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Abstract— The paper develops novel algorithms for time-
varying (TV) sparse channel estimation in Massive multiple-
input, multiple-output (MMIMO) systems. This is achieved by
employing a novel reduced (non-uniformly spaced tap) delay-
line equalizer, which can be related to low/reduced rank
filters. This low rank filter is implemented by deriving an
innovative TV (Krylov-space based) Multi-Stage Kalman Filter
(MSKF), employing appropriate state estimation techniques.
MSKF converges very quickly, within few stages/iterations (at
each symbol). This is possible because MSKF uses those signal
spaces, maximally correlated with the desired signal, rather than
the standard principal component (PCA) signal spaces. MSKF
is also able to reduce channel tracking errors, encountered
by a standard Kalman filter in a high-mobility channel.
In addition, MSKF is well suited for large-scale MMIMO
systems. This is unlike most existing methods, including recent
Bayesian-Belief Propagation, Krylov, fast iterative re-weighted
compressed sensing (RCS) and minimum rank minimization
methods, which requires more and more iterations to converge,
as the scale of MMIMO system increases.

I. INTRODUCTION

MMIMO systems are considered for high data rate com-
munications in sparse channels, e. g. digital television (DTV)
[1]- [2], echo cancellation, underwater [3], millimeter-wave
(mmwave) 5G communications [4]. For example, in ter-
restrial DTV transmission [2], [1], a typical receiver is
expected to handle multipath with delays as long as 18
microseconds, which at high symbol rates, requires adaptive
finite impulse response (FIR) linear equalizers with several
hundred symbol-spaced taps [5]. In order to alleviate dy-
namic multipaths, due to propagation effects, flutter from
moving objects, e.g., airplanes and changing atmospheric
conditions, the equalizer must update its coefficients at high
speed. This situation is also witnessed in a high data rate
wireless channel, where only the main signal and a few
multipath reflected signals are significant, among (maybe)
hundreds of channel taps, (in a tapped-delay line model).
Advanced sparse channel estimation methods, requiring es-
timation of only few significant channel tap weights, have
been developed for orthogonal frequency division multiplex-
ing (OFDM) [6] and code division multiple access (CDMA)
systems, and provide superior performance.

Existing works estimate the significant channel tap lo-
cations first, (by methods [7] et. al.), after which least-
squares (LS) methods (employing training subcarriers only)
are used to estimate the significant channel tap weights,
but may require a large amount of training data, mak-
ing them unsuitable for MMIMO. The large number of
training symbols/subcarriers required or the resultant pilot
contamination/re-use problem in MMIMO [8] necessitated
the development of blind/semi-blind sparse time-invariant
(ITV) channel/data estimation methods, [9] - [12]. Though

[11], [12] perform much better than [9], [10], all of these
blind algorithms are data block-based methods (i. e., require
a block of received data symbols to be collected, before
filtering), and is not adapted for symbol-by-symbol update,
for rapidly time-varying (TV) channels. This motivates the
development of time (symbol) iterative/update Kalman-like
filters. The novel methods here utilize the ideas of reduced-
rank, sparse, and multistage Kalman filters (MSKF) jointly
to exploit the sparsity in different dimensions (time, space
etc).

Recent methods, like the popular sparsity based com-
pressed sensing (CS) and Bayesian methods [13] - [20],
yield superior performance in sparse, including MMIMO
mmwave spatially sparse channels, by exploiting the low
rank angular structure induced by the multi-ray channel
model with narrow angular spread (AS). But they hold for
much simpler single path (not multipath) channels, and thus
do not utilize the temporal sparsity (in multipath lag) domain.
Moreover, CS and Bayesian methods are computationally
very demanding, and their few iterative versions, like proxi-
mal re-weighted CS (RCS) [16], [18] or [19], converge after
many symbols, making them inadequate for high mobility
TV channels. Also, one of the few existing Krylov space
spaced TV channel estimators [21] models the time variation
by a basis exponential method (BEM), which inevitably
introduces approximation error to channel estimates, due
to the imperfect model assumed. Here, on the other hand,
the novel equalizer is updated by reduced-rank, TV novel
MSKF and Krylov-Kalman filters, with reduced compu-
tational complexities. In particular, the novel multi-stage
MSKF performs very well, employs some data censoring and
converges quickly, within a few stages/iterations. Moreover,
the novel MSKF is able to reduce channel tracking errors
of a standard Kalman filter, which occurs in a high-mobility,
TV channel (as seen in Fig. 8 and text below it, [22]).

A. Contributions

The main contributions of this paper are
• A novel symbol-iterative MSKF, having superior per-

formance and rapid stage-wise convergence (for each
symbol), is developed for high mobility sparse TV
channels. This is achieved by

• 1. having a novel TV reduced (non-uniformly spaced)
equalizer structure, reminiscent of some time-invariant
(ITV) reduced equalizers for DTV and echo cancella-
tion. ITV Reduced equalizers have been seen to outper-
form uniformly symbol-spaced estimators, as evidenced
in [1]) (Fig. 3), and in learning curves (Figure 4, [1] and
Figure 3, [2]). Using auto-regressive (AR) TV channel
models, the reduced equalizer is generalized to exploit
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any available sparsity in cluster-sparse channels, even
with continuous ISI, and with time-varying significant
channel tap locations, to cater to real-world channels,
encountered in in 4G/5G transmission (Sections II and
III).

• 2. Substantial synthesis and analysis of the reduced
equalizer then provides us with reduced channel vectors
and matrices for data estimation in high mobility sparse
TV channels. Then utilizing the fact that MMIMO
systems have very large J (number of receive antennas),
a low rank algebraic reduced equalizer structure is
deduced (Section III).

• 3. Next, motivated by some ITV Multi-stage Wiener
Filter (MSWF), exhibiting fast stage-wise convergence
for some DOA applications [23], a novel TV Multi-
stage Kalman Filter (MSKF) is integrated into the
reduced rank equalizer structure above (Sections III and
IV). Significant derivation of this novel dynamic, sparse
MSKF equalizer, with data censoring (as in sensor
networks [24]) is developed in Sections III and IV.

• 4. Performance analysis of TV MSKF’s much improved
(order/iteration)-wise convergence of mean squared er-
ror (MSE) (at each symbol) and analytical comparison
and connection with Bayesian, CS and other existing
sparse methods, along with its computational efficiency
(Section VI).

Other contributions include

• 1. Close connection between the ideas of compressed
sensing(CS) and reduced rank filters (matrix rank mini-
mization) in sparse estimation (Sec III. B); development
of a second novel TV Krylov filter (Sec V).

• 2. Extensive comparative simulations of MSKF with
recent Bayesian, CS and Krylov space based sparse
estimators, in high mobility MMIMO systems (Section
VII). Conclusions are provided in Section VIII.

Notations: Bold upper-case symbols A denote matrices.
Bold lower-case symbols b denote vectors. Ii is an identity
matrix of size i× i, 0j,k is a j × k-sized zero matrix. Also,
A(i : j, k : l) denotes the ith to jth rows and kth to lth
columns of the matrix A.

II. SYSTEM MODEL

A single-carrier sparse channel transmission system, with
maximum multipath delay spread of up to L symbols, is
considered. A novel algorithm is designed to determine
the finite impulse response (FIR) equalizer, required to
invert this channel in the minimum mean squared error
(MMSE) sense [5]. Consider first a SIMO system, with
a single transmit antenna and J receive antennas. The
TV lth tap channel weight, at symbol n, is h(n, l) =
[h1(n, l), h2(n, l), . . . , hJ(n, l)]T , l = 0, 1, · · · , L − 1,
(hj(n, l) is the lth lag channel weight from transmitter to
the jth receive antenna). However in a sparse channel, only
D, (out of a total of L), channel tap weights, have non-zero
values. In many cases, D << L.

In next section, we consider more general cluster-sparse
channels with continuous ISI, (e. g. 3G LTE channel). The

J × 1 received signal (on J received antennas) is

y(n) =

L−1∑
m=0

h(n,m)s(n−m) + w(n)

=

D−1∑
k=0

h(n, lk)s(n− lk)+

w(n); 0 ≤ lk ≤ L− 1, k = 0, 1, 2, · · · , D − 1, (1)

where lk’s denotes the kth non-zero weighted channel tap
locations. Generally, l0 = 0, [9], [10]. Also, assume that
0 = l0 < l1 < l2 < · · · < lD−1 ≤ L − 1; w(n) is the
J × 1 additive white gaussian noise (AWGN). For MIMO
systems with S̄ transmit antennas and J receive antennas,
the channel matrix H̃(n, l) is a J × S̄ matrix, given by
H̃(n, l) = [h(1)(n, l) h(2)(n, l) · · · ,h(S̄)(n, l)], with J × 1-
sized h(k)(n, l) being the channel from the kth transmit
antenna to the J receive antennas, at lth delay and nth
symbol.
Note: In point-to-point MIMO systems, the transmit and
receive antennas are co-located. In such a case, the prop-
agation delay is approximately the same for all transmit-
receive pairs; thus, significant channel tap locations, should
be the same for all transmit-receive pairs [10], i.e., common
sparsity support across all receive antennas. However, this
assumption may not hold over a large number of receive
antennas in MMIMO [15]. Ma et. al. proposes a spatial
domain BEM (SBEM), with beamforming so that each ray
directed to one user cluster. However, [18] derives algorithms
for time delay and angle estimation in MMIMO, with the
same multipath delays for all receive antennas.

Three general assumptions are made as follows:
(A1) The symbol sequence of each user s(n) is temporally

white with zero mean and unit variance, and is statis-
tically uncorrelated with s(n−m) for m 6= 0.

(A2) The noise sequences wj(n) are stationary, and tempo-
rally and spatially white with zero mean and variance
σ2
w.

(A3) The symbol sequences s(n) are statistically uncorre-
lated with the noise sequences wj(n).

III. ALGORITHM DEVELOPMENT

A. Extended Channel Model

1) Group or Clustered Sparsity: Next, group sparsity
[25] is considered, where the few non-zero (i.e., significant)
channel taps occur in clusters/blocks in a structured manner,
see Fig. 1 a). Suppose the multipath channel consists of D
clusters (instead of D single taps). The total support of the
channel S is given by S =

⋃D−1
k=0 S(k), with S(k) being

the support of the kth cluster. The kth cluster consists of
|Sk| consecutive multipaths at lags of lk, (lk + 1), · · · , (lk +
|Sk| − 1); let S̄ = maxk=0,1,··· ,D−1 |Sk|. Then (1) can be
rewritten as

y(n) =

S̄−1∑
i=0

D−1∑
k=0

h(n, lk + i)s(n− lk − i) + w(n)

0 ≤ lk ≤ L. (2)

For a fixed i, the inner summation in (2) is again a D-sparse
channel, with sparse multipaths, still separated by {(lk+1 +
i) − (lk + i) = (lk+1 − lk)} taps, just as in (1). Defining
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H(n, lk)∆
− [h(n, lk), h(n, lk +1), · · · ,h(n, lk + S̄−1)], and

S(n−lk)∆
= [s(n−lk), s(n−lk−1), · · · , s(n−lk−S̄+1)]T ,

(1) is equivalent to

y(n) =

D−1∑
k=0

H(n, lk)S(n− lk) + w(n). (3)

Since the different components of H(n, lk) are uncorrelated
with each other (and so also for S(n)), equation (3) can be
regarded as a S̄-user sparse channel model.
Then there is the issue of continuous ISI, as in a 3G LTE
Pedestrian B channel. There may be some multipaths, in
between the significant multipath clusters, shown in Figure
3, [14]. Their powers may be approximately 50, 70, 170 dB
below that of the main path. Simulation results, for TV 3G
LTE channel, in Sec. VII show that the effect of these paths
is not much, see (last right-most paragraph, pp. 1428) [11]
and Table II, [9].

2) Time-Variation of Significant Tap locations: Assume
that the time-evolution of random, TV channel is modeled by
a first order auto-regressive (AR(1)) model [22], [5], (with
significant channel tap locations lk(n) as a function of the
nth symbol),

H(n, lk(n)) = λH(n− 1, lk(n− 1)) + V(n), (4)

where V(n) is the process noise with zero mean and variance
σ2
vI. λ represents how fast and how much the time-varying

part of channel taps H(n, lk(n)) varies with respect to the
mean of H(n, lk(n)). Substituting (4) into (3),

y(n) =

D−1∑
k=0

H(n, lk(n))S(n− lk(n)) + w(n)

=

D−1∑
k=0

(λH(n− 1, lk(n− 1)) + V(n))

S(n− 1− (lk(n)− 1)) + w(n)

= λ

D−1∑
k=0

H(n− 1, lk(n− 1))

[S(n− 1− (lk(n)− 1))] + w̃(n) = λy(n− 1) + w̃(n)
(5)

where w̃(n)∆
= w(n) + V(n)

∑D−1
k=0 S(n− 1− (lk(n)− 1))

is the overall noise . Let m = n− 1− (lk(n)− 1).
Now

E{w̃(n)ST (m)} = E{V(n)}E{S(m)ST (m)}
+ E{w(n)}E{ST (m)} = 0,

as noises E{V(n)} = 0, E{w(n)} = 0, and both are also
uncorrelated with signal S(m).
Then lk(n − 1) = lk(n) − 1, i. e., significant channel tap
locations are shifted by 1, which is already accommodated
in AR(1) model (4) above. This novel channel model is
illustrated in Fig. 1 a) and b).

B. Reduced TV Equalizer

Motivation
There is a close connection between the ideas of com-
pressed sensing (CS) and matrix rank minimization (similar
to reduced rank filters), for sparse beamformed (channel)
estimation in angular and temporal domains, [20], [19], [18].

+ +=

user sparse channel

Significant Channel Tap Locations at symbol

 

Significant Channel Tap Locations at symbol

 

Significant Channel Tap Locations     :

Significant Channel Tap Locations     :

Significant Channel Tap Locations    :

MMIMO

user channels with 

Equation (3)

Equation (4), (5) 

Section IV. C

Fig 1a)

Fig 1b)

Fig 1c)

CLUSTERED (SPARSE) MULTIPATH CHANNEL

Time Variation of Signifcant Channel Taps
based on AR(1) Model

3
Antennas

Fig. 1
A) CLUSTERED SPARSE CHANNEL MODEL AS MULTI-USER SPARSE

CHANNEL (EQUATION (3)), B) TIME-VARYING SIGNIFICANT CHANNEL

TAP LOCATIONS (EQUATIONS (4) AND (5)), C) MMIMO CHANNEL

MODEL (SEC IV. C).

[20] investigates (single tap, non-multipath) mmwave chan-
nel sparsity in angular/space (Direction of Arrival (DOA))
domain, where the low-rank algebraic structure of the chan-
nel matrix is exploited by employing a reduced rank method,
followed by a CS sparse method. [19] solves the same prob-
lem (in MMIMO) using CS methods only. On the other hand,
[18] compares the performance of individual CS and reduced
rank methods in MMIMO mmwave multipath channels. In
this paper, a novel reduced rank filtering method is used
for sparse multipath (non-beamformed) channel estimation.
This is facilitated by having very large J in MMIMO, which
makes Assumption (A4) (below) more likely to be satisfied.

A novel model of a sparse (reduced) equalizer, adequate
for data estimation in a sparse channel, is introduced in this
section. A sparse equalizer means that only few of its taps
(in a tapped-delay line model of linear FIR equalizer) have
significant weights. These significant, non-uniformly spaced,
FIR equalizer tap locations are seen to be related to the
auto-correlation matrix of y(n) [11]. Define the ith lag auto-
correlation matrix, at symbol n, R(n, i)∆

=E[y(n)yH(n−i)].
After evaluating R(n, i) for the sparse channel in (1), it can
be seen that the TV R(n, i) 6= 0, only for the lags i’s, [11],

i = l0 − l0 = 0; i = lk − l0 = lk, (k = 1, 2, · · · , D − 1),

i = lk − lm, (m < k, k = 2, 3, · · · , D − 1). (6)

Then, an algorithm for selecting non-uniformly spaced
equalizer tap delays {mp}Np=1’s, is enumerated in Table I,
by extending [11].

Now the noiseless reduced data vector yred(n) =
yred(n) = [yT (n − m1)yT (n − m2) · · ·yT (n −
mN )]T , mN ≤M. (defined in (45), Table I) can be written
as yred(n) = Hred(n)sred(n) (Hred(n) and sred(n) are the
corresponding reduced channel matrix and transmitted data
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vectors respectively). Obtaining general expressions of the
novel reduced channel matrix, (for generic sparse channels,
which have many different combinations of {lj}D−1

j=0 ’s, even
for the same sparsity level D), may not always be possible
[11], [12]. The reduced channel matrix and transmitted data
vector can only be illustrated fully for specific channels, e.
g., Example I Channel (equations (14), (47), (48) and (49)
in [11]). Extending it to the reduced, TV Example I channel
matrix Hred(n) here is given by (for M = 23) (equation
(7), on top of next page) of size 12J×21S̄. If we had taken
equalizer taps at all lags, the “full” channel matrix Hfull(n)
will be of size MJ × (M + L) = 23J × (23 + 12)S̄ =
23J × 35S̄, Example I Channel, [11]. An assumption made
is
(A4) Channel matrix Hfull(n)/Hred(n) is of full column
rank.
In MMIMO, with very large number of receive anten-
nas J , the channel matrix is a very “tall” matrix, which
makes Assumption (A4) more likely to be valid. Then
rank(Hfull(n)) = 35S̄ always, irrespective of the sparsity
structure in channel. But rank(Hred(n)) = 21S̄ for Example
I Channel and has reduced rank, which depends on each
specific sparse channel. This is unlike the full channel
matrix used traditionally in data estimation; implying that
the reduced equalizer methodology has transformed sparse
channel estimation problem to that of TV reduced-rank
filtering.
The equivalence between the reduced equalizer and spar-
sity promoting Bayesian estimator [26], [27] is shown in
[12] (Section V), by considering (sparse) channel’s prior
probability density function (pdf) as f((H(n, lk)(i,j)) =
[(H(n, lk))(i,j)]

−1/2, (i. e., magnitude of a channel tap will
have a low value with high probability, and a large value
with low probability [26]). Then equations (26)-(34) in [12]
show that this (prior) pdf leads us to a reduced rank filter.

C. State Space Representation and Innovations in Reduced
Filter

Here, the state is the channel H(n, lk(n)), for which the
measurement equation is (using (3)),

y(n) = C(n)H̃(n) + w(n), (8)

with measurement matrix C(n) = [IJ ⊗ ST (n −
l0), IJ ⊗ ST (n − l1), · · · , IJ ⊗ ST (n − lD−1)] (⊗ :
Kronecker product). Defining JS̄ × 1-sized h̄(n, lk) =
[hT (n, lk), hT (n, lk + 1), · · · ,hT (n, lk + S̄ − 1))]T ,
H̃(n)∆

− [h̄T (n, l0) · · · h̄T (n, lD−1)]T . However, since we
don’t know the significant channel {lk}’s a priori, one starts
with assuming that all channel taps are present, in novel
MSKF algorithm and its simulations. The only thing we
know is, (using Algorithm I), the (non-uniformly)-spaced re-
duced equalizer lags , i. e. yred(n) vector. The TV channel’s
dynamic state equation

H̃(n) = diag(λ)H̃(n− 1) + V(n) (9)

follows from (4). Since the reduced equalizer is
yred(n)=[yT (n − m1) yT (n − m2) · · · yT (n − mN )]T ,
H̃(n) needs to be updated at times (symbols)
{(n − mN ), · · · , (n − m2), (n − m1), · · · , n} only .
This may be viewed as some form of data censoring (i. e.,

using selected received signal, at only certain symbols), as
in sensor networks [24].
Now, y(n), in (8) is used in block-based data channel
estimation [11], i. e. a block of received data symbols is
collected before H̃(n) is estimated, i. e., the estimate is not
iteratively updated from one symbol to the next, which is the
objective of this paper. For our novel, reduced Kalman filter,
the innovations (used to derive an time-iterative algorithm)
is ỹ(n) = ỹ(n − m0)[m0 = 0]∆

= y(n) − ŷ(n|n − m1).
ŷ(n|n − m1) is the MMSE estimate of y(n), based on
non-uniformly spaced past data {y(n−mj)}Nj=1’s. Similarly,

channel estimate ˆ̃H(n|n) uses the current data ỹ(n); the
a priori channel estimate ˆ̃H(n|n − m1) uses past data
{y(n − mj)}Nj=1’s; a priori estimate error is denoted by
He(n|n−m1).
Next, the innovations has to be expressed in terms of Kalman
state matrices (given in equations (8) and (9)). [unlike time-
invariant Wiener (MSWF [23], [11])]. From (8), ỹ(n) and
its auto-correlation matrix are

ŷ(n|n−m1) = C(n) ˆ̃H(n|n−m1),

ỹ(n) = y(n)− ŷ(n|n−m1) = C(n)He(n|n−m1) + w(n),
(10)

Rỹ(n) = C(n)RHe(n|n−m1)CH(n) + σ2
wIJ , (11)

where RHe(n|n − m1) is the a priori channel error cor-
relation matrix. Now, a time-update of the state, H̃(n), is
obtained, (similar to the classical “full” Kalman filter, which
uses all channel taps, [28]).
Lemma 1:

ˆ̃H(n|n) = ˆ̃H(n|n−m1) + ˆ̃H(n|ỹ(n)). (12)

Proof: See Technical Report [32]. From (12), we have,

(H̃(n)− ˆ̃H(n|n)) = (H̃(n)− ˆ̃H(n|n−m1)− ˆ̃H(n|ỹ(n))
(13)

He(n|n) = He(n|n−m1)− ˆ̃H(n|ỹ(n)) (14)

Using (14), the a posteriori channel estimate error auto-
correlation matrix RHe(n|n) = E{He(n|n)HeH(n|n))} =

RHe(n|n − m1) − 2E{He(n|n − m1) ˆ̃HH(n|ỹ(n))} +

E{ ˆ̃H(n|ỹ(n)) ˆ̃HH(n|ỹ(n))}. Using orthogonality principle
of MMSE estimation, the a priori channel estimate error
He(n|n−m1) is orthogonal to the a priori estimate ˆ̃H(n|n−
m1); also, ˆ̃H(n|ỹ(n)) is orthogonal to ˆ̃H(n|n −m1) [28].
Then

RHe(n|n) = RHe(n|n−m1)

− E{ ˆ̃H(n|ỹ(n)) ˆ̃HH(n|ỹ(n))}. (15)

Since number of receive antennas at MMIMO base-station, J
is very large, the state He(n|n), of size (L+1)J , has a very
large dimension. Thus direct application of the Kalman filter
may be computationally prohibitive. In such cases, Krylov
based methods [28] - [30] become relevant.

IV. MULTI STAGE KALMAN FILTER (MSKF)

A computationally efficient, reduced rank Multistage Wiener
Filter (MSWF) (for time-invariant (ITV) systems) has been
developed in [23], which converges to some Krylov based
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Hred(n) =



H0(n, 0) 0J,1 H(n, 4) 0J,3 H(n, 11) 0J,14

0J,1 H(n, 0) 0J,1 H(n, 4) 0J,4 H(n, 11) 0J,12

0J,2 H(n, 0) 0J,1 H(n, 4) 0J,4 H(n, 11) 0J,11

...
...

0J,5 H(n, 0) 0J,2 H(n, 4) 0J,5 H(n, 11) 0J,6

...
...

0J,11 H(n, 0) 0J,3 H(n, 4) 0J,4 H(n, 11)


, (7)

methods. It involves a reduction in the dimensionality of the
observed data to obtain a MMSE filter, which is as close
as possible to what can be attained if all the observed data
were used in the estimation process. [23], and its variants
[31], have been successfully used in CDMA data estimation,
and recently in semiblind estimation of time-invariant (ITV)
sparse channels [11]. The novel Multistage Kalman Filter
(MSKF) here, is inspired from such considerations, and
involves substantial extension to TV state estimation. In
this paper, innovations data ỹ(n) is used to estimate the
desired signal H̃(n|ỹ(n)) (i. e., second term in RHS of (12)),
by a novel, fast-converging, stage-by-stage filter structure,
referred to as MSKF.

A. Full Kalman Filter

Data ỹ(n), and its auto-correlation matrix, in (10) and (11),
will be used to estimate the desired signal, (0th order)
D0(n) = H̃(n|ỹ(n)). The the top-level (or 0th order) data,
z0(n)∆

− ỹ(n), uses the full (not Multi-stage) Wiener filter’s
weights wz0(n) [5], at each symbol n, by

wz0
(n) = (Rz0

)−1Rz0,H̃(n),

D̂0(n) = ˆ̃H(n|ỹ(n)) = wH
z0

(n)z0(n). (16)

Then the aposteriori channel estimate ˆ̃H(n|ỹ(n)) and chan-
nel error correlation matrix RHe(n|n) are updated iteratively
by (12) and (15) respectively.

B. MSKF Derivation

The top-level (main) Kalman filter weight wz0
(n), in (16), is

now implemented in a multi-stage fashion (MSWF), leading
to faster (order)-wise convergence at reduced complexity.
The scalar MSWF [23] is extended to vector MSWF (V-
MSWF); for ease of presentation, the derivation of V-MSWF
is provided in Technical Report [32], and the main steps of V-
MSWF algorithm are shown in Table II. Table II’s equations,
(47) - (51), will then be directly applied here to the TV state
space model, (9), (10), to derive the MSKF’s novel state
estimation, in terms of state space matrices.
The block diagram of novel MSKF, with N = 3 stages, is
shown in Fig 2. First, the J × J(M + 1)S̄-sized (0th order)
cross-correlation, Rỹ(n),He(n|n−m1), and its normalized ver-
sion, C1, are defined as,

Rỹ(n),He(n|n−m1)
∆

−
E{ỹ(n)HeH(n|n−m1)}, (17)

∆1 = [RH
ỹ(n),He(n|n−m1)Rỹ(n),He(n|n−m1)]

1/2,

C1
∆

−
[Rỹ(n),He(n|n−m1)][∆1]−1. (18)

In the time-invariant (ITV) case [23], [11], the expectation
operator in (17) is implemented by time averaging over
a number of received symbols. But here, the different re-
ceived symbols are generated by different channels H̃(n),
which vary from symbol to symbol, making time averaging
unsuitable for this situation. To circumvent this problem,
Rỹ(n),He(n|n−m1) has to be computed in terms of matrices
available at time n (as is done in a standard Kalman filter).
Substituting equation (10) in (17),

Rỹ(n),He(n|n−m1) = E{ỹ(n)HeH(n|n−m1)}
= C(n)RHe(n|n−m1) + E{w(n)HeH(n|n−m1)}

(19)

Now, the 2nd term on RHS of (19), (noise term), is

E{w(n)HeH(n|n−m1)} = E{w(n)(H̃(n)−
ˆ̃H(n|n−m1))H} (20)

The first term in (20), E{w(n)H̃H(n)} =
E{w(n)(diag(λm1)H̃(n − m1) + V(n))H} = 0, since
measurement noise w(n) is uncorrelated with process noise
V(n); w(n) is also uncorrelated with H̃(n −m1), (which
depends on V(n−m1), · · · ,V(n−m1−k)’s etc). Similarly,
the second term in (20), E{w(n) ˆ̃HH(n|n − m1)} = 0,

since ˆ̃H(n|n − m1) is estimated by {ỹ(n − j)}j=m1

j=mN
’s,

which contain measurement noises {w(n− j)}j=m1

j=mN
’s, all

of which are uncorrelated with white noise w(n) at symbol
n. Then (18) can be computed by

C1 = [C(n)RHe(n|n−m1)][∆1]−1. (21)

Equation (21) is a key equation. From (8), C(n) is known
at time n. Moreover, RHe(n|n−m1) is iteratively updated
from its past value at (n − m1 − m2)th symbol, by (15)
and (40) below, and is thus available (at present time n) for
computing C1 by (21) as the product of C(n) (measurement
matrix in state-space representation) and RHe(n|n − m1).
This avoids explicit time averaging in (17), which is done in
time-invariant (ITV) case in [11]. Equation (21) also gives
the 0th order Wiener filter weights, in (16), as

wz0
(n) = [C(n)RHe(n|n−m1)·

CH(n) + σ2
wIJ ]−1[C(n)RHe(n|n−m1)] (22)

Again (22) avoids explicit time-averaging and is computed
from state matrices, available at the present nth symbol. In
the next stage, the (1st order) JS̄(M + 1)× 1 desired signal
vector d1(n) and blocking matrix B1 are formed by

d1(n) = CH
1 ỹ(n), B1 = [I−C1C

H
1 ]. (23)
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It can easily be shown that when B1 operates on any signal,
it removes the component of C1 present in that signal, i. e.,
[CH

1 B1] = 0. Defining the 1st order signal as,

ỹ1(n)
∆

−
B1ỹ(n) = B1(C(n)He(n|n−m1) + w(n)),

(24)

Next, the 1st order normalized cross-correlation is defined
as

C2
∆

−
= Rỹ1(n),d1(n)[∆2]−1,

∆2 = (RH
ỹ1(n),d1(n)Rỹ1(n),d1(n))

1/2,

=⇒ C2 = B1Rỹ(n)C1[∆2]−1, (25)

by using (23) and (24). From (21),

C2 = B1(C(n)RHe(n|n−m1)CH(n) + σ2
wIJ)C1[∆2]−1,

= [I−C1C
H
1 ][C(n)RHe(n|n−m1)CH(n) + σ2

wIJ ]·
[C(n)RHe(n|n−m1)][∆1]−1[∆2]−1. (26)

Again, explicit time averaging (over a number of received
data symbols) is avoided in (26).
To obtain the equations for any generic order (stage), as
the order is changed from ith to (i + 1)th, and using (24),
Rỹ1(n) = B1Rỹ(n)B1, since B1 is a Hermitian matrix.
Again defining 2nd order signals, B2 = [I−C2C

H
2 ], desired

signal d2(n) = CH
2 ỹ1(n), ỹ2(n) = B2ỹ1(n), the 2nd order

cross-correlation is obtained as

Rỹ2(n),d2(n) = B2E{ỹ1(n)ỹH
1 (n)}C2 = B2Rỹ1(n)C2

= B2(B1Rỹ(n)B1)C2. (27)

Then for the generic ith order, it can be shown that

ỹi(n) = Biỹi−1(n), di(n) = CH
i ỹi−1(n),

Rỹi(n),di(n) = BiRỹi−1(n)Ci,

∆i+1 = (RH
ỹi(n),di(n)Rỹi(n),di(n))

1/2,

Ci+1
∆

−
Rỹi(n),di(n)[∆i+1]−1. (28)

Also, Rỹi(n) = (
∏j=i

j=1 Bj)Rỹ(n)(
∏j=i

j=1 Bj). The normal-
ized cross-correlations Ci’s, blocking matrices Bi’s, and
ith order desired signal di(n) and data ỹi(n)’s have been
generated as the order i is increased from 1, 2, · · · , N (up-
recursions).
Now that the different order signals have been generated,
a reduced-rank multistage estimation algorithm is derived.
This requires 0th order desired signal D0(n) = H̃(n|ỹ(n)),
(in the outer loop in block-diagram of Fig. 2), to be estimated
from the 1st order data z1(n)∆

= [dH
1 (n) ỹH

1 (n)]H (see (9),
Table II), which is in the 1st inner loop of Fig. 2. The MMSE
filter wz1

, in (48) (Table II), is employed for this purpose.
This process is continued in a nested fashion, to generate
the (i+ 1)th (order) inner loop from the ith loop in Fig. 2.
Thus at the (i + 1)th stage, di(n) has to be estimated by t
zi+1(n) = [dH

i+1(n) ỹH
i+1(n)]H . Generalizing (48),

wzi+1
=
[
IDJ −wH

i+2

]H
(E−1

i+1∆i+1), (29)

where wi+2 = R−1
ỹi+1

Rỹi+1,di+1
are the Wiener tap weights

for estimating di+1(n) from ỹi+1(n). Extending (51) to the

ith order (and after some algebra),

d̂i(n) = wH
zi+1

zi+1(n) = w̃H
i+1εi+1(n)

εi+1(n)
∆

−
[di+1(n)− d̂i+1(n)] = [di+1(n)−wH

i+2ỹi+1(n)],

w̃i+1 = E−1
i+1∆i+1. (30)

In (30), estimation error εi+1(n) = [di+1(n) −
wH

i+2ỹi+1(n)] is error between (i+1)th order desired signal
di+1(n) and its estimate d̂i+1(n) = wH

i+2ỹi+1(n) (using
(i + 1)th stage data ỹi+1(n)). The application of weight
wi+1 to this εi+1(n)), in (30), provides the estimate of the
lower (ith) order desired signal, i. e. d̂i(n), leading to the
down-recursion in (34).
Physical Interpretation: This nested (order)-wise filter
structure is possible because
1. By the orthogonality principle of MMSE estimation, the
estimation error εi+1(n)
= [di+1(n) −wH

i+2ỹi+1(n)] is orthogonal to the data used
in estimation, i. e. ỹi+1(n).
2. Again by construction, ỹi+1(n) is orthogonal to di(n),
since

Rỹi+1(n),di(n) = Bi+1[E{ỹi(n)dH
i (n)}] = Bi+1[Ci+1∆i+1]

= [I−Ci+1C
H
i+1][Ci+1∆i+1] = 0. (31)

3. Since di(n) and εi+1(n) are both uncorrelated with
ỹi+1(n), there may be some correlation between di(n)
and εi+1(n), which incidentally is ∆i+1 Hence, εi+1(n)
can be used for estimating the desired signal di(n), [i. e.,
d̂i(n) = w̃H

i+1εi+1(n) in equation (30) above], leading to
the novel nested MSKF filter. Initializing εN (n) by εN (n) =
yN−1(n) = dN (n), the error energy is

EN
∆

−
E{εN (n)εHN (n)} = E{dN (n)dH

N (n)}

= CH
NRỹN−1

(n)CN . (32)

Again, no explicit time averaging (over a number of data
symbols) is involved. Also,

∆N
∆

−
E{ỹN−1(n)dH

N−1(n)}

= BN−1RỹN−2
(n)R̃ỹN−2(n),dN−2(n) (33)

Using (29)-(33), we have order down-recursions for j =
N,N − 1, · · · , 1,

wj = [Ej ]
−1∆j , d̂j−1(n) = wH

j εj(n), (34)

εj−1(n) = dj−1(n)− d̂j−1(n) = dj−1(n)−wH
j εj(n),

(35)

Ej−1 = E{εj−1(n)εHj−1(n)} = E{dj−1(n)dH
j−1(n)}

−wH
j Ejwj = E{dj−1(n)dH

j−1(n)} −wH
j ∆j .

(36)

Now, in order to avoid using the expectation operator in (36),
we have from (28),

E{dj−1(n)dH
j−1(n)} = CH

j−1E{ỹj−2(n)ỹH
j−2(n)}Cj−1

= CH
j−1Rỹj−2(n)Cj−1

=⇒ Ej−1 = CH
j−1Rỹj−2(n)Cj−1 −wH

j ∆j . (37)

Again, (37) is implemented from precomputed quantities
at previous time, employing only matrix multiplications,
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without any explicit time averaging (over a number of
received data symbols).
Time-Updates:
Using (34)-(37) and (14), desired signal D0(n) =
ˆ̃H(n|ỹ(n)) channel estimate and the channel estimate error
He(n|n) are given by,

ˆ̃H(n|ỹ(n)) = w̃H
1 ε1(n);

=⇒ He(n|n) = He(n|n−m1)− w̃H
1 ε1(n). (38)

First, the apriori channel error correlation matrix is itera-
tively predicted by

RHe(n|n−m1) = diag(λm1)RHe(n−m1|n−m1)

diag(λm1)H + Rv(n−m1) (39)

Then, using (15), aposteriori RHe(n|n) is updated by

RHe(n|n) = RHe(n|n−m1)− E{ ˆ̃H(n|ỹ(n)) ˆ̃HH(n|ỹ(n))}
= RHe(n|n−m1)− w̃H

1 E1(n)w̃1. (40)

The novel MSKF algorithm is then fully tabulated in Table
III.

Innovation

 

+

-+

- 

Fig. 2
BLOCK DIAGRAM OF MSKF (N = 3).

C. Some Issues

1) MMIMO case: Next, re-visit the discussion in “Note”
(Section II) about the common sparsity support (over all
receive antennas) assumption being violated in MMIMO,
since the received signal is delayed at the J different receive
antennas, with overall distance between them increasing for
large J . Following ( [15], pp. 106, and Table I) with distance
between 2 consecutive antennas d = C

2fc
, (C-velocity of

light), the maximum distance (between the farthest antennas
in a linear array) dmax = (J−1)d) is very large, for large J
(MMIMO). Then for high bandwidth (BW ) communication
systems, if dmax

C > 10
BW , significant channel tap locations lk

vary spatially or, are different, across the farthest antennas,
as proved in [15]. As an illustrative example, in Fig. 1 c),

J = 3J̄ , and say over the bottom J̄ receive antennas, the
significant channel taps locations are l0, l1, l2 , and over the
next (upper) J̄ antennas, the locations are l0+1, l1+1, l2+1,
while over the top-most J̄ antennas, they are at l0 + 2, l1 +
2, l2 + 2. Thus, for the mid antenna group, channel location
vector hmid = [0, 0, l0 + 1, 0, · · · , 0, l1 + 1, 0, · · · , 0, l2 +
1, 0, · · · , 0]T . Then y(n), in (3), can be considered as a
S̄ = 3-user system, with channels

[
hbottom hmid htop

]
,

as in Fig. 1 c) (Simulations in Sec. VII).

D. Kalman Krylov Filter (KKL)

In KKL, the Wiener filter (16) is implemented using a
Arnoldi-Krylov-Householder method [30], [29], expected to
have superior numerical properties than [28]. For ease of
presentation, the KKL agorithm is shown in Table IV.

V. PERFORMANCE ANALYSIS: COMPARISON OF
ORDER-WISE CONVERGENCE SPEEDS

In [23], it is shown that time-invariant (ITV) MSWF
filter converges to a N dimensional subspace, that has the
largest correlations between the eigenvectors of Rỹ(n) and
the desired signal D0(n) = H̃(n|ỹ(n)), (equation (76),
[23]). Suppose at the 1st stage, the Kalman filter weight
(with ỹ(n) = z0(n) in (16)) is collinear with the cross-
correlation vector C1, i. e. let, wỹ(n) = kC1, where k is a
scalar constant. Then after just 1 stage/iteration, (by (23)),
d1(n) becomes

d1(n) = CH
1 ỹ(n) = (1/k)wH

ỹ(n)ỹ(n)

= (1/k) ˆ̃H(n|ỹ(n)) = (1/k)D0(n), (41)

i. e., the final channel estimate. Thus, just after 1 stage,
d1(n) (in MSKF) gives the optimal estimate of desired signal
H̃(n|ỹ(n)), for each symbol n. Then using (41), 2nd stage
C2 is

C2 = Rỹ1(n),d1(n)[∆2]−1 = E{ỹ1(n)dH
1 (n)}[∆2]−1

= (1/k)(E{ỹ1(n)DH
0 (n)})[∆2]−1 = (0)[∆2]−1, (42)

by (31) (for i = 0). Thus, there is no further need to compute
succeeding stages Cj’s for j ≥ 2, similar to (pp. 2953, [23]).
Again, (15) in MSKF, gives

RHe(n|n) = RHe(n|n−m1)− E{ ˆ̃H(n|ỹ(n)) ˆ̃HH(n|ỹ(n))}
= [I−wH

ỹ(n)Rỹ(n),He(n|n−m1)(RHe(n|n−m1))−1]·
RHe(n|n−m1). (43)

For a given RHe(n|n − m1)), (43) is minimized when
the 2nd term, wH

ỹ(n)Rỹ(n),He(n|n−m1)(= wH
ỹ(n)C1∆1) is

maximized [23]. This happens �only when wỹ(n) and C1(n)
are in phase with each other, i. e., Kalman filter weight wỹ(n)

is collinear with the cross-correlation vector C1(n). Then the
maximum value (of 2nd term of (43)) is CH

1 (n)C1(n)∆1,
and this minimizes (43) . Thereby, by focusing on making
normalized cross-correlation collinear with the Kalman filter
weight (at each stage/iteration, for symbol n), the MSKF
has a fast stage/iteration number-wise convergence. This
also leads to novel MSKF exhibiting approximately same
convergence speed (number of iterations), even for large
MIMO systems, i. e., larger loading ratio R = S̄

J . This has
also been seen in ITV MSWF [33], (where equation (46) and
Fig. 4) show that for any R < 1, the output SINR increases
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rapidly (to optimal value) with increasing stage number i.
This unique property of novel MSKF, i. e., rapid convergence
(even for large-scale systems), is not exhibited in Bayesian
MSBL [16], [21] and RCS methods (Simulations Sec VII).
On the other hand, Kalman-Krylov filter (KKL) converges to
the dominant signal/eigen subspace of Rỹ(n), corresponding
to its N largest eigenvalues. Theorem 3.5.1 (pp. 48, [28])
shows the angle (between the KKL and the true eigen
subspace) decreases at every stage/iteration. Also, the KKL
algorithm steps show that it determines a N dimensional sub-
space for Rỹ(n) (principal component analysis PCA), rather
than converging to one, which has the largest correlations
between of Rỹ(n)’s eigenvectors and desired signal D0(n)
(as done by novel MSKF). Simulation results (Sec. VII) show
the MSKF converge quickly, within an order of 14; (i. e.,
channel NRMSE remains almost same, even with number
of iterations increasing from 14 to 40). But KKL converges
slowly, with increasing iteration number. For large systems
(J = 28, S̄ = 14), MSKF performs well, while MSBL, CS
(RCS), [21] and PCA methods perform inadequately, i. e.,
they do not not scale up well.

A. Comparison with Existing Methods
Not much work exists on TV MMIMO channel estimation

[4], (pp. 1926). The novelty of MSKF vis-a-vis existing
algorithms is
1. The MSKF is also compared with re-weighted compressed
sensing (RCS) [19], [18] (which is closer to l0 norm criterion
than the l1 norm). Starting with the minimization of RCS (in
proximal form), it develops an iterative CS algorithm using
soft thresholding. This is then applied to sparse (in angular
domain) beamforming channel estimation; however, [19] is
only for single path (not multipath) channel. However, RCS
converges very slowly, after many symbols in ( [19], Fig.
3) and also in simulations for our signal model (Section
VII, Fig, 1), where it takes as many 200 − 600 symbols
to converge. This requires the channel to be static over that
time period, and is thus unsuitable for high Doppler chan-
nels; while MSKF works, with the channel changing every
symbol. This is because, the number of stages (in OMP)
is sparsity level d = DKJ , which increases rapidly with
increasing J, K in Large-Scale MMIMO systems. Thus, its
convergence speed is slow.
2. By using additional beamforming hardware, which slows
down MMIMO channel time-variation ( [17], pp. 2, and its
Ref [12]), [4] and [17] estimate high Doppler channels in
Mmwave communications, but both are developed only for
single-tap channels, and do not exploit sparsity in temporal
(lag) domain.
3. The uniformly-spaced “Full’ equalizer perform worse than
a reduced or non-uniformly spaced taps equalizer (see Figure
3 in [1]) and also in learning curves (Figure 4, [1] and Figure
3, [2]), even for time-invariant (ITV) sparse DTV channels,
and in Simulations (Section VII) here. [Also, similar results
in [11] are due to the non-required taps in “Full” equalizer
just adding noise to the estimation process]. Also, the
Bayesian filter (used in Expectation step in [4] employs a
(“Full” - uniformly spaced all equalizer taps) Kalman filter
(see 3. below), unlike the novel reduced (non-uniformly tap
spaced) reduced re-configurable equalizer here.
4. In addition, KKL and Bayesian MSBL [16], will be
shown to converge much slowly than novel MSKF (for each

symbol), especially for large-scale MMIMO systems (Sec.
VII).
5. Bayesian methods [14], (simulated only for slow-varying
channels, an AR(1) model, λ = 0.9999), and [4] can be
computationally very demanding for MMIMO systems, since
they are not equipped with suitable model order reduction,
to reduce complexity.
6. Also, channel magnitude, corresponding to smaller λ
(high-mobility channels), decreases, as n increases, as dis-
tance between mobile and base-station increases. Thus re-
ceived signal (for large n) will be more noisy, and leads to
channel tracking errors, encountered by a standard Kalman
filter (see Fig. 8 and text below it, [22]). This is alleviated
by data censoring and reduced equalizer in MSKF.
7. MSKF has also been compared to one of few exist-
ing Krylov based TV channel estimator [21]. [21] models
the channel time-variation by a basis exponential method
(BEM), which inevitably introduces approximation error to
channel estimates, due to the imperfect model assumed [17].
Though [21], [34] are developed for high mobility channels,
they do not exploit its sparsity. [21] performs worse than
novel MSKF and KKL methods (Sec. VII).
8. Moreover, our novel reduced-rank filters are shown to
be equivalent to some Bayesian estimator [12]; (by consid-
ering the channel sparse (prior) pdf as f((H(n, lk)(i,j)) =
[(H(n, lk))(i,j)]

−1/2, i. e., magnitude of a channel tap will
have a low value with high probability). Then equations (26)-
(34) in [12] show that this prior pdf leads one to a reduced
rank filter - see end of Section III. B. above).
9. Unlike existing methods, MSKF combines both sparsity
(in multipath lag domain) and Kalman filter, and also incor-
porates (multistage) model-order reduction; leading to fast
convergence speed.

B. Comparison of Computational Complexities

First, computational complexity of traditional (full - uni-
formly spaced all equalizer taps) Kalman filter is eval-
uated. Since one does not know the significant channel
tap locations apriori, (L + 1)JS̄ × 1-sized H̃(n) is used
in state-space equations (8) and (10), (Cfull(n)’s size is
J × (L+ 1)JS̄). By [28] (eq. (5.6), pp. 80), Kalman update
H̃(n|ỹ(n) and channel error correlation RHe(n|n), R−1

ỹ(n),
along with intermediate quantities, have to be computed.
Then “Full” Kalman requires computational complexity of
J3(2(L+ 1)2 +L+ 1) + ((L+ 1)J)3 + J2 + (2/3)J2.376 +
(L + 1)[J4 + J3 + J2] = 5.963 × 108 multiplications (for
Example I Channel with L + 1 = 12 taps and D = 3
significant taps, J = 60 receive antennas). for each symbol
n, which over 30 symbols, gives the total complexity of
“Full” filter as 18 × 109 complex multiplications. Since
sparse channel has only D non-significant taps, yred(n),
has fewer N ≤ M equalizer taps. Thus, calculating C1

in (21), first requires multiplication of J ×DJ-sized C(n)
and DJ×DJ-sized RHe(n|n−m1), to obtain intermediate
Ũ∆
− (C(n)RHe(n|n − m1), requiring J [DJ ]2 multiplica-

tions. Additional ∆1 (in (18)), Cholesky decomposition
based matrix inversion for [∆1]−1 [35], gives the total com-
putational complexity of C1 as 3J3[D]2 +(2/3)((DJ)2.376)
multiplications. Then complexity of d1(n), ỹ1(n), Rỹ(n),
E−1

N , EN−1, wj(n), εN−1(n), using (23), (24), (11), (21)
etc. is (D2 + 2D)J2 +DJ3 + (1/3)(DJ)2.376) + J3(D3 +
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D2 + D) multiplications. Then computational complexity
of 14 stages of MSKF (by which covergence is achieved)
18.84 × 107 for each symbol n. Then with only 11 time
updates , (over 30 symbols), the overall complexity is
2.0724 × 109 complex multiplications. The KKL method
[30], [29], [28] requires order of at least 30 to converge
(see Fig. 3); thus its complexity C = J3(1 +

∑30
k=1 k

2) +

J2 + 2J +
∑30

k=1
2
3k

3 +
∑30

k=1 k
2J + (L + 1)J2(J + 1).

For J = 60, C = 2.0458 × 109 multiplications, (at each
n), which over 30 symbols, requires 61.374× 109 complex
multiplications. Table V shows the scaling of computational
complexity as J is increased.

VI. SIMULATION RESULTS

In MMIMO (J = 50 receive antennas) systems, the
data signals {s(k)

i (n)} are binary phase shift keying
(BPSK)/quadrature phase shift keying (QPSK) modulated.
Simulation results are obtained by averaging over 200 tri-
als; for each computer trial, independent and identically
distributed complex Gaussian channel coefficients with zero
mean and unit variance (Rayleigh fading channel) are gen-
erated, with TV component given by parameter λ in (4).
The following algorithms are simulated: 1. “Full” Kalman
filter, also used in recent [4], [14], TV EM method [36], 2.
Reduced-rank KKL filter over varying orders, denoted by
“Krylov”,3. Novel Multistage Kalman Filter (MSKF) filter
for varying number of iterations, vs symbol number, at differ-
ent SNRs, and varying λ’s, 4. Multi-user Sparse channels, 5.
Cluster-Sparse channels, 6. Recent dynamic, Bayesian-Belief
Propagation method [16], denoted by “SBL”, 7. Large scale
MMIMO (large loading ratio R = S̄

J ) systems, 8. Iterative
re-weighted compressed sensing (RCS) [19], 9. Existing
BEM based Krylov TV channel estimation [21], denoted
by “Klov-BEM”. The receiver signal-to-noise ratio (SNR) is
defined as SNR = E(||y(n)−w(n)||2)

E(||w(n)||2) , (w(n) : AWGN noise);
performance of different estimators measured by normalized
MSE (NRMSE)

NRMSE =
1

500

500∑
p=1

{∑L
`=0 ||H(p)(`)− Ĥ(p)(`)||2F∑L

`=0 ||H(p)(`)||2F

}
.

(44)

First, following Sec VI. B., we consider a stationary channel,
as in [19], to investigate the convergence speed (in symbols)
of OMP based RCS, for different values of loading factor
R = K

J and different SNRs of 5, 20, 30 dBs in Fig 3 a),
while Fig 3 b) is the corresponding plot for the novel MSKF.
Fig. 3 a) shows RCS to converge very slowly, after as many
as 400− 500 symbols, making it unsuitable in high Doppler
channels. (This has also been witnessed in [19]’s Fig. 3).
Also, the performance of RCS degrades substantially, at
lower SNRs (it is to be noted that non-stationarity factor
λ is not incorporated into RCS [22], as is done in MSKF).
Fig 3 b) shows the novel MSKF to perform very well with
low NRMSE, starting from n = 12 on wards; also there is no
channel tracking errors, as this is a stationary channel. Also,
MSKF’s performance degradation (at low SNR) is much less
than that of RCS .
Next, Fig. 4 simulates the channel NRMSE of “Full”, (which
also limits the performance of Bayesian [4], [14], [36],
Sec VI.B.); along with comparative simulations of novel
MSKF, KKL, over varying number of iterations, at 30 and

5 dB SNRs, and λ = 0.988. The plot shows the KKL to
converge slowly, with its NRMSE decreasing as number of
iterations increases from 14 to 22, · · · , 50. MSKF sparse
channel estimator converges very quickly, within an order
of 14; as difference in channel NRMSE (at order of 14 to
that at 40) is not significant. The uniformly-spaced “Full”
equalizer also performs inadequately. The NRMSE of MSKF
(with 14 iterations) is also less than that of “Full” and
KKL (50 iterations). Fig. 4 b) shows results for λ = 0.995,
resulting in lower NRMSEs. Also, the novel MSKF is able
to handle the non-stationarity of the channel better than
the “Full” filter. For λ = 0.995, the ratio (of NRMSE at
symbol no 26 to that at symbol no 12) is 4.67 for MSKF
and 21.33 for ”Full”; while it is 10.43 in MSKF and
increases rapidly to about 100 in “Full”, for a more TV
channel (λ = 0.988). Updating only at required symbols
{(n−ml)}’s, akin to data censoring (in sparse channel) and
updating in a reduced subspace, prevents the novel MSKF
from exhibiting larger NRMSE, with increasing n, i. e.
channel tracking issues (see Fig. 8 and text below it, [22])
occurring in a TV channel (see Sec VI. A.6). Fig. 5 provides
results for multi-user (S̄ = 2) Example I Channel, and
cluster-sparse ( S̄ = 3) channels. Fig. 5 b) also includes the
case for space-variant sparse channels, where large antenna
arrays make lj’s change by a few lags, over two ends of
antennas in MMIMO, (see Section IV. C). As expected in
Sec. VI. A. 7,“Klov-BEM” (Krylov-space based method,
using BEM, instead of more generic Kalman filter), performs
worse than our Kalman-Krylov KKL method (denoted by
“Krylov”) in Fig. 5 a), b). Fig. 6 a) shows simulation results
for 3G LTE Pedestrian B channel (having continuous ISI
and some significant multipath clusters, with TV component
λ = 0.988/0.995 incorporated here), illustrating the novel
MSKF performs well for such practical channels as well;
see Sec. III. A. 1) for how MSKF adapts to such general
cases. Fig. 6 b) simulates a J = 50, S̄ = 1, SNR = 10
dB system, where MSKF performs well, similar to the very
recent SBL [16]. Fig. 7 shows results for large scale (large
R), a) J = 20,K = 11 and b) J = 28,K = 14, MMIMO
systems. Fig 7 a) shows that MSKF still converges within
14 iterations even for this large scale MMIMO systems, i.
e., MSKF exhibits almost same convergence speed, (though
with a larger NRMSE for a more loaded system), as that for
(J = 50,K = 1 system in Fig 3). Though it uses a symbol-
iterative Kalman filter, recent (sparse PCA based) SBL [16]
requires many more iterations to converge (at each symbol n,
and even then performs poorly for large-scale MMIMO. For
e. g., J = 28,K = 14, at 10 dB SNR, MSKF still converges
fast in < 14 iterations; KKL’s performance is inferior, (with
> 40 iterations). But SBL [16] performs very poorly and
does not converge, even with number of iterations increased
to more than 100 (for each symbol n), at both SNR of 10
dB, and higher 35 dB SNR.

This phenomenon of convergence speed of our novel TV
MSKF being unaffected, even as the system is scaled up
to a large ratio R, has been also witnessed in time-invariant
(ITV) MSWF [33], (Fig. 4). [33] also shows that PCA based
methods do not scale up well. This unique property makes
the novel MSKF ideally suited for TV, large-scale MMIMO
systems.
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Table V: Computational Complexity
J “Full” Kalman MSKF KKL

60 18× 109 2.0724× 109 61.374× 109

100 9.7205× 1010 1.0767× 1010 2.8408× 1011

140 3.0624× 1011 2.9465× 1010 7.7946× 1011
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VII. CONCLUSIONS

The paper develops TV, sparse data/channel estimation algo-
rithms in MMIMO, using a novel non-uniformly spaced TV
equalizer, which transforms channel/data estimation problem
into one of reduced-rank filtering. This is enabled by a novel
reduced-rank Multi-Stage Kalman Filter (MSKF). MSKF
is obtained by substantial extension of a time-invariant
(ITV) Multi-Stage Wiener Filter (MSWF) (seen to perform
admirably for some DOA applications) to the TV case,
by using suitable state estimation techniques. It is to be
noted that the overall MSKF algorithm is non-linear, because
of thresholding involved in Algorithm I. MSKF converges
very quickly, within few iterations, because MSKF uses
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those signal spaces maximally correlated with the desired
signal (equation (76), [23], unlike most existing PCA based
KKL, re-weighted CS (RCS) [19], rank minimization [18]
and sparsity promoting Bayesian estimators [15], [4], [16],
with much reduced calculation load. Moreover, MSKF also
reduces channel tracking errors, encountered by a standard
Kalman filter, in a high mobility TV channel. A key advan-
tage of novel MSKF is its ability to scale up to large-scale
MMIMO systems, with very rapid convergence, unlike most
existing sparse methods. With limited literature existing on
TV MMIMO channel estimation (pp. 1926, [4]), this paper
fills up a gap in literature, by deriving a multi-stage version
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of the omnipresent Kalman filter, which can be extended to
TV 5G mmwave communications, by appropriate inclusion
of angular estimation [17], [4], and beamforming vectors.

TABLE I
ALGORITHM I

Step 1. From computed noisy R(n, k) , find lags k, at which the Frobenius
norm ‖R(n, k)‖F is above threshold γ(n). γ(n) calculated as
γ(n) = 1

N+Z

∑M−1
j=0 ‖R(n, j)‖F , [9], with ‖.‖F being the

Frobenius norm. Simulations show this threshold to work very well,
even in noisy situations, (see discussion in [11]).

Step 2. For channel with significant taps at lj , j = 0, 1, 2, · · · , D − 1,
R(n, k) is non-zero at lags of k = lj , j = 0, 1, 2, · · · , D−1 and
at lags of k = lj − li, j = 2, · · · , D− 1, 1 ≤ i < j, for each n.
Thus values of auto-correlation lags kp, determined in Step 1, give
us the first few tp values for p = 0, 1, 2, · · · , D∗; (D∗ = D −
1 +

(D−1
2

)
, where

(D−1
2

)
is the number of pairs (combinations)

of 2 elements from D − 1 elements), i.e., tp = kp, p =
0, 1, 2, · · · , D∗.

Step 3. Further values of tp, for p > D∗, are obtained from all possible in-
tegral combinations of already obtained t′ps, p = 0, 1, 2, · · · , D∗,
(obtained in Step 2), under the constraint that tp ≤M , (M : “full
” equalizer length), tp =

∑D∗

l=0 cp,ltl, p > D∗, where cp,l are
integer constants.

Step 4. The values of the multi-channel received signal yi(n− tp)’s, thus
obtained in Steps 2 and 3, form novel reduced channel equalizer.
Then

yred(n)
∆

=
[yT (n−m1) yT (n−m2) · · ·

yT (n−mN )]T , mN ≤M. (45)
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Vector Time-invariant (ITV) MSWF
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∆
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[RH
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∆
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d̂0(n) = wH
z1
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1 (n)
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TABLE III
MSKF

Step 1. 0th order cross-correlation, between data and desired signal ,
Rỹ(n),He(n|n−m1), and its normalized cross-correlation C1

computed:

Rỹ(n),He(n|n−m1)
∆

−
E{ỹ(n)HeH(n|n−m1)},

∆1 = [RH
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wIJ .
Step 3. Define B1 = [I−C1CH

1 ]. Innovations data ỹ(n) fed into a filter
T1 = [C1, BH

1 (n)]H , to generate 1st order desired signal d1(n),
and 1st order data, ỹ1(n) by d1(n) = CH

1 ỹ(n), ỹ1(n) =
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∆

−
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1 E1(n)w̃1.
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KKL ALGORITHM
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hj = Rỹ(n)qj −
j∑

i=1

αi,jqi, βk+1 = ‖hk‖, qk+1 =
hk

βk+1
,

(53)

Step 4. From [30],
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