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Abstract
The velocity of ultrasound longitudinal waves (speed of sound) is emerging as a valuable biomarker for a wide range of diseases,
including musculoskeletal disorders. Muscles are fiber-rich tissues that exhibit anisotropic behavior, meaning that velocities vary
with the wave-propagation direction. Quantifying anisotropy is therefore essential to improve velocity estimates while providing
a new metric that relates to both muscle composition and architecture. This work presents a method to estimate longitudinal-
wave anisotropy in transversely isotropic tissues. We assume elliptical anisotropy and consider an experimental setup that
includes a flat reflector located in front of the linear probe. Moreover, we consider transducers operating multistatically. This
setup allows us to measure first-arrival reflection traveltimes. Unknown muscle parameters are the orientation angle of the
anisotropy symmetry axis and the velocities along and across this axis. We derive analytical expressions for the relationship
between traveltimes and anisotropy parameters, accounting for reflector inclinations. To analyze the structure of this nonlinear
forward problem, we formulate the inversion statistically using the Bayesian framework. Solutions are probability density
functions useful for quantifying uncertainties in parameter estimates. Using numerical examples, we demonstrate that all
parameters can be well constrained when traveltimes from different reflector inclinations are combined. Results from a wide
range of acquisition and medium properties show that uncertainties in velocity estimates are substantially lower than expected
velocity differences in muscle. Thus, our formulation could provide accurate muscle anisotropy estimates in future clinical
applications.
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Ultrasound longitudinal-wave anisotropy estimation
in muscle tissue

Naiara Korta Martiartu, Saulė Simutė, Thomas Frauenfelder, and Marga B. Rominger

Abstract—The velocity of ultrasound longitudinal waves (speed
of sound) is emerging as a valuable biomarker for a wide range
of diseases, including musculoskeletal disorders. Muscles are
fiber-rich tissues that exhibit anisotropic behavior, meaning that
velocities vary with the wave-propagation direction. Quantifying
anisotropy is therefore essential to improve velocity estimates
while providing a new metric that relates to both muscle compo-
sition and architecture. This work presents a method to estimate
longitudinal-wave anisotropy in transversely isotropic tissues. We
assume elliptical anisotropy and consider an experimental setup
that includes a flat reflector located in front of the linear probe.
Moreover, we consider transducers operating multistatically. This
setup allows us to measure first-arrival reflection traveltimes.
Unknown muscle parameters are the orientation angle of the
anisotropy symmetry axis and the velocities along and across this
axis. We derive analytical expressions for the relationship between
traveltimes and anisotropy parameters, accounting for reflector
inclinations. To analyze the structure of this nonlinear for-
ward problem, we formulate the inversion statistically using the
Bayesian framework. Solutions are probability density functions
useful for quantifying uncertainties in parameter estimates. Using
numerical examples, we demonstrate that all parameters can be
well constrained when traveltimes from different reflector inclina-
tions are combined. Results from a wide range of acquisition and
medium properties show that uncertainties in velocity estimates
are substantially lower than expected velocity differences in
muscle. Thus, our formulation could provide accurate muscle
anisotropy estimates in future clinical applications.

Index Terms—speed of sound, longitudinal waves, anisotropy,
transverse isotropy, muscle, ultrasound, Bayesian inference, un-
certainty quantification

I. INTRODUCTION

Speed-of-sound estimation in tissue using ultrasound has
attracted considerable attention in recent years [1]–[7]. Speed
of sound refers to the propagation velocity of longitudinal
waves, which are typically used for image formation in ul-
trasound systems. This property contains clinically relevant
information about tissue composition and shows great promise
as a biomarker for a wide range of diseases. Clinical ap-
plications involving longitudinal-wave velocities include, for
instance, breast cancer screening [1], [8], [9], hepatic steatosis
assessment [10], [11], and diagnosis of musculoskeletal disor-
ders [12], [13].

Unlike breast and liver tissue, muscles exhibit anisotropic
mechanical properties due to their fibrous structure. Velocities
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vary with the ultrasound wave-propagation direction, showing
higher values along fiber direction than across fibers. Empirical
studies in ex-vivo human and animal tissues have reported
velocity differences of up to 24 m/s [14]–[18]. Hence, failure
to properly account for anisotropy can result in unreliable
velocity estimates. Quantifying anisotropy is clinically inter-
esting mainly for two reasons. On the one hand, it can provide
improved velocity estimates, which are informative about
muscle composition [13]. On the other hand, this property is
directly related to the muscle fiber distribution, encoding also
information about muscle architecture.

Anisotropy estimation can be particularly relevant for mon-
itoring sarcopenia cost-efficiently. This is an age-related mus-
culoskeletal disorder characterized by the progressive loss
of both muscle mass and function. Ultrasound velocities
are strongly correlated to reference standards for quantifying
muscle mass loss [13] and have proven promising for dif-
ferentiating young and older populations [12]. However, the
loss in muscle mass is not correlated to the loss in muscle
function [19], and both are required to assess this pathology
accurately [20]. Current standards to measure muscle function,
which is related to the muscle fiber arrangement [21], are
based on questionnaires or tests [20]; thus, they do not include
any quantitative imaging tool. In this context, anisotropy could
bring significant benefits for assessing sarcopenia.

Methods to characterize the anisotropy of
(quasi-)longitudinal waves are relatively unexplored in
the literature. Studies addressing this topic have only
focused on in-vitro measurements, where experimental
setups are not appropriate for clinical examinations [14]–
[18]. Characterization of anisotropy in shear waves, on
the contrary, is an active research field. Lee et al. [22]
developed an approach termed elastic tensor imaging (ETI)
to map myocardial fiber directions based on shear-wave
anisotropy. ETI uses either linear-probe rotations or 2D
matrix-array probes [23] to measure shear-wave velocities at
different propagation directions. From here, fiber orientation
angles can be extracted by assuming the medium as
transversely isotropic. Measurements in animal myocardial
samples have demonstrated strong correlations of ETI with
histological data [22] and diffusion tensor magnetic resonance
imaging [24]. A similar approach using 2D matrix probes
was also suggested by Wang et al. [25], who generalized
the method to cases in which the shear waves excitation
push is not perpendicular to fibers. Shear-wave velocity
measurements, however, are prone to artifacts caused by
tissue inhomogeneities. To circumvent this, Hossain et al. [26]



proposed measuring tissue peak displacements at locations of
the shear-wave excitation source. Variations of this quantity
as a function of the probe orientation was seen to correlate
with anisotropy in shear moduli [26]. This approach showed
promising results, for example, for monitoring the status of
renal transplant in humans [27].

Shear and longitudinal waves interrogate fundamentally dif-
ferent, but complementary, mechanical tissue properties [28].
Due to the acquisition setup, their propagation directions
are perpendicular to each other; thus, shear-wave techniques
cannot be directly extrapolated to longitudinal waves. The goal
of this work is to propose a method to quantify the anisotropy
of longitudinal waves and analyze its feasibility for clinical
applications. In section II, we derive the analytical expression
of the relationship between wave-propagation traveltimes and
muscle anisotropy, that is, we derive our forward problem.
Section III briefly introduces the Bayesian inversion approach
used in this study. We then analyze the nature of the proposed
problem with various numerical examples in section IV.
Finally, section V summarizes key aspects of the method
and carefully discusses its clinical relevance and potential
improvements.

II. TRAVELTIME MODELLING IN ANISOTROPIC MEDIA

The alignment of fibers in muscles causes anisotropy in
mechanical muscle properties. Commonly, muscle tissue is
described as a transversely isotropic medium with the sym-
metry axis along the fiber direction [25], [26], [29], [30].
Such a medium is characterized by five independent elastic
parameters, describing, for instance, the longitudinal- and
shear-wave velocities along and across the symmetry axis.
In soft tissue, however, shear-wave velocities are negligible
in comparison to longitudinal-wave velocities [31]. Therefore,
it is possible to describe muscle properties using only three
independent parameters. In this study, we assume elliptical
anisotropy, which is a special case of transverse isotropy. The
validity of this assumption is discussed in Appendix A. The
three independent parameters are then the orientation angle ϕ
of the anisotropy symmetry axis and the longitudinal-wave
velocities along (v1) and across (v2) this axis. The group
(ray) velocity v(θ) in an arbitrary propagation direction θ
satisfies [32]

v2(θ)

v21
sin2 (θ − ϕ) +

v2(θ)

v22
cos2 (θ − ϕ) = 1, (1)

where the angles θ and ϕ are illustrated in Fig.1(a).
Traveltimes of different arrivals are affected by the

direction-dependent velocity v(θ), and we can use them to
retrieve tissue anisotropy parameters m = (v1, v2, ϕ). For
simplicity, we consider the muscle as a two-dimensional
homogeneous medium. Using (1) and trigonometric identities,
we find that the traveltime tAB between positions xA and xB

Reflector

(a)

(b)

Probe

Fig. 1. Schematic representation of the anisotropic medium and experimental
setup considered in this study. (a) Wavefronts in elliptical anisotropic media
are ellipsoidal. Parameters v1 and v2 represent velocities along and across
muscle fibers, and ϕ describes the orientation of fibers with respect to the
coordinate system. In an arbitrary propagation direction θ connecting xA and
xB, waves propagate with velocity vθ = v(θ). (b) Our experimental setup
includes a flat reflector in front of the probe, with tissue in between. The
probe-reflector distance L is controlled by a sensor. We measure first-arrival
reflection traveltimes of ultrasound signals emitted from xS and received at
xR, with xP ∈ D indicating the reflection point.

is given by

t2AB =
1

v21
[(x1,B − x1,A) cosϕ− (x2,B − x2,A) sinϕ]

2
+

1

v22
[(x1,B − x1,A) sinϕ+ (x2,B − x2,A) cosϕ]

2
.

(2)

From this equation we observe that tAB is nonlinearly related
to anisotropic parameters m. In the special situation where
the orientation of the symmetry axis is known, we obtain a
linear relationship between squared traveltimes t2 and squared
slownesses 1/v21 and 1/v22 .

A. Reflector-based experimental setup

In this study, we consider an experimental setup that in-
cludes a reflector located opposite to the linear ultrasound
probe [see Fig. 1(b)], with the probe-reflector distance L
controlled by a distance sensor [4]. This setup has already
been applied in various clinical studies for the assessment
of breast [33], [34] and muscle tissue [12], [13], [31], [35].
The reflector allows us to measure the first-arrival reflection
traveltimes tSR of waves propagating from a source at xS to



a receiver at xR. These traveltimes can be expressed using
Fermat’s principle as

min
xP∈D

tSR(xP), where tSR(xP) = tSP(xP) + tPR(xP), (3)

where D refers to the set of points xP at the reflector-tissue
interface [see Fig. 1(b)], and traveltimes of each path are
computed using (2).

Unlike in isotropic media, the reflection point xmin
P for the

minimum traveltime does not necessarily lie on the mid-point
between xS and xR in anisotropic media. To find an analytical
solution to (3), we place the origin of the coordinate system
as shown in Fig. 1(b) and assume that the location of the
reflection point satisfies xmin

P = ((x1,S + x1,R)/2 + δ, L),
where δ is a constant value. That is, we assume that xmin

P
is shifted from the source-receiver mid-point position by the
same constant δ for every source-receiver combination. To find
the value of δ, we consider, for simplicity, the zero-offset case
in which xS = xR, and we solve (3) using

dtSR

dxP
= 2

dtSP

dδ
= 0. (4)

The reflection point is then

xmin
P =

(
x1,S + x1,R

2
+

L sin 2ϕ(v22 − v21)

2(v21 sin2 ϕ+ v22 cos2 ϕ)
, L

)
. (5)

The equation (5) shows that the reflection point is located
at the source-receiver midpoint only when the medium is
isotropic (v1 = v2) or the anisotropy symmetry axis is aligned
with our coordinate system (ϕ = 0). For muscle tissue, we
expect v1 > v2 for ϕ ∈ [−π/4, π/4), i.e., waves propagating
faster along than across fiber direction [14]. Therefore, δ can
be either positive or negative depending on the sign of ϕ.

Upon inserting (5) in (3) and (2), it is possible to see that
the path with the minimum traveltime satisfies tSP

(
xmin

P

)
=

tRP
(
xmin

P

)
. The fastest ray path is therefore the one with equal

traveltime along each segment. This also means that the mirror
image of the receiver, namely a virtual equivalent receiver R’
below the reflector, is located at xR’ = 2xP. The first-arrival
reflection traveltime between xS and xR is then

t2SR

(
xmin

P

)
=

d2

v2(θ = π/2)
+

4L2v2(θ = π/2)

v21v
2
2

, (6)

with v2(θ = π/2) given by (1) and d = x1,R − x1,S being the
source-receiver offset. This equation establishes the relation-
ship between observations tSR and unknown muscle properties
m = (v1, v2, ϕ). Thus, the forward problem considered in
this study is nonlinear. When the anisotropy symmetry axis is
aligned with the coordinate system (ϕ = 0), (6) reduces to

t2SR(xmin
P ) =

d2

v21
+

4L2

v22
, (7)

and, as previously observed, t2SR becomes linearly related to
squared slownesses 1/v21 and 1/v22 .
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Equivalent models

Fig. 2. Muscle models satisfying the conditions (8) and, thus, provid-
ing equal traveltimes. For this example, we take the reference model
m̂ = (1560 m/s, 1540 m/s, 0◦) and represent equivalent models m for
ϕ ∈ [−45◦, 45◦). Because muscle models are defined by three parameters,
we represent the anisotropy angle ϕ versus the velocity ratio v1/v2 for
visualization.

B. Non-uniqueness

In this section, we demonstrate that traveltimes satisfy-
ing (6) are not sufficient to constrain muscle properties
uniquely. For brevity, we omit the dependency on xmin

P .
Let us assume that the traveltimes t2SR(m̂) are obtained

from muscle properties m̂. If t2SR(m̂) is uniquely defined by
m̂, then any other m giving the same traveltimes t2SR(m̂) =
t2SR(m) must satisfy m̂ = m. For simplicity, we take
m̂ = (v̂1, v̂2, ϕ̂ = 0◦) and m = (v1, v2, ϕ) and consider a
single source-receiver pair. Equating (6) and (7), we see
that both muscle parameters give the same traveltimes when
conditions

v̂1v̂2 = v1v2 (8a)
v21 sin2 ϕ+ v22 cos2 ϕ = v̂22 (8b)

are satisfied. Therefore, we can always find different muscle
models giving same traveltime observations, even when we
exclude the intrinsic periodicity of ϕ (i.e., m(ϕ) = m(ϕ+2π))
and the obvious symmetry of the elliptical anisotropy (v1 → v2
when ϕ → ϕ + π/2). A concrete example of all equivalent
muscle models (in terms of traveltimes) is shown in Fig. 2. The
figure shows that ϕ is not constrained by the forward problem
in (6). Hence, we require additional types of observations.
Note that including multiple sources in the previous example
could not constrain the problem because the conditions (8) do
not depend on source and receiver locations.

C. Reflector inclination: sources of uncertainties as new con-
straints

The simplest way to constrain the anisotropy angle is by
combining data acquired from multiple muscle sides. This is
equivalent to rotating the tissue with respect to the probe
location. For in-vivo studies, however, we can only access
the muscle from a single side of the anisotropy plane. To
circumvent this limitation, we suggest taking advantage of the



reflector inclination, which is unavoidable in clinical practice
and regarded as a source of uncertainties. The reflector inclina-
tion will generate ray paths with orientations that are different
from our previous setup. Therefore, we suggest combining
data from multiple inclination angles to constrain muscle
anisotropy. In the following, we assume that the inclination
angle is controlled using, for instance, B-mode images, and
we derive the corresponding forward problem.

Let us denote α the reflector inclination angle with respect
to the x1-axis. We can use equations derived above by rotating
the whole setup in order to align the reflector with the x1-axis.
In this situation, the anisotropy angle becomes ϕ → ϕ + α,
the probe is inclined by α with respect to the x1-axis, and
the probe-reflector distance becomes L→ L cosα. The probe-
reflector distance is measured from the origin of the coordinate
system, which is located in the first transducer element of the
probe [see Fig. 1(b)]. Using geometrical identities and the pre-
vious result in (5), the reflection point xmin

P =
(
xmin
1,P , L cosα

)
becomes

xmin
1,P = x1,S +

d cosα

2
− d2 sin 2α/2 + δ′d sinα

2L′ cosα+ d sinα
+ δ′, (9)

with
δ′ =

(L′ cosα+ d sinα) sin 2ϕ(v22 − v21)

2(v21 sin2(ϕ+ α) + v22 cos2(ϕ+ α))
(10)

and
L′ = L+ x1,S sinα. (11)

As before, we replace xmin
P in (3) and (2) to find the total

traveltime

t2SR =
d2

v2(π/2)
+

(4L′2 cos2 α+ 2L′d sin 2α)

v21 sin2(ϕ+ α) + v22 cos2(ϕ+ α)
. (12)

This equation is the generalization of (6), which we obtain
when α = 0.

D. Validation with numerical simulations

To validate our traveltime modelling, we use numerical
wave propagation simulations. We model the wave propagation
in muscle using the two-dimensional time-domain elastic wave
equation with shear modulus equal to zero, i.e.,

ρ∂2t u(x, t)−∇ · (D∇u(x, t)) = f(xS, t). (13)

Here, f is the external source generated from xS, u is the
scalar displacement potential, ρ is the muscle density, and
D is a second-order symmetric positive tensor describing the
direction-dependent velocities v. If the anisotropy is aligned
with the coordinate system, D is a diagonal matrix with
elements D11 = ρv21 and D22 = ρv22 . For tilted anisotropy,
we apply the rotation matrix to derive the elements of D.
We assume muscle density as ρ = 1000 kg/m2. Numerical
simulations are computed using the spectral-element solver
Salvus [36].

Fig. 3(a) compares traveltimes measured from
wave propagation simulations with those modelled
using (12). For this example, we use the muscle model
m = (1560 m/s, 1540 m/s, 15◦), the reflector inclination

α = 5◦, a probe-reflector distance of L = 6 cm, and a probe
of 4 cm length with 128 transducer elements. We use the
first transducer element as a source with a Ricker wavelet
of 2 MHz center frequency and all transducers as receivers.
Our approach predicts traveltimes accurately, even though
the frequencies of simulated ultrasonic waves are lower
than those used commercially (5-12 MHz). The traveltime
modelling presented here is based on the ray theory, which
assumes infinite frequencies. The higher the frequencies,
the more accurate our approximation is, as demonstrated in
Fig. 3(b). This result also shows that the method is still valid
for relatively low frequencies, but it fails to correctly predict
traveltimes at very low frequencies (< 0.25 MHz) due to
finite-frequency effects [6].

(a)
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Fig. 3. Forward problem validation. (a) Comparison of traveltimes measured
from numerical wave propagation simulations with those modelled using (12).
Traveltimes are represented with respect to the source-receiver offset. (b)
Relative error between measured and modelled traveltimes as function of the
center frequency of the emitted signal. Relative errors are computed with the
Euclidean norm. The accuracy of our forward problem increases with the
frequency. The same setup and medium is used in both figures.

III. STATISTICAL INVERSE PROBLEM

Estimating muscle anisotropic properties m from traveltime
observations dobs involves solving a nonlinear inverse problem.
In principle, we can formulate this as a gradient-based opti-
mization problem to search for the model m that minimizes
the misfit between observed and predicted traveltimes [37].
Such deterministic approaches, however, cannot guarantee
that the solution corresponds to the global minimum of the



nonlinear function we try to minimize. They are also incapable
of accurately estimating uncertainties in the solution caused
by measurement noise, limited data coverage, and inaccurate
forward modelling [38]. In this study, our goal is to analyze
the feasibility of estimating the longitudinal-wave anisotropy
from traveltime observations. For this analysis, quantifying
uncertainties is crucial. Here we address the inversion statisti-
cally using the Bayesian framework. The solution is a posterior
probability density function (pdf) πpost(m|dobs) that contains
the complete statistical description of model parameters [37],
[38].

According to Bayes’ theorem [39], [40], the posterior pdf
satisfies

πpost(m|dobs) = k πprior(m)πlike(dobs|m), (14)

where k is an appropriate normalization constant, πprior(m)
encodes our prior information on m, and the data likelihood
πlike(dobs|m) is the conditional probability of having obser-
vations dobs given the model m. We can express the data
likelihood explicitly as

πlike(dobs|m) ∝ exp

[
−1

2
(d− dobs)

TΓ−1n (d− dobs)

]
, (15)

where d = F(m) is the forward problem in (12), and
Γn is the noise covariance matrix describing uncertainties
in observations. That is, πlike(dobs|m) is a measure of the
similarity between d and dobs.

In principle, the prior πprior(m) can take any form. We
generally express the prior in terms of individual model
parameters mi as

πprior(m) =

N∏
i=1

πprior(mi), (16)

where N is the number of parameters in m. In this study,
we use either a uniform distribution between a fixed range of
values, i.e.,

πprior(mi) =


1

mmax
i −mmin

i

, if mi ∈ [mmin
i ,mmax

i ]

0, otherwise
, (17)

or a Gaussian distribution

πprior(mi) =
1√

2πσi
exp

[
− (mi −m0

i )2

2σ2
i

]
, (18)

with mean m0
i and standard deviation σi.

The posterior allows us to extract useful statistical informa-
tion about muscle anisotropic parameters. For instance, we can
compute the probability of m satisfying certain conditionsM1

of clinical interest as P (m ∈ M1) =
∫
M1

πpost(m|dobs)dm.
This probability can be relevant in clinical decision-making
when disease-related thresholds exist for anisotropic param-
eters. Other statistical quantities such as the expectation or
marginal pdfs are also computed via similar integrals.

Unless the forward problem is linear, and the prior and
noise are Gaussian, analytical expressions of the posterior are
not available [37], [41]. Still, it is possible to approximate

the statistical information contained in the posterior using
efficient sampling techniques. In this study, we employ the
Metropolis-Hastings Markov chain Monte Carlo (MCMC)
algorithm [42]–[44]. The algorithm generates an ensemble
of random samples of the posterior with sampling density
proportional to πpost(m|dobs). Thus, we can use this ensemble
to approximate integrals related to our statistical quantities of
interest.

IV. NUMERICAL EXAMPLES

In this section, we show numerical examples illustrating the
nature of the anisotropy estimation problem. Our objectives
are threefold: (i) show the role of the reflector inclination
in constraining the anisotropy angle, (ii) investigate the ro-
bustness of the problem under uncertain inclination angles
and measurement noise, and (iii) understand the impact of
the experimental setup and medium properties on solution
uncertainties.

All examples shown here consider a uniform prior
for velocities and anisotropy angle within the range of
[1300 m/s, 1800 m/s] and [−45◦, 45◦), respectively. Moreover,
we assume Gaussian observational errors with a standard
deviation of 1% of the maximum traveltime values. To ensure
convergence and correctly interpret the statistical results, we
explore the posterior with a relatively large number of random
samples, O(107), although fewer samples could suffice for
practical purposes.

A. Unconstrained problem

In this example, we solve the Bayesian anisotropy inference
using the forward problem in (6). Our goal is to illustrate how
the non-uniqueness of the forward problem is mapped into the
posterior. We consider the same example as in Fig. 2, where
the true model is mtrue = (1560 m/s, 1540 m/s, 0◦) and the
probe-reflector distance is L = 10 cm. We use an ultrasound
probe of 4 cm length with 128 transducer elements from which
one acts as a source, and all are in receiving mode. Our
artificial observations of traveltimes are numerically computed
from (6). Fig. 4 shows the solution of the inverse problem,
namely the posterior pdf. Models with maximum posterior
probability densities are same as those theoretically predicted
in Fig. 2 and predict the observations equally likely. The
width of the region with maximum probability density is
related to the Gaussian noise in the data likelihood. Note
that including multiple sources do not improve the non-
uniqueness because the conditions (8) are independent of
source and receiver locations. Unless our prior information
on model parameters is stronger than a uniform distribution,
the posterior will show the exact same non-uniqueness of the
forward problem. However, a stronger prior would dominate
the solution. For instance, a Gaussian prior would produce a
maximum a posteriori point at the same location of the prior’s
maximum, which may not represent the true model. Hence,
one should carefully interpret the posterior when the data is
not informative enough on model parameters. Alternatively,



Fig. 4. Posterior probability density function (pdf) related to the unconstrained
forward problem in (6). Models with highest pdf correspond to theoretically
predicted ones in Fig. 2 (dashed line). They explain equally well traveltimes
computed from the true model (red star). For visualization purposes, we
display the posterior as a function of the anisotropy angle and the velocity
ratio v1/v2.

we could reformulate the forward problem to find observations
that constrain anisotropic parameters better.

B. Constrained problem

We illustrate here how the problem can be constrained
by combining data from multiple reflector inclinations. We
consider the same true model as in the previous example and
32 sources equidistantly distributed along the probe. Now, our
artificial observables are 2 × 32 traveltime datasets obtained
with reflector inclination angles α = 0◦ and α = 5◦ using (12).
Fig. 5 shows the posterior pdf for this case, which has a
clear unique maximum that approximately matches the true
model location. Unlike the previous example, now traveltimes
are determined by a unique set of model parameters. We
can quantify uncertainties in the solution using marginal pdfs
for each model parameter, shown in Fig. 6. Although the
problem is nonlinear, the posterior pdf approximates a mul-
tivariate Gaussian distribution. We thus express the solution
using the mean and standard deviation of the Gaussian fit
of the marginals. Mean values accurately predict true model
parameters with standard deviations less than 2.27 m/s for
velocities and 0.66◦ for the anisotropy angle. We also observe
that v1 is less constrained than v2. This is caused by the small
aperture of the probe. Ray paths are closer to the direction
of v2 than v1, and we therefore expect larger uncertainties in
v1. The following examples investigate the impact of reflector-
inclination and modelling errors in the solution.

C. Uncertain reflector inclination

The Bayesian framework can flexibly incorporate uncer-
tainties about the experimental setup. Suppose we use B-
mode images to measure the reflector inclination angle. Such

True model

Fig. 5. Posterior probability density function (pdf) when traveltimes from
two different reflector inclinations (0° and 5°) are considered. We use the
same true model (red star) as in Fig. 4 and 32 sources equidistantly located.
Unsampled models by the algorithm are shown as white areas. The posterior
has a unique maximum indicating that model parameters are well constrained
by the traveltimes.

measurements will certainly include errors that can propagate
into our solution if they are not properly identified. In this
context, we suggest taking inclination angles as unknown
model parameters, that is, m = (v1, v2, ϕ, α1, α2). Then, we
can include the information extracted from B-mode images in
our prior pdf.

Here we extend the previous example and assume Gaussian
priors for α1 and α2. Because we are interested in understand-
ing how robust the method is to uncertainties in inclination
angles, we take the mean of Gaussian priors at 5◦ and 10◦

with 3◦ standard deviation. That is, we shift Gaussian means
by 5◦ from true values. In this case, the posterior is difficult
to visualize due to the dimension of the model space. Fig. 7
displays marginal pdfs for the five model parameters. Again,
marginals are approximately Gaussian; therefore, we represent
the solution using the mean and standard deviation of their
Gaussian fits. The results demonstrate that the anisotropy esti-
mation is robust against uncertainties in reflector inclinations.
The most sensitive parameters are v2 and ϕ for which standard
deviations are two times larger than those in our previous
example. Furthermore, the posterior provides accurate values
for α1 and α2, despite the substantial deviations between
their prior means and true values. This indicates that the data
likelihood is sufficiently informative about reflector inclination
angles.

D. Systematic measurement noise

This example simulates a situation closer to real applica-
tions, with measurement noise and uncertain reflector inclina-
tions. We consider the same problem as before but compute
traveltime data from numerical wave propagation simulations
using sources with a center frequency of 1 MHz. Therefore,
our artificial observations include finite-frequency effects that
are not accounted for in the forward modelling [see Fig. 3(b)].



Fig. 6. Marginal probability density functions forv1 , v2 , and ' . The marginals are histograms obtained with the Markov chain Monte Carlo (MCMC)
algorithm and represent the sampling frequency of the values for each model parameter. The Gaussian �t and its mean are indicated with orange dashed lines,
and the true model parameters are shown in black. The solution for each parameter is given in terms of the mean and standard deviation of the Gaussian �t,
shown on top of the histograms. The velocity across �bers (v2 ) is better constrained than the velocity parallel to �bers (v1 ).

Fig. 7. Marginal probability density functions when re�ection inclinations angles� 1 and� 2 are unknown model parameters. Inclination angles have Gaussian
priors with their mean shifted5� from true values and3� standard deviation. The solution for each parameter is given in terms of the mean and standard
deviation of the Gaussian �t, shown on top of the histograms. Compared to Fig. 6, standard deviations ofv2 and' increase with uncertain inclination angles.
MCMC: Markov chain Monte Carlo.

This can be seen as systematic measurement noise. To make
wave propagation simulations computationally affordable, we
reduce the probe-re�ector distance toL = 6 cm. Because
this also reduces traveltimes, we increase the standard devi-
ation of the noise to be consistent with previous examples.
Furthermore, to make the example more general, we con-
sider an anisotropy angle of5� , i.e., the true model is now
m = (1560 m/s; 1540m/s; 5� ; 0� ; 5� ).

The marginal pdf ofv2 deviates most from the Gaussian
distribution shown by the rest of model parameters in Fig. 8.
Yet, as a �rst approximation, we continue using the Gaussian
�t for uncertainty quanti�cation. Despite the systematic noise,

mean values accurately predict true velocities, meaning that
velocity estimates are robust against measurement noise. The
anisotropy angle shows the highest sensitivity to noise, with
deviations from the true value reaching� 18%. Systematic
noise can be seen as modelling errors; thus, deviations between
true and maximum a posteriori models are expected. This
result demonstrates that a solution given only by the mean,
without quantifying uncertainties, is incomplete. All true pa-
rameters are predicted within the 95% con�dence interval of
the marginals.

Compared to our previous example, standard deviations
increase substantially forv2 and ' and decrease forv1. With



D. Expected uncertainties

For nonlinear problems, the posterior pdf depends on the
anisotropy model. Still, we can draw some general conclu-
sions about uncertainties in inferred anisotropy parameters:
(1) Velocities in directions that are more parallel to the probe
(i.e., fiber direction) are generally less constrained than those
in perpendicular directions due to the small aperture of the
acquisition setup. (2) The anisotropy angle ϕ is the least
constrained parameter with relative uncertainties that are two
orders of magnitudes larger than those for velocities. In fact,
ϕ becomes increasingly less reliable as velocity differences
approach isotropic conditions. Yet, such uncertainties do not
affect velocity estimates, which are robust against noise. (3) In
principle, our method is capable of accurately distinguishing
velocity differences four times smaller (2.5 m/s) than those
observed in muscle tissue (> 10 m/s) [14]–[17]. (4) Overall,
the largest standard deviations in ϕ (4◦) are substantially
smaller than those reported in similar numerical studies with
shear waves (5.6◦ − 36.3◦) [23]. Maximum relative errors
in velocities are also considerably lower in our case (0.2%
versus 20%) [23]. It suggests that quantifying anisotropy in
longitudinal waves could potentially be more robust than
in shear waves, which show moreover higher sensitivity to
confounding variables than longitudinal waves [31].

E. Clinical interest

The arrangement of fibers in the muscle causes anisotropy
in mechanical tissue properties. Muscles can be seen as a stack
of thin, homogeneous layers of different properties. At large
scales, such a structure behaves as a homogeneous transversely
isotropic medium whose properties are related to the fine-
scale medium through the effective medium theory [51], [52].
Consequently, anisotropy parameters are correlated to both
muscle composition and architecture, which are affected by
musculoskeletal disorders. For instance, changes in the number
and type of fibers will lead to changes in anisotropy parame-
ters. Therefore, quantifying this property with ultrasound could
ultimately offer a cost-efficient, multi-parametric biomarker to
assess disease-related changes in muscle mass (composition)
and function (architecture).

APPENDIX A
ELLIPTICAL ANISOTROPY

This appendix discusses the elliptical anisotropy assumption
in muscle and shows the conditions under which (1) is
satisfied. The wave surface given by (1) is an ellipsoid only if
the slowness (reciprocal of the phase velocity) surface is also
an ellipsoid [32], [53]. We therefore focus on analyzing the
expression for phase velocity.

For simplicity, we consider a two-dimensional transversely
isotropic medium with the symmetry axis parallel to x1-
direction. The elastic stiffness tensor cijkl characterizing this
medium has five independent components, which are c11,
c12, c22, c44, and c66 in Voigt notation. The parameters c44
and c66 are related to shear moduli; thus, in soft tissue,

c44, c66 � c11, c12, c22 [29]. We can relate the stiffness tensor
to phase velocities V through the Christoffel equation

det[cijklnjnl − ρV 2δik] = 0, (19)

where ρ denotes medium density, the Kronecker delta δij
is equal to one when i = j and zero otherwise, and ni
refers to the ith component of the wavefront normal vec-
tor (slowness vector). For an arbitrary wavefront direction
n = (sinφ, cosφ), (19) leads to

V 2(φ) =
1

2ρ

[
c11 sin2 φ+ c22 cos2 φ+G(φ)

]
(20)

for longitudinal waves, with

G(φ) =
[(
c11 sin2 φ− c22 cos2 φ

)2
+ c212 sin2 2φ

] 1
2

. (21)

The elliptical anisotropy assumption is only valid when the
slowness surface in (20) is an ellipse, which is generally not
the case. Only when the medium satisfies c12 =

√
c11c22, (20)

reduces to the ellipse

V 2(φ) =
1

ρ

[
c11 sin2 φ+ c22 cos2 φ

]
, (22)

with semi-axes
√
ρ/c11 and

√
ρ/c22. In muscle tissue, em-

pirical studies have shown that c12 ≈
√
c11c22 [29], [47],

with reported deviations that are below 0.3%. This justifies
the elliptical anisotropy model used in this study.
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