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Abstract

From the most known Gaussian mixture to the cutting-edge multi-Bernoulli mixture of various forms, mixture offers a fun-

damental means to deal with uncertainties, which has led to a variety of appealing applications in the state estimation realm

based on a single sensor or a sensor network. Like noise is often used to model unknown system input, one may use various

hypotheses to deal with the uncertain state space model or data association. Meanwhile, consensus may be sought over the

cross-correlated sensors. These all drive a need for representing the probability distribution by a mixture of properly weighted

component distributions, which fuse the information gained from different models/hypotheses or from different sensors. This

technical note presents information-theoretical results which answer how the averaging/mixture approach makes sense and how

the fusing weights should be designed.
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Abstract

From the most known Gaussian mixture to the cutting-edge multi-Bernoulli mixture of various forms, mixture
offers a fundamental means to deal with uncertainties, which has led to a variety of appealing applications
in the state estimation realm based on a single sensor or a sensor network. Like noise is often used to model
unknown system input, one may use various hypotheses to deal with the uncertain state space model or data
association. Meanwhile, consensus may be sought over the cross-correlated sensors. These all drive a need for
representing the probability distribution by a mixture of properly weighted component distributions, which
fuse the information gained from different models/hypotheses or from different sensors. This technical note
presents information-theoretical results which answer how the averaging/mixture approach makes sense and
how the fusing weights should be designed.
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Finite mixtures are flexible and powerful probabilistic modeling tools for both univariate and multivariate
data, which have been well acknowledged and widely used for pattern recognition, machine learning, state
estimation, etc. [1, 2] In the state estimation realm, the need for a mixture distribution may arise from
stochastically switched models [3, 4, 5], multi-modal data/noise [6, 7, 8, 9] and data association uncertainty
[10, 11, 12]. The most known mixture is the Gaussian mixture [13, 7], which consists of a finite number
of Gaussian distributions. Recently, it has been further shown that the arithmetic average (AA) fusion
which has provided a compelling approach to multi-target density fusion/consensus over sensor networks
[14, 15, 16, 17, 18, 19, 20, 21] will also result in a mixture distribution.

In the Bayesian formulation, the state of interest X is considered random and the posterior is given in
the manner of an estimate to the true probability distribution p(X) of the state. The mixture distribution
facilitates the closed-from Markov-Bayesian recursion greatly in two means: First, a mixture of conjugate
priors is also conjugate and can approximate any kind of prior [22, 23]. Second, the linear fusion of a finite
number of mixtures of the same parametric family remains a mixture of the same family. Therefore, the
finite mixture has been one of the most important filter structures such as the known Gaussian mixture
[13, 7], Student’s-t mixture [24] and multi-Bernoulli mixture of various forms [25, 26, 27]. There are many
other types of mixture models such as Watson mixture model [28] for axially symmetric data, inverted Beta
mixture model [29] for non-symmetric data, von-Mises Fisher mixture model [30] for directional data (such as
bearing measurements). Loosely speaking, the particle/Monte-Carlo method can also be viewed as a mixture
of either variables (particle states) or distributions (Direct delta functions) [31]. These mixtures may convert
to each other according to realistic needs or combine with each other resulting in hybrid mixtures such as
Gaussian-Student’s-t mixture [32] and Gaussian-uniform mixture [8].

In the mixture distribution, components/mixands are properly weighted and correspond to the informa-
tion gained from different models/hypotheses or from different sensors. They joint approximate the true
distribution p(X) by their average/AA:

fAA(X) =

S∑
s=1

wsfs(X), (1)

where w = [w1, w2, ..., wS ]T are nonnegative mixing/fusing weights which are typically normalized, namely
wT1 = 1, and fs(X), s = 1, 2, · · · , S are from the same parametric family in most cases.
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When the information is given in terms of variables (such as estimates of the number of targets), their
average is a variable of smaller variance and so the benefit for averaging is obvious [33, 34]. However,
for a mixture of general distributions (of the same family or not), it seems not so clear how good the
averaging/mixture is and how the fusing weights should be designed. In this technical note, we study the
exact divergence of the mixture distribution from the true/target distribution and briefly discuss principles
for fusing/mixing weight design. These results are original according to the best of our knowledge and are
expected to be useful for general mixture optimization and algorithm design.

1. Mixture Divergence

Theorem 1. For a number of probability distributions fs(X), s = 1, 2, · · · , S, the Kullback-Leibler (KL)
divergence of any distribution g(X) relative to their average fAA(X) is given as

DKL (fAA‖g) =

S∑
s=1

ws

(
DKL(fs‖g)−DKL(fs‖fAA)

)
(2)

≤
S∑

s=1

wsDKL(fs‖g) (3)

where the equation holds if and only if (iif) all fusing distributions fs, s = 1, 2, ..., S are identical.

Proof. The proof is straightforwardly derived as follows.

DKL (fAA‖g)) =DKL

(
S∑

s=1

wsfs

∥∥∥∥g
)

=

∫ S∑
s=1

wsfs(X) log
fAA(X)

g(X)
δX

=

S∑
s=1

ws

(∫
fs(X) log

fs(X)

g(X)
δX−

∫
fs(X) log

fs(X)

fAA(X)
δX

)

=

S∑
s=1

ws (DKL(fs‖g)−DKL(fs‖fAA))

≤
S∑

s=1

wsDKL(fs‖g)

where the equation holds iif DKL(fs‖fAA) = 0, s = 1, 2, ..., S.

Remark 1. When g(X) is the true/target distribution p(X), the above result indicates that the average
of the mixture fits the target distribution better than all component distributions on average. This therefore
provides an information-theoretic justification for distribution mixing/averaging, whether the information
diversity is due to model/association uncertainty or sensing diversity. This is regardless of the mixing/fusion
weights. optimized mixing weights will accentuate the benefit of fusion.

2. Mixing Weight

Mixing weights lie in the core of the mixture optimization and also play a key role in mixture reduction
[35, 36, 14, 37, 38] according to case-specific needs. The naive weighting solution is the normalized uniform
weights [39, 40], namely w = 1/S. That is, all fusing distributions are treated equally which suits the case
of fusing information from homogeneous sources. This is simple but does not distinguish the information of
high quality from that of low.
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More convincingly, the optimal solution should minimize DKL (fAA‖p) in order to best fit the true/target
distribution. That is, the optimal fusing weights w are determined as follows, c.f. (2)

wopt = arg min
w

S∑
s=1

ws

(
DKL(fs‖p)−DKL(fs‖fAA)

)
. (4)

As shown in (4), the component that fits the target distribution better (corresponding to smaller
DKL(fs‖p)) and diverges more from the average (corresponding to greater DKL(fs‖fAA)) will be assigned
with a greater fusing weight. However, the true/target distribution p(X) is always unknown, so is DKL(fs‖p).
It is also obvious that even if the true distribution p(X) is available, the knowledge DKL(fs‖p) < DKL(fi‖p),
∀i 6= s does not necessarily result in ws = 1, wi = 0,∀i 6= s. It also depends on DKL(fi‖fs),∀i 6= s. That is,
the optimal fusion will not be fully dominated by the best component even if it is known. In other words, c.f.
Remark 1, we reach the following stronger claim on the theoretically optimal solution:

Remark 2. When the fusing weights are properly designed, the average of the mixture may fit the target
distribution better than the best component.

An alternative solution is to resort to some functionally-similar divergences or metrics to assign higher
weights to the components that fit the data better, namely having a higher likelihood. This likelihood driven
solution is the key idea for weight updating in many mixture models/filters.

Another simplified alternative is ignoring the former part in (4) which will then be reduced approximately
to the following suboptimal maximization problem

wsubopt = arg max
w

S∑
s=1

wsDKL(fs‖fAA), (5)

= arg max
w

S∑
s=1

ws

(
H(fs, fAA)−H(fs)

)
, (6)

where H(f, g) := −
∫
f(X) log g(X)δX is the cross-entropy of distributions f and g, and H(f) := H(f, f) is

the differential entropy of distribution f(X).
Remark 3. The suboptimal optimization given by (5)/(6) assigns a greater fusing weight to the distri-

bution that diverges more from the others. This can be referred to as a diversity preference solution.
Nevertheless, one may design the fusing weights for some other purposes, e.g., in the context of seeking

consensus over a peer-to-peer network [41, 42], they are typically designed for ensuring fast convergence
[14, 15, 16, 17]. In the case of point estimate, a smaller variance is usually sought [43, 44, 14, 21].

3. Max-Min Optimization

Recall the divergence minimization that the AA fusion admits [45, 16]

fAA = arg min
g

S∑
s=1

wsDKL(fs‖g), (7)

which holds for any nonnegative fusing weights w and is referred to as best fit of mixture (BFoM) [40].
Now, combining (7) with (5) yields joint optimization of the fusing form and fusing weights as follows

fAA(wsubopt) = arg max
w

min
g

S∑
s=1

wsDKL(fs‖g). (8)

This variational fusion problem (8) resembles that for geometric average (GA) fusion [46, 47], i.e.,

fGA(wsubopt) = arg max
w

min
g

S∑
s=1

wsDKL(g‖fs), (9)

where fGA(w) = C−1
∏S

s=1

(
fs(X)

)ws
with C =

∫ ∏S
s=1 (fs(X))

wsδX.
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It has actually been pointed out that the suboptimal fusion results for both variational fusion problems
have equal KLD from/to the fusing distributions [46]. That is, ∀i 6= j ∈ [1, S]

DKL(fi‖fAA(wsubopt)) = DKL(fj‖fAA(wsubopt)), (10)

DKL(fGA(wsubopt)‖fi) = DKL(fGA(wsubopt)‖fj), (11)

which implies that the suboptimal fusion tends to revise all fusing estimators equivalently, resulting in a
middle distribution where the AA and GA differs from each other in the direction of the KLD.

We reiterate that the above max-min solution (at least for the AA fusion) is suboptimal, which has

ignored the minimization over
∑S

s=1 wsDKL(fs‖p) and prefers diversity. Derivation for (11) has been earlier
given in [43, 44] which is related to the Chernoff information [48] and has overlooked the potential benefit
gained by the maximization in fitting the target distribution.
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