ments, autonomous underwater vehicles (AUVs) and re-
motely operated underwater vehicles (ROVs) are widely
used [1]. The operation of such vehicles requires an ac-
curate estimation of their position relative to the seafloor.
Micronavigation techniques have been developed for this
purpose [2]–[6]. Motion estimation based on optical images
is a well known approach in terrestrial [7], [8] and aerial [9],
[10] applications. Recently, this approach has been used to
estimate the trajectory of an underwater platform by applying
a deep learning (DL) network to a sequence of images from
a camera [11]. However, the use of optical images is not
reliable in underwater environments where the visibility can
be poor [12].

The work [13] presents a method for attitude and trajec-
tory estimation using sonar (acoustic) images. This method
is capable of obtaining accurate position estimates by ana-
lyzing the pixel displacement between consecutive images.
However, due to its complexity, this method is difficult to
implement in real-time. In [14], we presented a method based
on DL networks to estimate the motion of an underwater
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Fig. 1: Sonar FoV parameters and the coordinate system
relative to the sonar. The motion in forward and backward
directions corresponds to the y-axis, the motion in sideways
direction corresponds to the x-axis and the rotation around
the z-axis is represented with the parameter θ. The pitch
angle is measured from the xy-plane, which is parallel to
the seafloor.

platform and its trajectory using sonar images. The method
significantly reduces the complexity and processing time
compared to the method in [13]. The low processing time
makes the methods in [14] suitable for real-time applications.
The DL networks in [14] allow a millimeter accuracy in
positioning between two sonar images. However, higher
estimation accuracy is required for some applications, e.g.,
synthetic aperture sonars [15]. In [14], a single sonar sensor
was considered for motion estimation. The purpose of this
paper is to consider the use of two sensors separated from the
sonar transmitter to find out how it can improve the accuracy
even further.

The use of the DL approach has the problem of acquiring
big volumes of labeled data for training the networks.
In [14], synthetic images are generated by a sonar simulator
from [16] to solve this problem. In this work, we modify
the sonar simulator from [16] to allow acoustic images to
be generated for more complicated sonar configurations and
use these images for training and validation of DL networks.

II. SONAR SIMULATOR
The sonar simulator proposed in [16] and used in [14] for

training DL networks, is built upon the development software
Unity [17]. It is based on a ray-tracing technique to generate
the images. The sonar has a field of view (FoV) that is



Fig. 2: The transmitter and two sensors facing perpendicu-
larly to the direction of the underwater platform.

Fig. 3: Example of the simulated underwater environment
used to create the data sets.

determined by an aperture angle, elevation angle, maximum
range and pitch angle as shown in Fig. 1. The sonar images
are generated following a hop-and-generate process, where
the simulated platform generates an image at a particular
position in a simulated environment, then it moves to a
different position and generates another image and so on.
When an image is generated, the position and orientation
of the sonar sensor in the underwater environment is also
stored.

The simulator in [16] only uses a single sonar sensor with
the same transmit-receive antenna. We expanded the sonar
simulator to separate the sonar transmitter from the receiver.
Also, the capability to simulate a sonar with multiple sensors
in different positions at the same time is added. A transmitter
illuminates the environment while the sensors generate the
sonar images. This is shown as the dark green beam in
Fig. 2. Then, the platform moves to another position by
following a randomly generated trajectory. An example of a
simulated environment is shown in Fig. 3. The procedure for

simulating the underwater environment is the same that was
used in [14], where multiple scenarios with rocks randomly
positioned on the seafloor were created. The generated
images from each sensor and the position in the scenario
where they were acquired are stored in data sets for training
and validation of DL networks.

III. DL NETWORKS FOR MOTION ESTIMATION
In [14], several DL networks were evaluated for motion

estimation using sonar images. We found that the PoseNet
network [18] is well suited for the task after optimizing the
network parameters to get best possible performance. The
architecture of the optimized PoseNet is shown in Fig. 4. The
input of the network is an image made of two consecutive
sonar images. This input is connected to a series of 9
convolution layers with stride 2. The first 8 convolutional
layers have a ReLU activation layer and batch normalization
layer at their output before being connected to the next
convolutional layer. The output of the last convolutional layer
is connected to an average pooling layer with an averaging
window of 4, then an output regression layer is connected to
generate the motion estimates in 3 degrees of freedom (DoF).
The regression layer uses the Mean Squared Error (MSE)
loss function. In this paper we continue to use this network
to validate the motion estimation using the new proposed
sonar configuration.

IV. EXPERIMENTS USING ONE AND TWO
SENSORS

IV-A. Sonar configurations
With the modified simulator, two sonar configurations

were built:
1) Two sensors: One transmitter (dark green beam in

Fig. 2) and two sonar sensors (two light green beams
in Fig. 2) are placed on an underwater platform to
side look perpendicularly to the forward motion of the
platform as shown in Fig.2. The distance between the
transmitter and each sensor is 50 cm. The FoV of the
transmitter and the sensors is 29◦ × 14◦ (azimuth and
elevation angles, respectively), with 96 beams in the
azimuth and a pitch angle of 35◦. This is based on the
parameters of the Didson 300 sonar [19].

2) One Sensor: This configuration is the same as used
in [14]. One transmitter with a single sonar sensor is
used with no separation between them. They both have
the same FoV as described in the case of two sensors.

Three DoF are considered for the motion. The displace-
ment of the sensors between consecutive images is described
by a vector ∆ = [∆x,∆y,∆θ], representing translations
along the x and y-axes and rotation around the z-axis
(denoted by θ), respectively (see Fig. 1). For this work,
the maximum displacement between two images is 2.0 cm
and 0.45◦ for the translations and rotation, respectively. The



Fig. 4: Architecture of the DL network. The input is an image of size 192×512. The grey and purple squares represent
the convolutional and the ReLU with batch normalization layers, respectively. The number of channels (32, 64, ..., 1024) is
specified below the convolutional layers. The output size (256×96, 128×48, ..., 1×1) of a layer is specified below the ReLU
function. The red square represents the average pooling layer and the rightmost purple square is the output regression layer.

Fig. 5: Examples of sonar images generated by the two
sensors at the same time.

height of the sensor from the seafloor is 2.5 m. The sonar
image size is 512×96 pixels and the pixel values are integer
numbers in the range from 0 to 255. Examples of sonar
images generated by the sensors are shown in Fig. 5. Since
they are situated on each side of the transmitter (as shown
in Fig. 2), they have a slightly different point of view of the
scenario. In the images, it can be seen that some area of the
image is totally dark. For sensor 1, this area appears on the
left and for sensor 2, the area appears on the right. This is
because the FoV of the transmitter does not totally overlap

with the FoV of the sensors, so this portion of the sensor’s
FoV does not receive signals from the transmitter.

IV-B. Training the DL network
To create the training data sets, pairs of consecutive im-

ages are concatenated into a single image. Each concatenated
image is associated with a displacement label to make a
training sample. The label corresponds to the vector ∆. The
three elements in the labels are normalized to the range from
-10 to 10 with respect to their maximum values. In this case,
they have the same weight within the loss function. A data
set of 20,000 pairs of concatenated images is generated for
each sonar sensor.

For the two-sensor configuration, the already concatenated
images from each sensor are concatenated with the corre-
sponding concatenated images of the other sensor to make
a larger image of 4 concatenated images. This larger image
is put into the network. For the one-sensor case, the pairs of
concatenated images are directly put into the DL network.
The data sets for both the cases are split into 95% and 5%
for training set and validation set, respectively.

The sonar images generated by the simulator are noiseless.
We follow two approaches for training the networks. One
consists in training with the noiseless images and the other
consists in training with the same images, but with a low-
level noise added to their pixels. The noise is generated ac-
cording to two considerations [20]: (i) the pixels of acoustic
shadows in the images are modified with additive Gaussian
noise with the mean and standard deviation of 4% and 2%
of the maximum pixel value, respectively. (ii) The rest of
the pixels are affected by adding noise with the Rayleigh
distribution with a scale parameter of 4% of the maximum
pixel value, thus representing the scattering noise.



Table I: Validation RMSE when training the DL network with noiseless images and with low-level noise images.

RMSE of motion estimation
Validation on noiseless images Validation on high-level noise images

Training approach ∆x ∆y ∆θ ∆x ∆y ∆θ

(mm) (mm) (◦) (mm) (mm) (◦)
With noiseless images

One-sensor 2.69 2.74 0.054 5.73 5.82 0.118
Two-sensor 2.17 1.42 0.044 7.47 6.13 0.156

With low-level noise images
One-sensor 3.52 3.38 0.076 5.75 5.80 0.125
Two-sensor 3.05 2.33 0.070 4.37 3.34 0.089

After the networks have been trained, we validate the
estimation accuracy using either the noiseless images or
images with a high-level noise based on measures of noise
in real Didson sonar images described in [21]. The high-
level noise has a Gaussian distribution with the mean and
standard deviation of 13.72% and 3.14% of the maximum
pixel value, respectively, and a Rayleigh distribution with a
scale parameter of 13.72% of the maximum pixel value.

The DL networks were trained in MATLAB. The training
uses the Adam optimization algorithm [22]. The learning
rate starts at 0.0001 and halves every 12 epochs until the
validation loss converges. During the training, a dropout
regularization with a rate of 50% is applied.

IV-C. Numerical results
Table I presents results of training the networks with

noiseless and low-level noise images in the terms of the
root-mean-square error (RMSE) obtained when validating
with noiseless and high-level noise images.

It can be seen that a better performance is obtained by the
network trained with two sensors over the network trained
with one sensor. For y-axis in the training and validation with
noiseless images, the RMSE for the one-sensor configuration
is 2.74 mm and for the two-sensor configuration is 1.42 mm,
which is a reduction of almost twice. The other parameter
estimates are also improved when training with the two-
sensor configuration.

The only case when the two-sensor configuration presents
a higher RMSE compared to the one-sensor configuration
is when training with noiseless images and validation with
high-level noise images. This can be caused by the black
areas on the side of each sonar image which do not provide
information about the motion. It is possible that since this
area is always black (0 value), the network learns to ignore
that part of the images for the motion estimation, but when
randomly generated noise is added, it affects the estimates.
This issue is eliminated when training with noisy images,
even if it is not the same level of noise that is used for
validation.

For both configurations, the best estimates are for the y-
axis. In [14], it is found that there is a high correlation be-
tween estimates of translation along x-axis and the rotation,

which affects the estimation accuracy. Therefore estimates
along x-axis and the rotation are less accurate than the
estimates for the y-axis.

Training with low-level noise images reduces the RMSE
of the two-sensor configuration while the RMSE of the one-
sensor configuration is not reduced. This suggests that using
the two-sensor configuration is more suitable for motion
estimation with real data, since the noise level in this case
is the same as measured from real sonar images.

When training, the DL network parameters were tuned
to provide the best performance for the one-sensor case;
we used the same network with the same parameters as
in [14]. However, a better performance is obtained by the
network trained with two sensors even without optimizing
the parameters. For future work, it is possible that the
performance can be improved further by tuning the DL
network to optimize the two-sensor case, removing the black
area on the images before putting them into the DL network,
adjusting the image noise before training, and/or optimizing
the configuration of the sensors such as the distance and
orientation relative to the transmitter and the FoV.

V. CONCLUSIONS

In this paper we present a DL-based motion estimation
that combines sonar images from two sensors rather than
using images from only one sensor. This is an attempt to
improve the motion estimation accuracy obtained with a
single sensor. The two-sensor configuration shows an im-
provement in the estimation accuracy compared to the one-
sensor configuration, even without tuning the DL training
parameters to try to optimize the estimation. For instance,
there is an RMSE reduction of almost twice for the y-axis
movement, while the RMSE for the other types of movement
are also reduced.

The obtained results suggest that further work with the
two-sensor configuration could improve even more the mo-
tion estimation accuracy. The future work can focus on
optimizing the training parameters, removing image areas
with no information about the motion and/or optimizing the
sensors configuration relative to the sonar transmitter.
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