
P
os
te
d
on

2
A
u
g
20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
50
72
08
7.
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Heterogeneous Graph Convolutional Networks for Android Malware

Detection using Callback-Aware Caller-Callee Graphs

Vinayaka K V 1 and Jaidhar C D 2

1National Institute of Technology Karnataka
2Affiliation not available

October 30, 2023

1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Heterogeneous Graph Convolutional
Networks for Android Malware Detection
using Callback-Aware Caller-Callee
Graphs
VINAYAKA K V 1 , JAIDHAR C D 2
1 National Institute Technology Karnataka, Surathkal , Srinivasanagar , Mangaluru, Karnataka, India - 575025 (email: vinayakakv.193it001@nitk.edu.in)
2 National Institute Technology Karnataka, Surathkal , Srinivasanagar , Mangaluru, Karnataka, India - 575025 (email: jaidharcd@nitk.edu.in)

Corresponding author:Vinayaka K V (email: vinayakakv.193it001@nitk.edu.in).

ABSTRACT The popularity of the Android Operating System in the smartphone market has given rise
to lots of Android malware. To accurately detect these malware, many of the existing works use machine
learning and deep learning-based methods, in which feature extraction methods were used to extract fixed-
size feature vectors using the files present inside the Android Application Package (APK). Recently, Graph
Convolutional Network (GCN) based methods applied on the Function Call Graph (FCG) extracted from
the APK are gaining momentum in Android malware detection, as GCNs are effective at learning tasks on
variable-sized graphs such as FCG, and FCG sufficiently captures the structure and behaviour of an APK.
However, the FCG lacks information about callback methods as the Android Application Programming
Interface (API) is event-driven. This paper proposes enhancing the FCG to eFCG (enhanced-FCG) using
the callback information extracted using Android Framework Space Analysis to overcome this limitation.
Further, we add permission - API method relationships to the eFCG. The eFCG is reduced using node
contraction based on the classes to get R-eFCG (Reduced eFCG) to improve the generalisation ability of the
Android malware detection model. The eFCG and R-eFCG are then given as the inputs to the Heterogeneous
GCN models to determine whether the APK file from which they are extracted is malicious or not. To test the
effectiveness of eFCG and R-eFCG, we conducted an ablation study by removing their various components.
To determine the optimal neighbourhood size for GCN, we experimented with a varying number of GCN
layers and found that the Android malware detection model using R-eFCG with all its components with four
convolution layers achieved maximum accuracy of 96.28%.

INDEX TERMS Android, Computer security, Graph Convolutional Networks, Machine Learning, Program
Analysis

I. INTRODUCTION

Android is a popular smartphone Operating System that
powers around 70% of the smartphones and tablets world-
wide [33]. Its popularity has long attracted a large amount
of malware into its ecosystem [25] [31], threatening the
privacy and security of its users. Three analysis techniques
are prevalent to detect Android malware – static, dynamic
and hybrid analysis [29]. In static analysis, features are
extracted from the Android Application Package (APK) file
without executing it. The dynamic analysis executes the APK
inside a sandbox and extracts run-time features. The hybrid
analysis is a combination of the above. Although obfuscation

techniques can hinder static analysis [38], it is substantially
faster than its counterparts.

The APK file provides several features to perform static
analysis. The features such as permissions and intents can
be extracted from the manifest file, which are the indica-
tors of the behaviour of the Android application (app) [6]
[18] [34] [1]. Apart from them, features such as sensitive
Application Programming Interface (API) calls [1], API call
graph [12] and Function Call Graph (FCG) [23] [39] [16]
can be extracted from the Dalvik Executable (dex)
code. Out of these features, FCG captures the structure of
interactions between the methods of the app. The FCG is a

VOLUME 4, 2016 1

directed graph with methods in the dex code as its nodes;
its edges represent Caller-Callee relationships between the
methods. If every node of the FCG is assigned features that
represent its behaviour, it can capture the behaviour of an app
as a whole [35].

The methods contained in the dex code can be internal
or external depending on whether their implementation is
contained in the dex code or not [35]. In general, the API
methods (the Framework Space, F) are external, while User-
defined methods (the Application Space, A) are internal. As
FCGs are extracted entirely using the information present in
the dex code, interactions from the Framework Space to
the Application Space cannot be captured [10]. This informa-
tion is crucial as the Android API is heavily event-driven. In
Android event architecture, event handlers are implemented
as Application Space callback handlers, which are the chil-
dren of Framework Space callback methods. The Framework
Space is made aware of callback handlers using registration
methods, which are also a part of the Framework Space
[10]. FCG is unable to capture the relationship between
registration methods and callback handlers. The Framework
Space has to be analysed to include such relationships, and
its results have to be used while constructing the FCG [10]
[13].

Graph Convolutional Networks (GCNs) [20] have become
a natural choice to perform deep learning on graphs because
of their flexibility [43]. GCNs process graphs by aggregating
neighbourhood information, updating a node’s features based
on it and fine-tuning its learnable parameters for a particular
task. An n-layer GCN aggregates features into a node from
its n-hop neighbourhood. A global pooling operation on the
graph is used to obtain the feature vector representing the
graph. This vector can then be used for downstream tasks
such as classification.

In this work, we analyse Framework Space code to extract
Registration-Callback map motivated by the approach of
[10]. We also consider the mapping of permissions required
by an API method from [7]. This information is utilised while
analysing APKs to convert FCGs extracted from them into
enhanced-FCGs (eFCGs). The reduced-eFCG (R-eFCG) is
then obtained by contracting nodes of eFCG in an approach
similar to MaMaDroid’s [26]. Separate heterogeneous GCN
models are then trained on eFCG and R-eFCG to evaluate
their effectiveness.

We answer the following research questions in this paper:
1. Which components of eFCG and R-eFCGs are essen-

tial in Android malware detection using heterogeneous
GCNs?

2. Can R-eFCGs achieve better generalisation in terms of
Android malware detection rate than eFCGs?

3. What is the optimal neighbourhood size n for GCNs to
detect Android malware using eFCG and R-eFCGs?

To answer these research questions, we experiment with
different components of eFCG and R-eFCGs to determine
their contribution to the performance of the Android malware
detection model. We also train separate models on eFCGs and

R-eFCGs to access their generalisation ability. To determine
the choice of optimal neighbourhood, we conducted a set of
experiments by varying the number of GCN layers. As a re-
sult of these experiments, we obtained a maximum accuracy
of 96.25% with R-eFCGs with all components and four GCN
layers.

The key contributions of the present work are as follows:
1. We define eFCG and R-eFCG, containing the callback

information and permission mappings along with the
Caller-Callee information, and provide algorithms to
obtain the same.

2. We conducted an ablation study to find essential com-
ponents of eFCG and R-eFCG and found that all their
components are essential.

3. We monitor the impact of the number of heterogeneous
GCN layers on the performance of the Android mal-
ware detection model and found that its performance
increases with the increasing number of layers.

The rest of this paper is organised as follows: Section
II demonstrates a simple app and its FCG used throughout
this paper. Several relevant related works are discussed in
Section III. Section IV provides an overview of mathematical
concepts used in this paper. The Algorithms to obtain eFCG
and R-eFCG, along with the architecture of the Android
malware detection approach, are described in Section V. The
experimental framework to evaluate the current work and
its results are discussed in Section VI. Finally, the paper
is concluded in Section VII along with discussing future
directions.

II. MOTIVATION
A simple app containing a button (class Button) and a
text view (class TextView) has been used to demon-
strate the FCG and its enhancements throughout this work.
When the user clicks on the button, the app starts track-
ing their location in the background and logs it periodi-
cally to the text view. Its source code and the FCG are
shown in Figure 1. where the registration methods But-
ton.setOnClickListener() (line 45 in Figure 1a)
and LocationManager.requestLocationUpdates()
(line 26-31 in Figure 1a) are not connected to their callback
handlers onClick() (line 20 in Figure 1a) and onLoca-
tionChangeed() (line 7 in Figure 1a), respectively, in the
FCG.

To include relationships between registration methods and
associated callback handlers, the Framework Space has to be
analysed to obtain a mapping between all possible registra-
tion and callback methods. This list has to be used while
analysing the APK file to identify the implementation of
callback methods as callback handlers and associate them
with their registration methods. This association has to be
represented with a different edge type in FCG, as it is dif-
ferent from regular caller – callee edge type. The presence of
multiple edge types makes FCG heterogenous. The heteroge-
nous FCG can be further enhanced by adding relationships
between the Framework Space and Permissions. FCGs can

2 VOLUME 4, 2016

(a) Code snippet of the demo app.

(b) The FCG of the code shown in 1a. Framework Space nodes are rectangle and Application Space
nodes are oval in shape. Note that the registration methodsButton; setOnClickListener and
LocationManager; requestLocationUpdates are not connected to their callback handlers
MainActivity$2; onClick and MainActivity$1; onLocationChanged , respectively.
Also, their corresponding Framework Space callback methods are isolated from the rest of the nodes.

FIGURE 1: A simple app along with its FCG, showing FCG not capturing interations between callback methods and their
registration methods.
VOLUME 4, 2016 3

TABLE 1: Summary of the notations

Notation Meaning

Heterogeneous Graphs
V Set of node types.
τ A node type, τ ∈ V .
E Set of edge types.
t An edge type, t ∈ E .
Vτ Set of nodes with type τ .
V Set of all nodes.
Et Set of edges with type t.
E Set of all edges.
GM Metagraph of the heterogeneous graphG.
Aτ Attribute function for node type τ .
Aτ Attribute space of the node type τ .

Neighbourhood of node v in the graphG with node type τ .
{parentsτ}G(v) Set of parents of the node.
{childrenτ}G(v) Set of children of the node.
{Nτ}G(v) Set of 1-hop neighbours of the node.
predG(v) Set of predecessors of node v in a DAGG.
succG(v) Set of successors of node v in a DAGG.

The dex code
C Set of classes defined and referenced in the dex code.
M Set of methods defined and referenced in the dex code.
isF (·) Is the flag F is present in the definition of its argument.
methods(c) Set of methods of the class c.
class_parents(c) Set of parent classes of the class c.
constructors(c) Set of constructors of the class c.
argumentTypes(m) Set of arguments of the methodm.
class(m) The class to which the methodm belongs to.
sig(m) Signature of the methodm.
Γ The FCG.
I The Inheritance Graph.
(·)(M) Method-level graphs and edges.
(·)(C) Class-level graphs and edges.

B. GRAPHS
A directed graph G(V,E) is a collection of nodes V and
edges (u, v) ∈ E where u, v ∈ V . A multigraph is a graph in
which E is a multiset, allowing multiple edges between two
nodes. A graph is undirected if (u, v) ∈ E =⇒ (v, u) ∈ E.

A path p is a sequence of edges e1 → e2 → · · · → en
where every edge ei = (ui, vi) is distinct and ui = vi−1∀i >
1. Two nodes x and y are connected in G if there is a path
between them. A graph is acyclic if there are no paths in
G such that u1 = vn. A Directed Acyclic Graph (DAG)
is a graph which is both directed and acyclic. As all these
graphs consist of a single type of nodes and edges, they
are homogeneous. Interested readers are referred to [21] for
further information about graphs.

If a graph contains multiple types of nodes or edges (or
both), it becomes heterogeneous. Heterogeneous graphs oc-
cur naturally in many fields such as Recommender Systems
[36] [41] and Bioinformatics [22]. The concept of hetero-
geneous graphs is illustrated here in light of the FCG in
Figure 1b, which contains nodes of Application Space A
and Framework SpaceF . Formally, a directed heterogeneous
graph is G(V, E , V, E) where,

• V is the set of node types (e.g, {A,F}),
• E ⊆ V2 is a multiset of edge types, each associated with

a name (e.g, {calls : (A,A), calls : (A,F)},
• V = ∪τ∈VVτ is the set of the nodes and,
• E = ∪t∈EEt is the set of edges.

An edge set can be denoted by the name of its type
followed by the nodes it connects to (e.g., Ecalls:A7→F). The

calls

calls

FIGURE 2: The metagraph of the FCG shown in Figure 1b.

names of the nodes can be omitted if no other edge with the
same name is present in the edge types.

A heterogeneous graph becomes undirected if ∀t ∈
E , ∃t′ ∈ E s.t (u, v) ∈ Et =⇒ (v, u) ∈ Et′ . The structure
of the heterogeneous graph is represented as a multigraph
GM (V, E) called as the metragraph of G. Figure 2 shows
the metagraph of the FCG shown in Figure 1b. Interested
readers are referred to [42] for further information about
heterogeneous graphs.

If every node of the graph is associated with some at-
tributes, the graph is called an attributed graph. The attribute
function Aτ : Vτ → Aτ defines the attributes for each node
v ∈ Vτ of type τ in attribute space Aτ . For homogeneous
graphs, there is only one attribute space.

For a graph G with nodes V and edges E, we use
following notations to denote the information about neigh-
bourhood of v ∈ V with node type τ ∈ V in G:
{parentsτ}G(v) = {u|(u, v) ∈ E ∧ u ∈ Vτ} is the set of
v’s parents with type τ , {childrenτ}G(v) = {w|(v, w) ∈
E ∧ w ∈ Vτ} is the set of its children with type τ ,
{Nτ}G(v) = {childrenτ}G(v) is the set of its 1-hop neigh-
bours with type τ . IfG is a Homogeneous DAG, predG(v) =
{u|u and v are connected in G} is the set of predecessors of
v, succG(v) = {w|v and w are connected in G} is the set of
successors of v. In every notation, the subscript G is omitted
when the graph in question can be inferred from the context
and, type subscript τ is omitted if the graph is homogeneous
or when we refer to nodes with all types.

C. THE DEX FILE
The classes.dex present inside the APK contains
the application logic represented as the dex code, to
be executed by Android Runtime [32]. Android API is
also bundled in several dex files, residing in /sys-
tem/framework/framework.jar in the case of An-
droid 11.

By parsing the dex code, one can obtain the sets of
classes C and methods M implemented and referenced
within its scope. Note that the interfaces and enums are
treated as classes, and the constructors are treated as methods
in the dex code. The definition of every class c ∈ C and
method m ∈ M associates them with several flags. These
flags include modifier information (e.g., public, static
and abstract) and the declaration type in the code (e.g.,
interface, enum and constructor). We define a
Boolean function isF (·), which returns true whenever the
flag F is present in the definition of its argument.

Apart from the flags, the definition of the class c includes
a list of its methods (methods(c)), along with a list of

VOLUME 4, 2016 5

its parents in the inheritance hierarchy (class_parents(c)).
The constructors of c can be obtained by filtering its meth-
ods with the flag constructor, i.e., constructors(c) =
{m | m ∈ methods(c) ∧ isConstructor(m)}. Similarly,
the definition of methodm includes the types of its arguments
(argumentTypes(m)) and a reference to the class to which it
belongs to (class(m)). Multiple methods in a class can have
the same name due to method overloading; thus, the method
name along with its argument type list (the signature, denoted
by sig(m)) is unique for every method.

If a method m is internal, the dex code includes its
bytecode in the dex format. The bytecode consists of a
sequence of instructions, with each instruction containing an
opcode and operand(s). Each opcode is 8-bit in length, mak-
ing 256 opcodes possible, of which only 230 are used [15].
As many of the opcodes do a similar task (ex., opcode range
0x90-0xE2 consists of binary operations such as add, sub
and mul), they can be grouped based on their functionality.
While [23] constructed 15 opcode groups, [35] constructed
21 opcode groups. This work uses opcode groups of [35].
Interested readers are referred to the Dalvik Specification
[32] to get more information about the dex code.

Using the relationships among the methodsM and classes
C contained in the dex code, several graphs can be con-
structed. Out of them, the Class-level Inheritance Graph
I(C)(C, E(C)

parentOf), where (ci, cj) ∈ E
(C)
parentOf ⇐⇒

ci ∈ class_parents(cj), represents the inheritance hierarchy
among the classes. The (Method-level) Inheritance Graph
I(M)(M, E

(M)
parentOf) is obtained using I(C) using (1).

E
(M)
parentOf = {(mi,mj) |(class(mi), class(mj) ∈ E(C)

parentOf∧
sig(mi) = sig(mj)}

(1)

Note that the Inheritance Graphs I(∗) are DAGs, as
cyclic dependencies among classes (thus methods) in terms
of inheritance are not allowed. The Function Call Graph
Γ(M)(M, E

(M)
calls), where (mi,mj) ∈ E(M)

calls if mi calls mj in
its code, captures the Caller-Callee relationships among the
methods in the dex code. The superscripts (M) and (C)
indicate that the edges are among methods and class nodes,
respectively. If the superscript is not present in the graph
name (e.g., Γ and I), they are assumed to method-level.

V. PROPOSED APPROACH
The proposed Android malware detection approach consists
of two analysis stages – Framework Space Analysis and Ap-
plication Space Analysis, followed by a Heterogeneous GCN
based Android malware detection model. The Framework
Space Analysis is done once, and its outputs are re-used in
the Application Space Analysis for every app. Separate Het-
erogeneous GCN models are trained for eFCG and R-eFCG
obtained by the Application Space Analysis. The following
sections describe every stage in detail.

A. FRAMEWORK SPACE ANALYSIS
The Framework Space Analysis analyses the Android Frame-
work to extract a mapping between Registration and Callback
methods. To do so, the dex file containing Framework Space
code has to be parsed to get the set of Framework Classes
CF and Framework Methods MF . From CF and MF , the
Framework Space Inheritance Graph IF and Framework
Space FCG ΓF are obtained, respectively. The approach of
[10] is adopted to extract potential callback methods from
the Framework Space code, which are then filtered to obtain
final callback methods along with corresponding registration
methods. The architecture of Framework Space Analysis is
shown in Figure 3.

1) Potential Callback Filter
A potential callback method is a Framework Space method
which is visible to the Application Space and can be overrid-
den by it. For a method m with c = class(m), if all of the
following criterion are satisfied, then it becomes a potential
callback method [10]:

1. isPublic(c) = 1
2. isFinal(c) = 0
3. isInterface(c) = 1 ∨ ∨x∈constructors(c)isPublic(x)
4. isPublic(m) = 1 ∨ isProtected(m) = 1

Criterion 1, 2 and 3 ensure that the class c is visible to
Application Space classes and can be extended; Criteria 4
ensures that the method m can be overridden in Application
Space. As all interface methods are public by default, Criteria
4 is true for them. P denotes the set of all potential callbacks.

2) Registration-Callback Map Extraction
A method m being potential callback does not guarantee
that its Application Space override m′ can be introduced
back to the Framework Space through an Application Space
visible registration method r and, subsequently called back
by the Framework Space. Note that to introduce m′ to r, the
method r must take an argument of type c = class(m), thus,
accepting any instance of class c′ derived from c, overriding
m in its method m′.

To filter out the methods m whose overrides cannot be
introduced to Framework Space, we use Argument Map.
The Argument Map is a multimap αF : CF → MF ,
where (c,m) ∈ αF ⇐⇒ c ∈ argumentTypes(m).
In other words, for a Framework Space class c, αF (c) is a
set of methods M ⊂ MF , in which c is an argument of.
If αF (c) = ∅ for c = class(m), then the class c cannot
be passed back to the Framework Space, therefore all of its
methods are not callback methods.

A registration method r taking an argument of type c need
not necessarily invoke the method m of c. To check for
the invocation of m, a complete reverse data-flow analysis
tracking c until the invocation of m is required as in [10].
However, we empirically observe that the invocation of m
happens in a method µ either belonging to u = class(r) or
some nested class u′ of u most of the times. Therefore, the

6 VOLUME 4, 2016

de
x

fi
le

 P
ar

se
r

R
eg

is
tr

at
io

n
C

al
lb

ac
k

M
ap

E

xt
ra

ct
or

Caller-Callee Analyser

Potential Callbacks
Filter

Parameter Analyser

Inheritance Hierarchy
Analyser

Android API

FIGURE 3: The workflow of Framework Space Analysis

criterion to consider the method m with c = class(m) as a
final callback method are defined as follows:

1. c is an argument of some Application Space visi-
ble method r. i.e., ∃ r ∈ αF (c) s.t. isPublic(r) ∧
isPublic(class(r)), and,

2. Some method µ either belonging to u = class(r) or
some nested class u′ of u invokes m in its code.

If a method m satisfies above criterion, then the method
r is the registration method of m and, the pair (r,m) is
added to the Registration-Callback map R. The process of
extracting the Registration-Callback map is summarized in
Algorithm 1.

Algorithm 1 Framework Space Analysis
1: procedure ANALYSEFRAMEWORK(CF ,MF)
. Extract the Registration-Callback map R using CF – Set of Frame-

work Space Classes andMF – Set of Framework Space Methods.
2: IF ← Extract Inheritance Graph using CF . See Section IV-C
3: ΓF ← Extract FCG usingMF . See Section IV-C
4: αF ← Extract Argument Graph usingMF and CF . See Section

V-A2
5: P ← Extract Set of Potential Callbacks fromMF . See Section

V-A1
6: CP ← ∅ . Multimap of methods in P keyed by their class
7: for m in P do
8: if ∃u s.t. (class(m), u) ∈ αF then

. check if class(m) is used anywhere
9: CP ← CP ∪ (class(m),m)

10: end if
11: end for
12: R← ∅ . Registration Callback Pairs
13: for c in dom(CP) do
14: R ← {(class(r), r) | r ∈ αF (c) ∧ isPublic(r) ∧

isPublic(class(r))} . Multimap of possible registration methods for
class c keyed by their classes

15: for p in CP (c) do . Loop through Potential Callback methods
p of class c

16: U ← {class(u) | u ∈ parentsΓF (p)}
. Set of classes that have at least one method calling p

17: R← R∪ {(r, p) | c ∈ (U ∩ dom(R)) ∧ r ∈ R(c)}
. Update Registration-Callback map considering the classes

that call p and have registration method containing c in
their argument. Note that the ∩ operation is approximate
(see Section V-A2).

18: end for
19: end for
20: returnR, IF
21: end procedure

Note that whenever r is a registration method, any Frame-
work Space child r′ of r can be a registration method too,

assuming that r′ invokes r with its parameters. Therefore,
(r, p) ∈ R =⇒ (r′, p) ∈ R. As adding (r′, p) to the
Registration-Callback map R increases the size of R signif-
icantly, Framework Space Inheritance Graph IF is provided
to Application Space Analysis to infer such relationships.

B. APPLICATION SPACE ANALYSIS
Application Space Analysis extracts the dex file from the
APK and parses it to get the set of Application Space classes
and methods CA and MA, respectively. Note that the CA
(and MA) includes the classes (and methods) implemented
in Application Space CA (MA), along with the reference to
classes (methods) from Framework Space CF ⊂ CF (MF ⊂
MF). Therefore, CA = CA ∪ CF andMA = MA ∪MF .
The MA and CA are used to derive Application Space
FCG ΓA

(
MA, E(M)

calls

)
and Application Space Method level

Inheritance Graph IA
(
CA, E(M)

parentOf

)
, respectively. As the

the methods in MF are only references, their inheritance
information is not contained in IA. The edges E(M)

calls of the
FCG ΓA can be partitioned into E(M)

calls:A7→A and E(M)
calls:A7→F

to represent Caller-Callee relationships between methods in
different spaces.

The Application Space Analysis proceeds through several
stages as outlined in Figure 4, each enriching the FCG,
converting it to eFCG Γe at the end. The eFCG is a heteroge-
neous graph Γe(V, E , V (M), E(M)) where,

• V = {A,F ,P} is the set of node types,
• E = {calls : (A,A), calls : (A,F),parentOf :

(A,A),parentOf : (F ,A), callsBack : (F ,F), requires :
(F ,P)} is the set of edge types,

• V
(M)
F = MF , V (M)

A = MA, and V (M)
P = P are the sets

of nodes, and
• E

(M)
calls:A7→A,E(M)

calls:A7→F ,E(M)
parentOf:A7→A,E(M)

parentOf:F7→A,
EcallsBack and Erequires are the sets of edges.

The metagraph {Γe}M of the eFCG is shown in Figure
5. The Application Space Analysis further reduces eFCG
into R-eFCG Γ

(C)
e using eFCG reducer. These stages of the

Application Space Analysis and the nodes and edges they
add to the FCG are described in detail in the following
paragraphs.

VOLUME 4, 2016 7

FIGURE 4: Stages in Application Space Analysis

FIGURE 5: Metagraph f � (�)
e gM of eFCG and R-eFCG

1) Inheritance Edges Adder

The event handlers are implemented in the Application Space
as an overridden method of a Framework Space callback
method. The FCG cannot capture this information as the
event handler does not call its parent callback method most
of the time.

To add the relationship between event handler and its par-
ent callback method to the FCG, the inheritance hierarchy has
to be considered. By adding the edges inE (M)

parentOf contained
in Method level Inheritance GraphI A , the event handlers
are connected to their parent callback methods, along with
connecting Application Space methods to their parents. Thin

dashed edges in Figure 6a represent the edges inE (M)
parentOf .

As the inheritance may be among Application Space nodes
A , or from the Framework Space nodesF to the Application
Space nodesA , the inheritance edge setE (M)

parentOf can be par-

titioned intoE (M)
parentOf: A7!A andE (M)

parentOf: F7!A to represent
these cases, respectively.

2) Callback Edges Adder
The registration methods and the callback methods are not
related in the FCG, as their Caller-Callee relationship cannot
be inferred without the help of the results of Framework
Space Analysis.

The Registration Callback mapR can be used to add
edges between the registration methods and the correspond-
ing callback methods. As the Framework Space inheritance
information is not contained inI A (thus inE (M)

parentOf), I F

has to be considered while adding callback edges.
For every Framework Space methodm in M F , with the

help ofR andI F , it is determined whetherm is a registration
method. If so, the corresponding callback methodsP are
obtained. The edges betweenm and the callback method
p 2 P is added ifp 2 M F . The process of obtaining callback
edgesE (M)

callsBack is detailed in Algorithm 2. Bold dashed
edges in Figure 6a represent the edges inE (M)

callsBack . Note that
the edges inE (M)

callsBack are always among Framework Space
methodsF .

Algorithm 2 Callback Edge Addition
1: procedure GETCALLBACK EDGES(� A ; I F ; R)

. Get a list of callback edgesE (M)
callsBack using Application Space

FCG� A , Framework Space Method level Inheritance GraphI F , and
Registration Callback mapR .

2: E (M)
callsBack ?

3: for m in M F do
4: for p in f mg [pred I F

(m) do
5: if p 2 dom(R) then
6: E (M)

callsBack E (M)
callsBack [f (m; c) j c 2 R (p) ^ c 2

M F g
7: end if
8: end for
9: end for

10: return E (M)
callsBack

11: end procedure

3) Permission Nodes Adder
The manifest �le contains a list of permissions that are re-
quired by an app to run. As it is possible to request permission
and not use it [11], permissions required by used Framework
Space methods can be used to get a list of actual permissions
needed. Axtool [7] provides a mapping	 : M F ! P
between the Framework Space methodsM F and Permission
SpaceP. For a Framework methodm 2 M F , 	(m) is the
set of permissions that is required bym.

The permission nodesP and the edgesE (M)
requires to be

added to the FCG are calculated using (2) and (3), respec-
tively.

P =
[

m 2 M F

	(m) (2)

8 VOLUME 4, 2016

TABLE 2: Summary of the experimental results

n V Γ Accuracy (%) Precision Recall F1-Score

0 all R-eFCG 86.69 0.8703 0.8606 0.8654
eFCG 84.76 0.8468 0.8468 0.8468

core R-eFCG 87.11 0.8727 0.8675 0.8701
eFCG 81.85 0.8324 0.7952 0.8134

code R-eFCG 71.70 0.7685 0.6170 0.6845
eFCG 70.03 0.7463 0.6024 0.6667

1 all R-eFCG 94.22 0.9319 0.9535 0.9426
eFCG 92.89 0.9123 0.9484 0.9300

core R-eFCG 92.77 0.9218 0.9337 0.9277
eFCG 90.03 0.8933 0.9079 0.9006

code R-eFCG 85.40 0.8756 0.8236 0.8488
eFCG 82.62 0.8276 0.8219 0.8247

2 all R-eFCG 95.55 0.9521 0.9587 0.9554
eFCG 94.82 0.9385 0.9587 0.9485

core R-eFCG 95.21 0.9487 0.9552 0.9520
eFCG 91.74 0.9061 0.9303 0.9180

code R-eFCG 89.38 0.9051 0.8787 0.8917
eFCG 86.22 0.8730 0.8460 0.8593

3 all R-eFCG 95.93 0.9556 0.9630 0.9593
eFCG 94.43 0.9250 0.9664 0.9453

core R-eFCG 94.73 0.9377 0.9578 0.9476
eFCG 92.08 0.9129 0.9294 0.9211

code R-eFCG 91.14 0.9252 0.8941 0.9094
eFCG 87.50 0.8891 0.8554 0.8719

4 all R-eFCG 96.28 0.9662 0.9587 0.9624
eFCG 95.33 0.9466 0.9604 0.9534

core R-eFCG 96.15 0.9629 0.9596 0.9612
eFCG 93.36 0.9242 0.9441 0.9340

code R-eFCG 91.57 0.9170 0.9131 0.9150
eFCG 90.80 0.9216 0.8907 0.9059

1) Effectiveness of Node types

With Application Space nodesA only, the model was able to
achieve a mean accuracy of 84.63% with a standard devia-
tion of 7.79%. With the addition of framework space nodes
F , the mean accuracy was increased by 6.86%, reaching
91.49% with a standard deviation of 4.29%. The addition
of permission nodes slightly improved the mean accuracy
by 1.58%, making the model achieve a mean accuracy of
93.07% with a standard deviation of 4.02%. The trend of
increasing accuracy with the addition of node types is shown
in Figure 7. These results emphasise that the Framework
Space nodes are crucial to detect Android malware. Similarly,
the contribution of permission nodes to the performance of
the model is essential, although they are less in number.

2) Effect of neighbourhood size n

With n = 0, the baseline models performed better than a
random-guess model obtaining a mean accuracy of 80.35%
with a standard deviation of 7.60%, suggesting that the node
attributes play an essential role to detect Android malware.
Subsequent addition of GCN layers improved the mean
accuracy by 9.29%, 2.49%, 0% and, 1.27%, respectively.
No performance improvements were observed during the
addition of the third GCN layer for “core” and “all” con-
figurations. The addition of the fourth GCN layer did not
improve the accuracy by a significant amount. The variation
of accuracy with the addition of GCN layers shown in Figure
8 suggests that n = 2 is a sweet spot between accuracy and
inference time, as the number of GCN layers directly affect

all core code
75

80

85

90

95

100

M
ea

n
Ac

cu
ra

cy
 (%

)

FIGURE 7: Mean and Standard Deviation of Accuracy of the
model for different node type configurations.

0 1 2 3 4
n

70

75

80

85

90

95

M
ea

n
Ac

cu
ra

cy
(%

)

all
core
code

FIGURE 8: Mean Accuracy of the model containing n GCN
layers. Shaded area represents the standard deviation of
accuracy.

the inference time.

3) Generalisation ability of R-eFCG
R-eFCGs performed better then eFCGs all node configura-
tions as evident from Table 2. A statistical analysis of the
accuracies obtained with eFCGs and R-eFCGs suggest that
the R-eFCGs improve the mean accuracy by 2.35% with a
standard deviation of 1.25%. Minimum improvements less
than 1% were observed with n = 4 and node configuration
“code” and “all” along with n = 2 with node configuration
“all”.

These results suggest that R-eFCGs can generalise better
than eFCGs in most cases. In the sweet spot n = 2 with
node configuration all, R-eFCGs can be used as a replace-
ment to eFCGs, thus making inference faster, as they have
fewer nodes than eFCGs. Note that R-eFCG Γ

(C)
e has to be

calculated after Γe (see Section V-B), thus adding additional
computational step. However, the procedure of section V-B
can be easily tuned to output R-eFCGs instead of eFCGs
by considering classes instead of methods and using their

VOLUME 4, 2016 11

attribute schemes.

Comparison with Related Works
The “core” configuration of this work using eFCGs is con-
ceptually similar to FCGs used in [35]. While [35] reported
accuracy of 92.29% with 3 GCN layers, the “core” configu-
ration using eFCGs with n = 3 achieved a similar accuracy
of 92.08%. The proposed method could not be compared
with [9] [40] as they did not incorporate any node-count
distribution balancing strategies and did not disclose their
dataset.

VII. CONCLUSIONS AND FUTURE WORK
This paper proposed an Android malware detection approach
based on the heterogenous Caller-Callee graphs extracted
from the APK files. First, the heterogeneous graphs eFCG
and R-eFCG were defined, and algorithm to obtain the same
were discussed. These graphs incorporate the information
about callback and permissions obtained by the Framework
Space Analysis. Then, separate heterogeneous graph models
were trained on them to evaluate their performance. Finally,
the experiments to determine optimal neighbourhood and
essential components of heterogeneous graphs were also
conducted. As a result of these experiments, a maximum
accuracy of 96.28% was obtained.

There is further scope to improve this work in multiple
directions. During Framework Space Analysis, the algorithm
to find Registration-Callback map can be made more exact,
and the difference of their results with our approximate
method can be compared and contrasted. In Application
Space Analysis, the nodes can be assigned more informa-
tive features, such as package name-based embedding for
Framework Space nodes and opcode sequence embedding
for Application Space Nodes. Finally, explainability methods
can be integrated with the GCN models to identify and
understand critical nodes that contain malicious code.

REFERENCES
[1] Moutaz Alazab, Mamoun Alazab, Andrii Shalaginov, Abdelwadood

Mesleh, and Albara Awajan. Intelligent mobile malware detection using
permission requests and API calls. Future Generation Computer Systems,
107:509 – 521, 2020.

[2] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon.
AndroZoo: Collecting Millions of Android Apps for the Research Com-
munity. In Proceedings of the 13th International Conference on Mining
Software Repositories, MSR ’16, pages 468–471, New York, NY, USA,
2016. ACM.

[3] Androguard Development Team. Androguard. Online (URL:
https://github.com/androguard/androguard), 2021. Accessed (18.05.2020).

[4] Android Developers. Package Index. Online (URL:
https://developer.android.com/reference/packages), 2021. Accessed:
18.05.2021.

[5] Android Source. AndroidManifest.xml. Online (URL:
https://github.com/aosp-mirror/platform_frameworks_base/blob/master/
core/res/AndroidManifest.xml), 2021. Accessed 19.05.2021.

[6] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and
Konrad Rieck. Drebin: Effective and explainable detection of android
malware in your pocket. In Proceedings 2014 Network and Distributed
System Security Symposium. Internet Society, 2014.

[7] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien
Octeau, and Sebastian Weisgerber. On Demystifying the Android Applica-
tion Framework: Re-Visiting Android Permission Specification Analysis.

In 25th USENIX Security Symposium (USENIX Security 16), pages
1101–1118, Austin, TX, August 2016. USENIX Association.

[8] Lukas Biewald. Experiment tracking with weights and biases, 2020.
Software available from https://wandb.ai/site.

[9] Minghui Cai, Yuan Jiang, Cuiying Gao, Heng Li, and Wei Yuan. Learning
features from enhanced function call graphs for Android malware detec-
tion. Neurocomputing, 423:301–307, 2021.

[10] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christo-
pher Kruegel, Giovanni Vigna, and Yan Chen. EdgeMiner: Automati-
cally Detecting Implicit Control Flow Transitions through the Android
Framework. In 22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA, February 8-11,
2015. The Internet Society, 2015.

[11] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and K. Ren.
Android HIV: A Study of Repackaging Malware for Evading Machine-
Learning Detection. IEEE Transactions on Information Forensics and
Security, 15:987–1001, 2020.

[12] Khanh-Huu-The Dam and Tayssir Touili. Learning Android Malware. In
Proceedings of the 12th International Conference on Availability, Reliabil-
ity and Security, ARES ’17, New York, NY, USA, 2017. Association for
Computing Machinery.

[13] Danilo Dominguez Perez and Wei Le. Predicate Callback Summaries. In
2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), pages 291–293, 2017.

[14] William Falcon et al. Pytorch lightning. GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, 3, 2019.

[15] Gabor Paller. Dalvik opcodes, 2020. URL:
http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html (accessed:
07.12.2020).

[16] T. Gao, W. Peng, D. Sisodia, T. K. Saha, F. Li, and M. Al Hasan. Android
malware detection via graphlet sampling. IEEE Transactions on Mobile
Computing, 18(12):2754–2767, Dec 2019.

[17] Joblib Development Team. Joblib: running Python functions as pipeline
jobs. Online (URL: https://joblib.readthedocs.io/en/latest/), 2021. Ac-
cessed (18.05.2021).

[18] H. M. Kim, H. M. Song, J. W. Seo, and H. K. Kim. Andro-Simnet: Android
Malware Family Classification using Social Network Analysis. In 2018
16th Annual Conference on Privacy, Security and Trust (PST), pages 1–8,
Aug 2018.

[19] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[20] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning
Representations (ICLR), 2017.

[21] Oscar Levin. Discrete mathematics : an open introduction. Oscar Levin,
Greeley, Colorado, 2019.

[22] Jin Li, Sai Zhang, Tao Liu, Chenxi Ning, Zhuoxuan Zhang, and Wei Zhou.
Neural inductive matrix completion with graph convolutional networks for
miRNA-disease association prediction. Bioinformatics, 36(8):2538–2546,
01 2020.

[23] Yu Liu, Liqiang Zhang, and Xiangdong Huang. Using G Features to
Improve the Efficiency of Function Call Graph Based Android Malware
Detection. Wireless Personal Communications, 103(4):2947–2955, 2018.

[24] S. Mahdavifar, A. F. Abdul Kadir, R. Fatemi, D. Alhadidi, and A. A.
Ghorbani. Dynamic Android Malware Category Classification us-
ing Semi-Supervised Deep Learning. In 2020 IEEE Intl Conf on
Dependable, Autonomic and Secure Computing, Intl Conf on Perva-
sive Intelligence and Computing, Intl Conf on Cloud and Big Data
Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pages 515–522, 2020.

[25] McAfee. McAfee Mobile Threat Report 2019. Online (URL:
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-
threat-report-2019.pdf), 2020. Accessed: 29.07.2020.

[26] Lucky Onwuzurike, Enrico Mariconti, Panagiotis Andriotis, Emiliano De
Cristofaro, Gordon Ross, and Gianluca Stringhini. MaMaDroid: Detecting
Android Malware by Building Markov Chains of Behavioral Models
(Extended Version). ACM Trans. Priv. Secur., 22(2), April 2019.

[27] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style,

12 VOLUME 4, 2016

https://github.com/aosp-mirror/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml
https://github.com/aosp-mirror/platform_frameworks_base/blob/master/core/res/AndroidManifest.xml

High-Performance Deep Learning Library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[28] Abdurrahman Pektas and Tankut Acarman. Deep learning for effective
android malware detection using api call graph embeddings. Soft Com-
puting, 24(2):1027–1043, 2020.

[29] Junyang Qiu, Nepal, Surya, Wei Luo, Pan, Lei, Yonghang Tai, Jun Zhang,
Yang Xiang, Xiaofeng Chen, Xinyi Huang, and Jun Zhang. Data-Driven
Android Malware Intelligence: A Survey. In Machine Learning for Cyber
Security, pages 183–202. Springer International Publishing, 2019.

[30] Zhongru Ren, Haomin Wu, Qian Ning, Iftikhar Hussain, and Bingcai
Chen. End-to-end malware detection for android iot devices using deep
learning. Ad Hoc Networks, 101:102098, 2020.

[31] Kaspersky Securelist. Mobile Malware Evolution 2019. Online (URL:
https://securelist.com/mobile-malware-evolution-2019/96280/), 2020. Ac-
cessed: 29.07.2020.

[32] Android Source. Dalvik Executable format. Online (URL:
https://source.android.com/devices/tech/dalvik/dex-format), 2021. Ac-
cessed 18.05.2021.

[33] StatCounter. Mobile, Tablet & Console Operating System Market
Share Worldwide. Online (URL: https://gs.statcounter.com/os-market-
share/mobile-tablet-console/worldwide/#monthly-201208-202104), May
2021. Accessed 18.05.2021.

[34] Rahim Taheri, Meysam Ghahramani, Reza Javidan, Mohammad Shojafar,
Zahra Pooranian, and Mauro Conti. Similarity-based Android malware
detection using Hamming distance of static binary features. Future
Generation Computer Systems, 105:230 – 247, 2020.

[35] K. V. Vinayaka and C. D. Jaidhar. Android Malware Detection based
on Function Call Graph using Graph Convolutional Networks. Accepted
and Presented at the Second International Conference on Secure Cyber
Computing and Communications (ICSCCC) held at NIT Jalandhar, India,
2021.

[36] Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, and Minyi Guo. Knowl-
edge graph convolutional networks for recommender systems. In The
World Wide Web Conference, WWW ’19, page 3307–3313, New York,
NY, USA, 2019. Association for Computing Machinery.

[37] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song,
Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He,
George Karypis, Jinyang Li, and Zheng Zhang. Deep Graph Library: A
Graph-Centric, Highly-Performant Package for Graph Neural Networks.
arXiv preprint arXiv:1909.01315, 2019.

[38] Michelle Y. Wong and David Lie. Tackling runtime-based obfuscation
in Android with TIRO. In 27th USENIX Security Symposium (USENIX
Security 18), pages 1247–1262, Baltimore, MD, August 2018. USENIX
Association.

[39] Y. Wu, X. Li, D. Zou, W. Yang, X. Zhang, and H. Jin. Malscan:
Fast market-wide mobile malware scanning by social-network centrality
analysis. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 139–150, Nov 2019.

[40] Yang Yang, Xuehui Du, Zhi Yang, and Xing Liu. Android Malware Detec-
tion Based on Structural Features of the Function Call Graph. Electronics,
10(2), 2021.

[41] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L.
Hamilton, and Jure Leskovec. Graph convolutional neural networks
for web-scale recommender systems. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery &; Data
Mining, KDD ’18, page 974–983, New York, NY, USA, 2018. Association
for Computing Machinery.

[42] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and
Nitesh V. Chawla. Heterogeneous Graph Neural Network. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery Data Mining, KDD ’19, page 793–803, New York, NY, USA,
2019. Association for Computing Machinery.

[43] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph
Convolutional Networks: Algorithms, Applications and Open Challenges.
In Xuemin Chen, Arunabha Sen, Wei Wayne Li, and My T. Thai, editors,
Computational Data and Social Networks, pages 79–91, Cham, 2018.
Springer International Publishing.

VOLUME 4, 2016 13

	Introduction
	Motivation
	Related Work
	Preliminaries
	Mathematical Collections
	Graphs
	The dex file

	Proposed Approach
	Framework Space Analysis
	Potential Callback Filter
	Registration-Callback Map Extraction

	Application Space Analysis
	Inheritance Edges Adder
	Callback Edges Adder
	Permission Nodes Adder
	Node Attributes Assigner
	eFCG Reduction

	GCN Classifier

	Experiments, Results and Analysis
	Software Configuration
	Datasets used
	Training Configuration
	Experiments
	Ablation Study
	Neighbourhood Analysis
	Generalisation Analysis

	Experimental Results and Analysis
	Effectiveness of Node types
	Effect of neighbourhood size n
	Generalisation ability of R-eFCG
	Comparison with Related Works

	Conclusions and Future Work
	REFERENCES

