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Abstract

The velocity of ultrasound longitudinal waves (speed of sound) is emerging as a valuable biomarker for a wide range of diseases,
including musculoskeletal disorders. Muscles are fiber-rich tissues that exhibit anisotropic behavior, meaning that velocities vary
with the wave-propagation direction. Quantifying anisotropy is therefore essential to improve velocity estimates while providing
a new metric that relates to both muscle composition and architecture. This work presents a method to estimate longitudinal-
wave anisotropy in transversely isotropic tissues. We assume elliptical anisotropy and consider an experimental setup that
includes a flat reflector located in front of the linear probe. Moreover, we consider transducers operating multistatically. This
setup allows us to measure first-arrival reflection traveltimes. Unknown muscle parameters are the orientation angle of the
anisotropy symmetry axis and the velocities along and across this axis. We derive analytical expressions for the relationship
between traveltimes and anisotropy parameters, accounting for reflector inclinations. To analyze the structure of this nonlinear
forward problem, we formulate the inversion statistically using the Bayesian framework. Solutions are probability density
functions useful for quantifying uncertainties in parameter estimates. Using numerical examples, we demonstrate that all
parameters can be well constrained when traveltimes from different reflector inclinations are combined. Results from a wide
range of acquisition and medium properties show that uncertainties in velocity estimates are substantially lower than expected
velocity differences in muscle. Thus, our formulation could provide accurate muscle anisotropy estimates in future clinical
applications.
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Toward speed-of-sound anisotropy quantification in
muscle with pulse-echo ultrasound

Naiara Korta Martiartu, Saulė Simutė, Michael Jaeger, Thomas Frauenfelder, and Marga B. Rominger

Abstract—The velocity of ultrasound longitudinal waves (speed
of sound) is emerging as a valuable biomarker for a wide range
of diseases, including musculoskeletal disorders. Muscles are
fiber-rich tissues that exhibit anisotropic behavior, meaning that
velocities vary with the wave-propagation direction. Therefore,
quantifying anisotropy is essential to improve velocity estimates
while providing a new metric related to muscle composition and
architecture. For the first time, this work presents a method to
estimate speed-of-sound anisotropy in transversely isotropic tis-
sues using pulse-echo ultrasound. We assume elliptical anisotropy
and consider an experimental setup with a flat reflector parallel
to the linear probe, with the muscle in between. This setup allows
us to measure first-arrival reflection traveltimes using multistatic
operation. Unknown muscle parameters are the orientation angle
of the anisotropy symmetry axis and the velocities along and
across this axis. We derive analytical expressions for the nonlinear
relationship between traveltimes and anisotropy parameters,
including reflector inclinations. These equations are exact for
homogeneous media and are useful to estimate the effective
average anisotropy in muscles. To analyze the structure of this
forward problem, we formulate the inversion statistically using
the Bayesian framework. We demonstrate that anisotropy pa-
rameters can be uniquely constrained by combining traveltimes
from different reflector inclinations. Numerical results from
wide-ranging acquisition and anisotropy properties show that
uncertainties in velocity estimates are substantially lower than
expected velocity differences in the muscle. Thus, our approach
could provide meaningful muscle anisotropy estimates in future
clinical applications.

Index Terms—speed of sound, longitudinal waves, anisotropy,
transverse isotropy, muscle, ultrasound, Bayesian inference, un-
certainty quantification

I. INTRODUCTION

Speed-of-sound estimation in tissue using ultrasound has
attracted considerable attention in recent years [1]–[7]. Speed
of sound refers to the propagation velocity of longitudinal
waves, which are typically used for image formation in ul-
trasound systems. This property contains clinically relevant
information about tissue composition and shows great promise
as a biomarker for a wide range of diseases. Clinical ap-
plications involving longitudinal-wave velocities include, for
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instance, breast cancer screening [1], [8], [9], hepatic steatosis
assessment [10], [11], and diagnosis of musculoskeletal disor-
ders [12], [13].

Unlike breast and liver tissue, muscles exhibit anisotropic
mechanical properties due to their fibrous structure. Velocities
vary with the ultrasound wave-propagation direction, showing
higher values along fiber direction than across fibers. Empirical
studies in ex-vivo human and animal tissues have reported
velocity differences of up to 24 m/s [14]–[18]. Hence, failure
to properly account for anisotropy can result in unreliable
velocity estimates. Quantifying anisotropy is clinically inter-
esting mainly for two reasons. On the one hand, it can provide
improved velocity estimates, which are informative about
muscle composition [13]. On the other hand, this property is
directly related to the muscle fiber distribution, encoding also
information about muscle architecture.

Anisotropy estimation can be particularly relevant for mon-
itoring sarcopenia cost-efficiently. This is an age-related mus-
culoskeletal disorder characterized by the progressive loss of
both muscle mass and function. Speed of sound is strongly
correlated to reference standards for quantifying muscle mass
loss [13] and have proven promising for differentiating young
and older populations [12]. However, the loss in muscle mass
is not correlated to the loss in muscle function [19], and both
are required to assess this pathology accurately [20]. Current
standards to measure muscle function, which is related to the
muscle fiber arrangement [21], are based on questionnaires or
tests [20]; thus, they do not include any quantitative imaging
tool. In this context, estimating speed-of-sound anisotropy
with ultrasound could bring significant benefits for assessing
sarcopenia.

Methods to characterize the anisotropy of
(quasi-)longitudinal waves are relatively unexplored in
the literature. Studies addressing this topic have only
focused on in-vitro measurements, where experimental
setups are not appropriate for clinical examinations [14]–
[18]. Characterization of anisotropy in shear waves, on
the contrary, is an active research field. Lee et al. [22]
developed an approach termed elastic tensor imaging (ETI)
to map myocardial fiber directions based on shear-wave
anisotropy. ETI uses either linear-probe rotations or 2D
matrix-array probes [23] to measure shear-wave velocities at
different propagation directions. From here, fiber orientation
angles can be extracted by assuming the medium as
transversely isotropic. Measurements in animal myocardial
samples have demonstrated strong correlations of ETI with
histological data [22] and diffusion tensor magnetic resonance



imaging [24]. A similar approach using 2D matrix probes
was also suggested by Wang et al. [25], who generalized
the method to cases in which the shear-wave excitation
push is not perpendicular to fibers. Shear-wave velocity
measurements, however, are prone to artifacts caused by
tissue inhomogeneities. To circumvent this, Hossain et al. [26]
proposed measuring tissue peak displacements at locations of
the shear-wave excitation source. Variations of this quantity
as a function of the probe orientation was seen to correlate
with anisotropy in shear moduli [26]. This approach showed
promising results, for example, for monitoring the status of
renal transplant in humans [27].

Shear and longitudinal waves interrogate fundamentally
different but complementary mechanical tissue properties [28].
Due to the acquisition setup of ultrasound systems, they
typically propagate in approximately perpendicular directions;
thus, we cannot directly extrapolate to longitudinal waves the
techniques developed for quantifying shear-wave anisotropy.
This work aims to present a method capable of quantifying
speed-of-sound anisotropy in muscle using pulse-echo ultra-
sound. We consider a setup with a flat reflector located oppo-
site the ultrasound probe, allowing us to measure first-arrival
reflection traveltimes [4]. In section II, we derive the analytical
expression of the relationship between these traveltimes and
muscle anisotropy. Their sensitivity to different anisotropy
parameters is discussed in section III. Section IV briefly
introduces the Bayesian inversion approach used in this study.
We then analyze the nature of the proposed problem with
various numerical examples in section V. Finally, section VI
summarizes key aspects of the method and carefully discusses
its clinical relevance and potential improvements.

II. TRAVELTIME MODELLING IN ANISOTROPIC MEDIA

The alignment of fibers in muscles causes anisotropy in
mechanical muscle properties. Commonly, muscle tissue is
described as a transversely isotropic medium with the sym-
metry axis along the fiber direction [25], [26], [29], [30].
Such a medium is characterized by five independent elastic
parameters, describing, for instance, the longitudinal- and
shear-wave velocities along and across the symmetry axis.
In soft tissue, however, shear-wave velocities are negligible
in comparison to longitudinal-wave velocities [31]. Therefore,
it is possible to describe muscle properties using only three
independent parameters. In this study, we assume elliptical
anisotropy, which is a special case of transverse isotropy. The
validity of this assumption is discussed in Appendix A. The
three independent parameters are then the orientation angle
ϕ of the anisotropy symmetry axis and the velocities along
(v1) and across (v2) this axis. In such a medium, the group
(ray) velocity v(θ) in an arbitrary propagation direction θ
satisfies [32], [33]

v2(θ)

v21
sin2 (θ − ϕ) +

v2(θ)

v22
cos2 (θ − ϕ) = 1, (1)

where the angles θ and ϕ are illustrated in Fig.1(a).

Reflector

(a)

(b)

Probe

Fig. 1. Schematic representation of the anisotropic medium and experimental
setup considered in this study. (a) Wavefronts in elliptically anisotropic media
are ellipsoidal. Parameters v1 and v2 represent velocities along and across
muscle fibers, and ϕ describes the orientation of fibers with respect to the
coordinate system. In an arbitrary propagation direction θ connecting xA and
xB, waves propagate with velocity vθ = v(θ). (b) Our experimental setup
includes a flat reflector located opposite the probe, with tissue in between.
The probe-reflector distance L is assumed to be controlled by a positioning
frame and a digital sensor. We measure first-arrival reflection traveltimes
of ultrasound signals emitted from xS and received at xR, with xP ∈ D
indicating the reflection point.

Traveltimes of different arrivals are affected by the
direction-dependent velocity v(θ), and we can use them to
retrieve anisotropy parameters m = (v1, v2, ϕ). For simplicity,
we consider the muscle as a two-dimensional homogeneous
medium. Using (1) and trigonometric identities, the traveltime
tAB between positions xA and xB is given by

t2AB =
1

v21
[(x1,B − x1,A) cosϕ− (x2,B − x2,A) sinϕ]

2
+

1

v22
[(x1,B − x1,A) sinϕ+ (x2,B − x2,A) cosϕ]

2
.

(2)

The reader is referred to the supplementary material for the
detailed derivation of equations in this section. From (2)
we observe that tAB is nonlinearly related to anisotropic
parameters m. When the orientation of the symmetry axis
is known, we obtain a linear relationship between squared
traveltimes t2 and squared slownesses 1/v21 and 1/v22 .

A. Reflector-based experimental setup

This study considers an experimental setup that includes
a reflector located opposite the linear ultrasound probe [see
Fig. 1(b)], with the probe-reflector distance L controlled by
a positioning frame and a distance sensor [4]. This setup
has already been applied in various clinical studies for the
assessment of breast [34], [35] and muscle tissue [12], [13],



[31], [36]. The re�ector allows us to measure �rst-arrival
re�ection traveltimestSR of waves propagating from a source
atxS to a receiver atxR. They can be expressed using Fermat's
principle as

min
x P2D

tSR(xP); where tSR(xP) = tSP(xP) + tPR(xP); (3)

whereD refers to the set of pointsxP at the re�ector-tissue
interface [see Fig. 1(b)], and traveltimes of each path are
computed using (2).

Unlike in isotropic media, the re�ection pointxmin
P for the

minimum traveltime does not necessarily lie on the mid-point
betweenxS and xR in anisotropic media. It is possible to
show that the location of the re�ection point generally satis�es
xmin

P = (( x1;S + x1;R)=2 + �; L ), where� is a constant value.
That is, xmin

P is shifted from the source-receiver midpoint
position by the same constant� for every source-receiver
combination. To �nd the value of� , we consider, for simplicity,
the zero-offset case in whichxS = xR, and we solve (3) using

dtSR

dx1;P

�
�
�
�
x P= x min

P

= 2
dtSP

d�

�
�
�
�
x P= x min

P

= 0 : (4)

The re�ection point is then

xmin
P =

�
x1;S + x1;R

2
+

L sin 2' (v2
2 � v2

1)
2(v2

1 sin2 ' + v2
2 cos2 ' )

; L
�

: (5)

This point is located at the source-receiver midpoint only when
the medium is isotropic (v1 = v2) or the anisotropy symmetry
axis is aligned with our coordinate system (' = 0 � ). For
muscle tissue, we expectv1 > v 2 for ' 2 [� �= 4; �= 4), i.e.,
waves propagating faster along than across �ber direction [14].
Therefore,� can be either positive or negative depending on
the sign of' .

Upon inserting (5) in (3) and (2), we can observe that
the path with the minimum traveltime satis�estSP

�
xmin

P

�
=

tPR
�
xmin

P

�
. Therefore,the fastest ray path is the path with

equal traveltime along each segment. This also means that
the mirror image of the receiver, namely a virtual equivalent
receiver ~R below the re�ector satisfyingtS~R = tSR, is located
at x ~R = 2( xmin

P � xS) + xS = 2xmin
P � xS. The �rst-arrival

re�ection traveltime betweenxS andxR is then

t2
SR

�
xmin

P

�
=

d2

v2(� = �= 2)
+

4L 2v2(� = �= 2)
v2

1v2
2

; (6)

with v2(� = �= 2) given by (1) andd = x1;R � x1;S being the
source-receiver offset. This equation establishes the relation-
ship between observationstSR and unknown muscle properties
m = ( v1; v2; ' ). Thus, the forward problem considered in
this study is nonlinear. When the anisotropy symmetry axis is
aligned with the coordinate system (' = 0 � ), (6) reduces to

t2
SR(xmin

P ) =
d2

v2
1

+
4L 2

v2
2

; (7)

and, as previously observed,t2
SR becomes linearly related to

squared slownesses1=v2
1 and 1=v2

2 . It is important to note
that (5) and (6) are exact for any homogeneous media with
elliptical anisotropy.

Fig. 2. Muscle models satisfying the conditions (8) and, thus, provid-
ing equal traveltimes. For this example, we take the reference model
m̂ = (1560 m/s; 1540 m/s; 0� ) and represent equivalent modelsm for
' 2 [� 45� ; 45� ). Because muscle models are de�ned by three parameters,
we represent the anisotropy angle' versus the velocity ratiov1=v2 for visual-
ization. We only show models with velocities in the range of[1300; 1800] m/s.

B. Non-uniqueness

In this section, we demonstrate that traveltimes satisfy-
ing (6) are not suf�cient to constrain muscle properties
uniquely. For notational brevity, we omit the dependency on
xmin

P from traveltimes.
Let us assume that we measure traveltimest2

SR(m̂ ) in the
medium m̂ . If t2

SR(m̂ ) is uniquely de�ned bym̂ , then any
other m giving the same traveltimest2

SR(m̂ ) = t2
SR(m) must

satisfym̂ = m. For simplicity, we takem̂ = ( v̂1; v̂2; '̂ = 0 � )
andm = ( v1; v2; ' ) and consider a single source-receiver pair.
Equating (6) and (7), we see that both muscle parameters give
the same traveltimes when

v̂1v̂2 = v1v2 (8a)

v2
1 sin2 ' + v2

2 cos2 ' = v̂2
2 : (8b)

These conditions can be satis�ed for̂m 6= m even when we
exclude the intrinsic periodicity of' (i.e., m(' ) = m(' + � ))
and the obvious symmetry of the elliptical anisotropy (v1 ! v2

when ' ! ' + �= 2). Thus, traveltimes de�ned in (6) cannot
uniquely constrain muscle anisotropy. Note that including
multiple sources cannot resolve this non-uniqueness because
the conditions (8) do not depend on source and receiver
locations. As an example, Fig. 2 shows all equivalent mus-
cle models (in terms of traveltimes) to the reference model
m̂ = (1560 m/s; 1540m/s; 0� ). We observe that specially the
parameter' is unconstrained by the forward problem in (6).
Hence, we require additional types of observations.

C. Re�ector inclination: sources of uncertainties as new con-
straints

The simplest way to constrain the anisotropy angle is by
combining data acquired from multiple muscle sides. This is
equivalent to rotating the tissue with respect to the probe.
For in-vivo studies, however, we can only access the muscle
from a single side of the anisotropy plane. To circumvent



Fig. 7. Posterior probability density function (pdf) related to the unconstrained
forward problem in (6). We consider 32 sources equidistantly located and the
source-reflector distance L = 8 cm. Models with highest pdf correspond to
theoretically predicted ones in Fig. 2 (dashed line). They explain equally well
the traveltimes computed from the true model (red star).

the statistical information contained in the posterior using
efficient sampling techniques. In this study, we employ the
Metropolis-Hastings Markov chain Monte Carlo (MCMC)
algorithm [45]–[47]. The algorithm generates an ensemble
of random samples of the posterior with sampling density
proportional to πpost(m|dobs). We can use this ensemble to
approximate integrals related to our statistical quantities of
interest.

V. NUMERICAL EXAMPLES

In this section, we show numerical examples illustrating the
nature of the anisotropy estimation problem. Our objectives
are threefold: (i) show the role of the reflector inclination in
constraining anisotropy parameters, (ii) investigate the robust-
ness of the problem under uncertain inclination angles and a
mistmach in probe-reflector distance between measurements,
and (iii) understand the impact of the experimental setup,
anisotropy properties, and measurement noise on solution
uncertainties.

All examples shown here consider a uniform prior
for velocities and anisotropy angle within the range of
[1300 m/s, 1800 m/s] and [−45◦, 45◦), respectively. As in
Section II-E, we use an ultrasound probe with 128 transducer
elements and 0.3 mm pitch. We consider every fourth element
acting as a source sequentially (a total of 32 sources) while
all elements are in receiving mode. Following reported values
in [43], where the authors compare annotated first-arrival
reflection traveltimes with those estimated from reflector delin-
eation approaches, we assume Gaussian observational errors
with a standard deviation of 0.1% of maximum traveltimes.
To ensure convergence and correctly interpret the statistical
results, we explore the posterior with a relatively large number
of random samples, O(107), although fewer samples could
suffice for practical purposes.

A. Unconstrained problem

In this example, we solve the Bayesian anisotropy inference
using the forward problem in (6). Our goal is to illustrate how

the non-uniqueness of the forward problem is mapped into
the posterior. We consider the same example as in Fig. 2,
where the true model is mtrue = (1560 m/s, 1540 m/s, 0◦),
and the probe-reflector distance is L = 8 cm. Our artificial
observations of traveltimes are numerically computed from (6)
and collected in the vector dobs, which contains a total of
32× 128 traveltimes. Fig. 7 shows the solution of the inverse
problem, namely the posterior pdf. Models with maximum
posterior probability densities are same as those theoretically
predicted in Fig. 2 and explain the observations equally
likely. This example demonstrates moreover that including
multiple sources does not improve the non-uniqueness of (6),
as previously noted. Unless our prior is stronger than a uniform
distribution, the posterior will show the exact same non-
uniqueness of the forward problem. In this example, however,
a stronger prior would dominate the solution. For instance, a
Gaussian prior would produce a maximum a posteriori point
at the same location of the prior’s maximum, which may not
represent the true model. Hence, one should carefully interpret
the posterior when the data is not informative enough on model
parameters.

B. Constrained problem

We illustrate here how the problem can be constrained
by combining data from multiple reflector inclinations. We
consider the same true model and acquisition setup as in
the previous example. Now, our artificial observables are
2 × 32 × 128 traveltimes obtained with reflector inclination
angles α = 0◦ and α = 5◦ using (12). Fig. 8(a) shows the
posterior pdf for this case, which has a unique maximum
that matches the true model location. Unlike the previous
example, now traveltimes are able to constrain a unique set
of model parameters. We can quantify uncertainties in the
solution using marginal pdfs for each model parameter, shown
in Fig. 8(b). Although the problem is nonlinear, the posterior
pdf approximates a multivariate Gaussian distribution. We thus
express the solution using the mean and standard deviation
of the Gaussian fit of the marginals, which is useful to
quantify uncertainties. Mean values accurately predict true
model parameters with standard deviations less than 1.62 m/s
for velocities and 0.61◦ for the anisotropy angle. As predicted
in Section III, we observe that v1 is less constrained than v2
due to the limited aperture of the probe.

C. Uncertain reflector inclination

In Section III, we observed that traveltimes are highly
sensitive to the reflector inclination angle. As a result, if we
use inaccurate values of α in the forward problem, we may
expect meaningless solutions. This is illustrated in Fig. 9(a),
where we consider the same example as before but with
errors of 5◦ in reflector inclination angles. That is, we fix
the values of α as 5◦ and 10◦ instead of 0◦ and 5◦ to
invert anisotropy parameters. The marginal pdfs show that
reconstructed parameters deviate strongly from the true values.
Their mean values provide a model with a negative log-
posterior value of 2.74e5, meaning that there is a substantial



Fig. 8. (a) Posterior probability density function (pdf) when traveltimes from two different reflector inclinations (0° and 5°) are considered. We use the
same true model (red star) and acquisition setup as in Fig. 7. Unsampled models by the algorithm are shown as white areas. The posterior has a unique
maximum indicating that model parameters are well constrained by the traveltimes. (b) Marginal probability density functions for v1, v2, and ϕ, respectively.
The marginals are histograms obtained with the Markov chain Monte Carlo algorithm and represent the sampling frequency of the values for each model
parameter. The solution for each parameter is given in terms of the mean and standard deviation, shown on top of the histograms. The velocity across fibers
(v2) is better constrained than the velocity parallel to fibers (v1).

mismatch between observed and predicted traveltimes. To
circumvent this issue, we suggest extending the Bayesian
formulation by including inclination angles as unknown model
parameters, i.e., m = (v1, v2, ϕ, α1, α2). This also allows
us to incorporate in the prior pdf our rough estimations
and uncertainties of α1 and α2. To be consistent with the
previous example, we assume Gaussian priors with means
at 5◦ and 10◦ and a standard deviation of 3◦. That is, we
shift Gaussian means by 5◦ from true values, with a standard
deviation that excludes the true values from most probable
setups. Although derivations provided in Section II-D are
not sufficient to demonstrate the solution uniqueness in this
case, the marginal pdfs shown in Fig. 9(b) (in gray) have
a clear, unique maximum for each parameter. We show in
the supplementary material that different MCMC realizations
converge to the same posterior pdf, suggesting that the solution
uniqueness is still given within the model subspace defined by
the priors. The model based on mean values of marginal pdfs
has a negative log-posterior value of 15.11; thus, it predicts ob-
served traveltimes accurately. This result demonstrates that the
anisotropy estimation is robust against uncertainties in reflector
inclinations when the extended Bayesian formulation is used.
The most sensitive parameters are v2 and ϕ, with uncertainties
that increase more than two times compared to those in Fig. 8.
Furthermore, the posterior provides accurate values for α1

and α2, despite the substantial deviations between their prior
means and true values. This indicates that the data likelihood
is sufficiently informative about reflector inclination angles,
as already observed in Section III. Thus, one should always
consider reflector inclination angles as model parameters to
retrieve meaningful anisotropy parameters.

D. Probe-reflector distance mismatch

In practice, varying the reflector inclination angle between
measurements could alter the probe-reflector distance. To
understand how this affects the inversion and particularly
the uniqueness of the forward problem, we consider the
same example as before, but with traveltimes measured using
L = 8 cm for α1 and L = 7 cm for α2. The marginal
pdfs obtained in this case are shown in pink in Fig. 9(b).
Compared to our previous example, the solution is almost
unaffected. Again, the mean values correctly represent the true
model. However, the anisotropy angle becomes slightly more
uncertain, whereas the standard deviation of v1 is reduced.
The reduced probe-reflector distance may explain the latter. In
this case, the components of ray paths along v1-direction are
increased, constraining the parameter better. This result shows
that a correct solution is still guaranteed when a mismatch in
L exists between different reflector inclinations.

E. Impact of experimental setup, anisotropy properties, and
data noise

Previous results suggest that experimental conditions in-
fluence the uncertainties of retrieved parameters. Here, we
analyze these effects more in detail when the following five
aspects are modified separately: the probe-reflector distance
L, the true anisotropy angle ϕtrue, the true velocity differences
∆vtrue = v1,true − v2,true, the reflector inclination angle α2,true
while α1,true = 0◦, and the standard deviation of observa-
tional errors σnoise. All examples consider the reference model
mtrue = (1560 m/s, 1540 m/s, 0◦, 0◦, 5◦) and distance L = 8
cm, same as in previous examples. Fig. 10 shows how the
standard deviations of inverted model parameters vary in each
case. As observed before, uncertainties in v1 decrease when



Fig. 9. Marginal probability density functions of model parameters. We use the true model mtrue = (1560 m/s, 1540 m/s, 0◦) and reflector inclination angles
0◦ and 5◦ to generate artificial observables. (a) The inversion includes an error of 5◦ in reflector inclinations. As a result, anisotropy parameters with the
highest probabilities deviate strongly from true values (negative log-posterior: 2.74e5). (b) The inversion considers reflection inclination angles α1 and α2

as model parameters to retrieve. Inclination angles have Gaussian priors with their mean shifted 5◦ from true values and 3◦ standard deviation. In gray, we
show results when probe-reflector distance L is 8 cm, same as in (a). The solution for each parameter is given in terms of the mean and standard deviation,
shown on top of histograms. Mean values of marginals accurately predict true anisotropy parameters (negative log-posterior: 15.11). In pink, we show results
when we use L = 8 cm for α1 and L = 7 cm for α2. A mismatch in L between measurements has no significant effects, and the correct solution is still
guaranteed.

ray paths become closer to v1-direction, either by decreasing
L [Fig. 10(a)] or by increasing the ϕtrue [Fig. 10(b)]. The
latter also increases uncertainties in v2 due to the opposite
effect of ray paths in this case. As a result, both velocities
would be equally constrained when ϕtrue = 45◦. Interestingly,
varying ∆vtrue [Fig. 10(c)] or α2 [Fig. 10(d)] do not affect
v1 and v2, but ϕ becomes less constrained when these are
small. The effect with ∆vtrue is related to the forward problem
in (12), which shows that traveltimes become independent of
ϕ when the medium is isotropic. Therefore, we expect larger
uncertainties in ϕ when approaching isotropic conditions. The

effect with α2, on the other hand, is related to the non-
uniqueness of the forward problem. As analyzed in Fig. 4,
model parameters are more difficult to constrain as differences
between α1 and α2 become smaller. When α1 = α2, the
problem is non-unique, and ϕ cannot be constrained, ex-
plaining the large uncertainties in ϕ when α2 → 0. In all
these cases, standard deviations of reflector inclination angles
remain constant, suggesting that they are nearly uncorrelated
to other model parameters.

In general, we observe that the method is capable of
accurately distinguishing velocity differences larger than 4



Fig. 10. Standard deviations of model parameters as a function of experimental setup, medium properties, and standard deviation of noise. The reference
model and experimental parameters (pink circles) are mtrue = (1560 m/s, 1540 m/s, 0◦, 0◦, 5◦) and L = 8 cm, respectively. We modify (a) the probe-reflector
distance L from 4 cm to 12 cm, (b) the true anisotropy angle ϕtrue from 0◦ to 40◦, (c) true velocity differences ∆vtrue = v1,true − v2,true from 10 m/s
to 30 m/s, (d) reflector inclination angle α from 2.5◦ to 12.5◦, and (e) the standard deviation of traveltime observations from 0.05% to 0.2% of maximum
traveltimes. In general, we can distinguish velocity differences larger than 4 m/s when the standard deviation of noise is 0.1%, as reported in [43].

m/s when observational errors are 0.1% of maximum trav-
eltimes [43]. This is substantially smaller than velocity differ-
ences in muscle reported in the literature (> 10 m/s) [14]–
[17]. Fig. 10(e) shows, however, that parameter uncertainties
will increase linearly with σnoise. Still, we could distiguish
velocity differences larger than 10 m/s for σnoise ≤ 0.2%,
which is a considerable increase in noise. Note moreover
that uncertainties could be reduced by including more sources
in our examples. Therefore, the method presented here has
the potential to provide accurate and statistically meaningful
muscle anisotropy estimates in future clinical applications.

VI. DISCUSSION AND CONCLUSIONS

This article presents a novel method to estimate the speed-
of-sound anisotropy in transversely isotropic tissue. Until
now, only shear waves have been used to characterize tissue
anisotropy in clinical applications [22], [23], [25], [26], [30],
[48], [49]. However, shear and longitudinal waves interro-
gate fundamentally different mechanical tissue properties [28].
Their propagation velocities differ by three orders of mag-
nitude, resulting in decoupled relationships between the two
velocities and elastic moduli [31]. Hence, our work not only
complements other studies on the topic but is pivotal to
characterize mechanical tissue properties comprehensively.

Due to the lack of previous works on tissue speed-of-
sound anisotropy imaging, our work focuses on developing
simplified models that provide an essential theoretical basis
to understand the nature of the problem. In this respect,
we target the average tissue anisotropy by modeling muscles

as homogeneous media. Rather than being intrinsic, muscle
anisotropy is caused by fine-scale heterogeneities in medium
properties (fibers), which we implicitly consider in our for-
mulation. However, local large-scale heterogeneities may also
influence the average anisotropy estimates, hindering their
interpretation. While being beyond the scope of this article,
one could use the effective medium theory to establish the
link between heterogeneities and anisotropy [50], [51]. From
a clinical interest perspective, this link is key to correlating
anisotropy parameters to muscle composition and architecture,
which are affected by musculoskeletal disorders. For instance,
a change in the number and type of fibers is expected to
lead to changes in the average muscle anisotropy. Therefore,
quantifying this property with ultrasound could ultimately
provide a cost-efficient, multi-parametric biomarker to assess
disease-related changes in muscle mass and function.

The method presented here relies on an experimental setup
that includes a reflector parallel to the linear probe, with a
sensor controlling their distance. This setup can be easily im-
plemented in conventional ultrasound systems and has already
been successfully applied in various clinical studies [12], [13],
[31], [34]–[36]. Yet, it differs from those suggested for shear-
wave anisotropy estimation, which requires either 2D matrix-
array probes [23], [25], [49] or the rotation of linear probes
around the axial direction [22], [26], [30], [48]. This difference
in setups is a consequence of approximately perpendicular
propagation directions of typically excited ultrasound shear
and longitudinal waves. In any case, quantifying anisotropy of



any kind will require redesigning current ultrasound systems.
The reflector-based setup allows us to measure arrival times

of echoes reflected at known distances from the probe. One of
the most important results of our work is to show that these
traveltimes and anisotropy parameters are non-uniquely re-
lated. We demonstrate that anisotropy can be constrained nev-
ertheless by combining measurements from different reflector
inclinations. An inclination in the reflector is unavoidable in
practice and conventionally regarded as a source of unwanted
noise. Here we have resignified its value and transformed it
into a key ingredient for successfully estimating anisotropy.
Importantly, we show that two reflector inclinations with
relatively small angle differences are sufficient to constrain
anisotropy accurately. This facilitates the data acquisition pro-
cedure and avoids significant muscle deformation that could
lead to changes in anisotropic properties.

Traveltimes and anisotropy parameters are nonlinearly
related; accordingly, we solve the inverse problem using
Bayesian inference. Compared to gradient-based optimization
techniques, our choice is computationally more demanding
and may not suit clinical time constraints. However, it is a
powerful approach to quantify uncertainties, crucial for clinical
decision-making. In the current implementation, we sample
the posterior using the Metropolis-Hastings algorithm, which
evaluates approximately 105 models per minute on a single
CPU from a laptop computer with 15-20% acceptance rate.
This algorithm is known to have a poor acceptance rate,
meaning that a large number of samples is needed to approxi-
mate the posterior sufficiently well [52]. The performance can
be significantly improved by incorporating information from
derivatives of the log posterior through Hamiltonian Monte
Carlo methods [52], [53]. In this way, we can guide the
sampler towards high-probability regions of the model space,
making the inversion computantionally more attractive.

Since traveltimes are highly sensitive to reflector inclination
angles, small angular errors in the forward problem will
translate to incorrect anisotropy estimates. We suggest tackling
this by considering reflector inclination angles as parameters
to invert. Although we could similarly include the probe-
reflector distance as another unknown parameter, we consider
its uncertainties negligible, following reported values (5 µm)
in similar works [4]. Under this formulation, our examples
show that uncertainties in velocity estimates are sufficiently
low to significantly distinguish velocity differences typically
observed in muscle tissue (> 10 m/s) [14]–[17]. As suggested
by Fig. 10(e), the validity of this conclusion closely depends
on the level and nature of observational errors, which in
turn depend on the applied traveltime estimation technique.
Here we assume normally distributed noise, which may be
justified when large measurement errors are minimized by
(1) carefully selecting time intervals of expected first-arrival
reflection traveltimes and (2) avoiding outliers due to cycle
skips. We can satisfy these conditions with traveltime esti-
mators based on reflector delineation approaches, commonly
employed for speed-of-sound tomography [4], [43]. They
are designed to remove outliers by including information on

the expected reflector depth and forcing smooth traveltime
variations between adjacent sensors. However, our study does
not consider other sources of errors that may arise in practice
(e.g., poor tissue-reflector coupling). Thus, to better understand
the clinical potential of our method under realistic conditions,
a Bayesian formulation integrating comprehensively and em-
pirically characterized observational errors is required.

For nonlinear problems, the posterior pdf depends on the
anisotropy model. Still, we can draw some general conclu-
sions about uncertainties in inferred anisotropy parameters:
(1) Velocities in directions more parallel to the probe (i.e.,
fiber direction) are generally less constrained than those in
perpendicular directions due to the limited aperture of the
acquisition setup. (2) The anisotropy angle ϕ is the least
constrained parameter with relative uncertainties that are two
orders of magnitudes larger than those for velocities. In fact,
ϕ becomes increasingly unreliable as velocity differences ap-
proach isotropic conditions or the difference between reflector
inclination angles becomes very small. Yet, such uncertainties
do not affect velocity estimates, which encode more relevant
information about tissue anisotropy. (3) Overall, the largest
standard deviations in ϕ (3◦) are substantially smaller than
those reported in similar numerical studies with shear waves
(5.6◦− 36.3◦) [23]. Maximum relative errors in velocities are
also considerably lower in our case (0.2% versus 20%) [23].
It suggests that quantifying anisotropy in longitudinal waves
could potentially be more robust than in shear waves.

APPENDIX A
ELLIPTICAL ANISOTROPY

This appendix discusses the elliptical anisotropy assumption
in muscle and shows the conditions under which (1) is
satisfied. The wave surface given by (1) is an ellipsoid only if
the slowness (reciprocal of the phase velocity) surface is also
an ellipsoid [32], [54]. We therefore focus on analyzing the
expression for phase velocity.

For simplicity, we consider a transversely isotropic medium
with the symmetry axis parallel to x1-direction. The elastic
stiffness tensor cijkl characterizing this medium has five
independent components, which are c1111 ≡ c11, c1122 ≡ c12,
c2222 ≡ c22, c2323 ≡ c44, and c1212 ≡ c66 in Voigt notation.
The parameters c44 and c66 are related to shear moduli; thus,
in soft tissue, c44, c66 � c11, c12, c22 [29]. We can relate the
stiffness tensor to phase velocities V through the Christoffel
equation

det[cijklninl − ρV 2δjk] = 0, (20)

where the Einstein summation convention is implied for re-
peated indices. Here, ρ denotes medium density, the Kronecker
delta δjk is equal to one when j = k and zero otherwise, and
ni refers to the ith component of the wavefront normal vector
(slowness vector). By considering a two-dimensional problem
defined in the x1x2-plane and taking an arbitrary wavefront
direction n = (sinφ, cosφ), (20) leads to

V 2(φ) =
1

2ρ

[
c11 sin2 φ+ c22 cos2 φ+G(φ)

]
(21)



for longitudinal waves, with

G(φ) =
[(
c11 sin2 φ− c22 cos2 φ

)2
+ c212 sin2 2φ

] 1
2

. (22)

The elliptical anisotropy assumption is only valid when the
slowness surface in (21) is an ellipse, which is generally not
the case. Only when the medium satisfies c12 =

√
c11c22, (21)

reduces to the ellipse

V 2(φ) =
1

ρ

[
c11 sin2 φ+ c22 cos2 φ

]
, (23)

with semi-axes
√
ρ/c11 and

√
ρ/c22. In muscle tissue, em-

pirical studies have shown that c12 ≈
√
c11c22 [29], [55],

with reported deviations that are below 0.3%. This justifies
the elliptical anisotropy model used in this study.
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Naiara Korta Martiartu, Saulė Simutė, Michael Jaeger, Thomas Frauenfelder, and Marga B. Rominger

I. CONTENT

This supplementary material shows the detailed derivation of equations summarized in the main manuscript and figures
clarifying the results shown in Figs. 4 and 9b.

II. TRAVELTIMES IN ELLIPTICALLY ANISOTROPIC MEDIA

In a medium with elliptical anisotropy, the group velocity of longitudinal waves v(θ) in an arbitrary propagation direction
θ satisfies

v2(θ)

v21
sin2 (θ − ϕ) + v2(θ)

v22
cos2 (θ − ϕ) = 1, (1)

where v1 and v2 are the longitudinal-wave velocities along and across the anisotropy symmetry axis, respectively, and the
angle ϕ indicates the orientation of this axis with respect to our reference system [see Fig. 1(a) in the main manuscript].
Equivalently, we can rewrite this equation as

1

v2(θ)
=

1

v21
sin2 (θ − ϕ) + 1

v22
cos2 (θ − ϕ) (2)

to explicitly define v(θ).
In homogeneous media, the traveltime of longitudinal waves propagating between arbitrary locations xA and xB is generally

given by

tAB =
||xB − xA||

v(θ)
, (3)

where || · || refers to the Euclidean norm, and θ is the angular position of xB with respect our the coordinate system, with its
origin at xA [see Fig. 1(a) in the main manuscript].

After taking the square of (3) and replacing v(θ) with the definition given in (2), we obtain

t2AB =
||xB − xA||2

v21
sin2 (θ − ϕ) + ||xB − xA||2

v22
cos2 (θ − ϕ). (4)

This equation can be simplified by applying standard trigonometric identities and using the geometric relations ||xB−xA|| sin θ =
x1,B − x1,A and ||xB − xB|| cos θ = x2,B − x2,A. Finally, we can express the traveltime tAB as

t2AB =
1

v21
[(x1,B − x1,A) cosϕ− (x2,B − x2,A) sinϕ]2 +

1

v22
[(x1,B − x1,A) sinϕ+ (x2,B − x2,A) cosϕ]2 . (5)

III. REFLECTOR-BASED EXPERIMENTAL SETUP: DERIVATION OF THE REFLECTION POINT

Let us consider a reflector-based experimental setup with the reflector parallel to the ultrasound probe [see Fig. 1(b) in
the main manuscript]. We can use Fermat’s principle to analytically derive the first-arrival reflection traveltime tSR of waves
propagating from a source at xS to a receiver at xR as

min
xP∈D

tSR(xP), where tSR(xP) = tSP(xP) + tPR(xP). (6)

Here, D refers to the set of points xP at the reflector-tissue interface [see Fig. 1(b) in the main manuscript], and traveltimes
of each path are computed using (5).
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In a first step, we compute the location of the reflection point xmin
P satisfying (6). We assume that this point is shifted from

the source-receiver mid-point position by the same constant δ for every source-receiver combination, i.e., xmin
P = ((x1,S +

x1,R)/2 + δ, L). To find the value of δ, we consider, for simplicity, the zero-offset case in which xS = xR, and we solve (6)
using

dtSR

dx1,P

∣∣∣∣
xP=xmin

P

= 2
dtSP

dδ

∣∣∣∣
xP=xmin

P

= 0. (7)

Because the derivative of tSP with respect to δ must be zero when the reflection point is xmin
P , the same must hold for the

derivative of t2SP:
dt2SP

dδ

∣∣∣∣
xP=xmin

P

= 2tSP
dtSP

dδ

∣∣∣∣
xP=xmin

P

= 0, (8)

which is easier to compute from (5). In our zero-offset case, t2SP has the form

t2SP

∣∣
xS=xR

=
1

v21
[δ cosϕ− L sinϕ]

2
+

1

v22
[δ sinϕ+ L cosϕ]

2
, (9)

and its derivative with respect to δ is

dt2SP

dδ

∣∣∣∣
xS=xR

=
2 cosϕ

v21
[δ cosϕ− L sinϕ] +

2 sinϕ

v22
[δ sinϕ+ L cosϕ] . (10)

By imposing the condition (8), we find that δ satisfies

δ =
L sinϕ cosϕ

[
1
v2
1
− 1

v2
2

]
1
v2
1
cos2 ϕ+ 1

v2
2
sin2 ϕ

=
L sin 2ϕ(v22 − v21)

2(v21 sin
2 ϕ+ v22 cos

2 ϕ)
. (11)

Thus, the reflection point of fastest waves propagating from xS to xR is generally given by

xmin
P =

(
x1,S + x1,R

2
+

L sin 2ϕ(v22 − v21)
2(v21 sin

2 ϕ+ v22 cos
2 ϕ)

, L

)
. (12)

IV. REFLECTOR-BASED EXPERIMENTAL SETUP: FIRST-ARRIVAL REFLECTION TRAVELTIME

The first-arrival reflection traveltime is the sum of two terms:

tSR(x
min
P ) = tSP(x

min
P ) + tPR(x

min
P ). (13)

For simplicity, before computing these two traveltimes, we focus on deriving simplified expressions for their squared
counterparts:

1) Traveltime from the source to the reflection point:

t2SP

(
xmin

P

)
=

1

v21

[(
d

2
+

L sin 2ϕ(v22 − v21)
2(v21 sin

2 ϕ+ v22 cos
2 ϕ)

)
cosϕ− L sinϕ

]2
+

1

v22

[(
d

2
+

L sin 2ϕ(v22 − v21)
2(v21 sin

2 ϕ+ v22 cos
2 ϕ)

)
sinϕ+ L cosϕ

]2
,

(14)

where d = x1,R − x1,S is the source-receiver offset. The terms in brackets can be further simplified as(
d

2
+

L sin 2ϕ(v22 − v21)
2(v21 sin

2 ϕ+ v22 cos
2 ϕ)

)
cosϕ− L sinϕ =

d

2
cosϕ+ L sinϕ

[
cos2 ϕ(v22 − v21)− (v21 sin

2 ϕ+ v22 cos
2 ϕ)

v21 sin
2 ϕ+ v22 cos

2 ϕ

]
=
d

2
cosϕ− Lv21 sinϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ
(15)

and (
d

2
+

L sin 2ϕ(v22 − v21)
2(v21 sin

2 ϕ+ v22 cos
2 ϕ)

)
sinϕ+ L sinϕ =

d

2
sinϕ+

Lv22 cosϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ
. (16)

By replacing them in (14), we obtain

t2SP

(
xmin

P

)
=

1

v21

[
d

2
cosϕ− Lv21 sinϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ

]2
+

1

v22

[
d

2
sinϕ+

Lv22 cosϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ

]2
, (17)
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which reduces to

t2SP

(
xmin

P

)
=

d2

4v21v
2
2

(v21 sin
2 ϕ+ v22 cos

2 ϕ) +
L2

v21 sin
2 ϕ+ v22 cos

2 ϕ
=

d2

4v2(θ = π/2)
+
L2v2(θ = π/2)

v21v
2
2

. (18)

We used (1) in the last step.
2) Traveltime from the reflection point to the receiver:

t2PR

(
xmin

P

)
=

1

v21

[(
d

2
− L sin 2ϕ(v22 − v21)

2(v21 sin
2 ϕ+ v22 cos

2 ϕ)

)
cosϕ+ L sinϕ

]2
+

1

v22

[(
d

2
− L sin 2ϕ(v22 − v21)

2(v21 sin
2 ϕ+ v22 cos

2 ϕ)

)
sinϕ− L cosϕ

]2
.

(19)

Following the same steps as before, we simplify the terms in brackets to obtain

t2PR

(
xmin

P

)
=

1

v21

[
d

2
cosϕ+

Lv21 sinϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ

]2
+

1

v22

[
d

2
sinϕ− Lv22 cosϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ

]2
, (20)

which can be further simplified as

t2PR

(
xmin

P

)
=

d2

4v21v
2
2

(v21 sin
2 ϕ+ v22 cos

2 ϕ) +
L2

v21 sin
2 ϕ+ v22 cos

2 ϕ
=

d2

4v2(θ = π/2)
+
L2v2(θ = π/2)

v21v
2
2

. (21)

By comparing (21) to (18), we observe that

tSP
(
xmin

P

)
= tPR

(
xmin

P

)
, (22)

meaning that the fastest ray path is the path with equal traveltime along each segment. Taking this into account, we finally
derive the analytical expression for first-arrival reflection traveltime:

t2SR

(
xmin

P

)
= 4t2SP

(
xmin

P

)
=

d2

v2(θ = π/2)
+

4L2v2(θ = π/2)

v21v
2
2

. (23)

Note that (22) also means that the mirror image of the receiver, namely a virtual receiver R̃ located below the reflector that
satisfies tSR̃ = tSR, is generally located at

xR̃ = 2xmin
P − xS. (24)

V. PROOF: ACCURACY OF THE REFLECTION POINT

When deriving the reflection point expression, we assumed that this point is shifted from the source-receiver mid-point by
the same constant δ for every source-receiver combination. If this assumption is accurate, the derivative of t2SR(xP) with respect
to xP (or x1,P since the reflection point is always at the reflector) will always be zero at xmin

P given by (12), i.e.,

dtSR

dx1,P

∣∣∣∣
xP=xmin

P

=
dtSP

dx1,P

∣∣∣∣
xP=xmin

P

+
dtPR

dx1,P

∣∣∣∣
xP=xmin

P

= 0. (25)

That is, Fermat’s principle must be satisfied for any source-receiver combination. In the following, we prove that (25) always
holds for xmin

P given by (12).
As before, we transform the derivatives in (25) using squared traveltimes as

dtSR

dx1,P

∣∣∣∣
xP=xmin

P

=

[
1

2tSP

dt2SP

dx1,P
+

1

2tPR

dt2PR

dx1,P

]∣∣∣∣
xP=xmin

P

=
1

2tSP(xmin
P )

[
dt2SP

dx1,P
+

dt2PR

dx1,P

]∣∣∣∣
xP=xmin

P

= 0. (26)

The last step uses the equality given in (22). Therefore, this equation is satisfied when

dt2SP

dx1,P

∣∣∣∣
xP=xmin

P

= − dt2PR

dx1,P

∣∣∣∣
xP=xmin

P

. (27)

To see if this is true, we compute both derivatives:
1) Derivative of t2SP at xmin

P :

dt2SP

dx1,P

∣∣∣∣
xP=xmin

P

=
2 cosϕ

v21
[(x1,P − x1,S) cosϕ− L sinϕ] +

2 sinϕ

v22
[(x1,P − x1,S) sinϕ+ L cosϕ]

∣∣∣∣
xP=xmin

P

. (28)

Here, we can use (17) to simplify the terms in brackets after evaluating them at xmin
P :

dt2SP

dx1,P

∣∣∣∣
xP=xmin

P

=
2 cosϕ

v21

[
d

2
cosϕ− Lv21 sinϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ

]
+

2 sinϕ

v22

[
d

2
sinϕ+

Lv22 cosϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ

]
, (29)
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which can be further simplified as
dt2SP

dx1,P

∣∣∣∣
xP=xmin

P

= d

(
cos2 ϕ

v21
+

sin2 ϕ

v22

)
. (30)

2) Derivative of t2PR at xmin
P :

dt2PR

dx1,P

∣∣∣∣
xP=xmin

P

=
−2 cosϕ

v21
[(x1,R − x1,P) cosϕ+ L sinϕ]− 2 sinϕ

v22
[(x1,R − x1,P) sinϕ− L cosϕ]

∣∣∣∣
xP=xmin

P

. (31)

As before, we can use (20) to simplify the terms in brackets after evaluating them at xmin
P :

dt2PR

dx1,P

∣∣∣∣
xP=xmin

P

=
−2 cosϕ

v21

[
d

2
cosϕ+

Lv21 sinϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ

]
− 2 sinϕ

v22

[
d

2
sinϕ− Lv22 cosϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ

]
, (32)

which can be further simplified as

dt2PR

dx1,P

∣∣∣∣
xP=xmin

P

= −d
(
cos2 ϕ

v21
+

sin2 ϕ

v22

)
. (33)

By comparing (30) and (33), we see that (27) is satisfied, meaning that the expression of the reflection point given in (12) is
exact and does not involve any approximation.

VI. REFLECTOR INCLINATION: DERIVATION OF THE REFLECTION POINT

In this subsection, we calculate the reflection point for an experimental setup with an inclined reflector. To take advantage
of our previous results, we use the equivalent experimental setup depicted in Fig. 1 and consider a virtual source S̃ with the
same elevation as the receiver R. The horizontal distance between S̃ and the reflection point P is then given by

x̃1,P = x1,P + x =
d cosα+ x

2
+ δ′, (34)

where

δ′ =
(L+ d sinα) sin 2ϕ(v22 − v21)

2(v21 sin
2 ϕ+ v22 cos

2 ϕ)
. (35)

The last step uses our previous result in (12). From here, we see that the horizontal distance between the actual source S and
the reflection point P is

x1,P =
d cosα− x

2
+ δ′. (36)

Fig. 1. Schematic illustration of the experimental setup with an inclined ultrasound probe by α and a horizontal reflector in front of it. This setup is equivalent
to having an inclined reflector in front of a horizontally placed linear probe [see Fig. 3 in the main manuscript]. The vertical probe-reflector distance L is
measured from the first transducer element, where in this example we locate the source S. R denotes the receiver located at a distance d from S, P is the
reflection point, and S̃ is a virtual source with same elevation as R. The horizontal distance between S̃ and S is x. This virtual source will allow us to
compute the reflection point using (12).

We can find a second relationship between x and x1,P using the trigonometric identity

d sinα

x
=

L

x1,P
⇒ x =

x1,Pd sinα

L
. (37)
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Finally, upon inserting (37) in (36), we obtain

x1,P =
d cosα

2
− x1,P sinα

2L
+ δ′ ⇒ x1,P =

L(d cosα+ 2δ′)

2L+ d sinα
. (38)

We can generalize this expression by dropping the assumption that S is located at the origin of the coordinate system. Then,
the reflection point becomes

x1,P = dS cosα+
(L+ dS sinα)(d cosα+ 2δ′)

2(L+ dS sinα) + d sinα
, (39)

with
δ′ =

(L+ dS sinα+ d sinα) sin 2ϕ(v22 − v21)
2(v21 sin

2 ϕ+ v22 cos
2 ϕ)

, (40)

where dS is the distance between the source and the origin of the coordinate system (i.e., the first transducer element of the
probe).

VII. REFLECTOR INCLINATION: FIRST-ARRIVAL REFLECTION TRAVELTIME

For simplicity, we calculate the traveltime tSR considering the mirror image of the receiver R̃. This virtual receiver is located
below the reflector, where tSR̃ = tSR is satisfied. When the reflector is not inclined, the location of the virtual receiver is given
by (24). In our example, therefore, this location is xR̃ = (2x̃1,P − x, 2L + d sinα) = (d cosα + 2δ′, 2L + d sinα), shown in
Fig. 2. Note that we again place the origin of the coordinate system at S.

Fig. 2. Schematic illustration showing the location of the mirror image R̃ of the receiver R. The traveltime of a straight ray traveling from S to R̃ (green dashed
line) is the same as the first-arrival reflection traveltime from S to R, that is, tSR̃ = tSR. This virtual receiver is located at xR̃ = (2x̃1,P − x, 2L+ d sinα)
with the origin of the coordinate system at S. We refer the reader to Fig. 1 to understand the meaning of the rest of the symbols in the image.

Following (5), the traveltime between S and R̃ is given by

t2SR̃ =
1

v21
[(d cosα+ 2δ′) cosϕ− (2L+ d sinα) sinϕ]

2︸ ︷︷ ︸
I2

+
1

v22
[(d cosα+ 2δ′) sinϕ+ (2L+ d sinα) cosϕ]

2︸ ︷︷ ︸
II2

. (41)

To simplify this expression, we first simplify the terms in brackets separately using the definition of δ′ in (35):
1) The first term can be reduced to

I = d cos(ϕ+ α) +
d sinα sin 2ϕ cosϕ(v22 − v21)− 2Lv21 sinϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ
. (42)

After taking the square of this term and dividing it with v21 , we obtain

I2

v21
=
d2 cos2(ϕ+ α)

v21
+ 4d sinϕ cos(ϕ+ α)

(
d sinα cos2 ϕ

(
v2
2−v

2
1

v2
1

)
− L

)
v21 sin

2 ϕ+ v22 cos
2 ϕ

+
d2 sin2 α sin2 2ϕ cos2 ϕ

(
v2
2−v

2
1

v1

)2
− 2Ld sinα sin2 2ϕ(v22 − v21) + 4L2v21 sin

2 ϕ

(v21 sin
2 ϕ+ v22 cos

2 ϕ)2
.

(43)
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2) The second term can be reduced to

II = d sin(ϕ+ α) +
d sinα sin 2ϕ sinϕ(v22 − v21) + 2Lv22 cosϕ

v21 sin
2 ϕ+ v22 cos

2 ϕ
. (44)

As before, we take the square of II and divide it with v22 to obtain

II2

v22
=
d2 sin2(ϕ+ α)

v22
+ 4d cosϕ sin(ϕ+ α)

(
d sinα sin2 ϕ

(
v2
2−v

2
1

v2
2

)
+ L

)
v21 sin

2 ϕ+ v22 cos
2 ϕ

+
d2 sin2 α sin2 2ϕ sin2 ϕ

(
v2
2−v

2
1

v2

)2
+ 2Ld sinα sin2 2ϕ(v22 − v21) + 4L2v22 cos

2 ϕ

(v21 sin
2 ϕ+ v22 cos

2 ϕ)2
.

(45)

We notice that (43) and (45) have common terms that will vanish when we sum them to calculate t2
SR̃

. Moreover, using the
symmetries between their terms, we can express the traveltime as

t2SR̃ = d2
(
sin2(ϕ+ α)

v22
+

cos2(ϕ+ α)

v21

)

+
4Ld sinα− d2 sin2 α sin2 2ϕ

(v2
1−v

2
2)

2

v2
1v

2
2

v21 sin
2 ϕ+ v22 cos

2 ϕ
+ d2 sin 2α sin 2ϕ

v22 − v21
v21v

2
2

+
4L2 + d2 sin2 α sin2 2ϕ

(v2
2−v

2
1)

2

v2
1v

2
2

v21 sin
2 ϕ+ v22 cos

2 ϕ
,

(46)

where each line in this equation refers to one term in (43) and (45), following the same order. We can futher simplify (46) as

t2SR̃ = d2
(
sin2(ϕ+ α)

v22
+

cos2(ϕ+ α)

v21

)
+

4L(L+ d sinα)

v21 sin
2 ϕ+ v22 cos

2 ϕ
+ d2 sin 2α sin 2ϕ

v22 − v21
v21v

2
2

.

(47)

Here, the sum of the first and third term equals to

d2
(
sin2(ϕ+ α)

v22
+

cos2(ϕ+ α)

v21

)
+ d2 sin 2α sin 2ϕ

v22 − v21
v21v

2
2

=
d2

v21v
2
2

(
v21 sin

2(ϕ− α) + v22 cos
2(ϕ− α)

)
. (48)

Therefore, the traveltime t2
SR̃

, which is equal to t2SR, reduces to

t2SR =
d2

v21v
2
2

(
v21 sin

2(ϕ− α) + v22 cos
2(ϕ− α)

)
+

4L(L+ d sinα)

v21 sin
2 ϕ+ v22 cos

2 ϕ
. (49)

So far, we have considered the experimental setup depicted in Figs. 1 and 2. However, this setup is a rotated version of the
actual experimental configuration considered in the main manuscript, as shown in Fig. 3. To find an expression for the traveltime
that is valid for our original experimental setup, we need to apply the transformations L → L cosα and ϕ → ϕ + α. The
transformation for L considers the case in which the source is located at the first transducer element (origin of the coordinate
system). We can generalize the traveltimes to any source location applying the transformation L→ L cosα+ dS sinα, where
dS is the distance between S and the origin of the coordinate system. Thus, the first-arrival reflection traveltime between S
and R becomes

t2SR =
d2

v2(π/2)
+

4L′(L′ + d sinα)

v21 sin
2(ϕ+ α) + v22 cos

2(ϕ+ α)
(50)

with
L′ = L cosα+ dS sinα. (51)

VIII. CONSTRAINING ANISOTROPY PARAMETERS

In this section, we show additional figures to clarify the content of Fig. 4 in the main manuscript. This figure represents the
equivalent models in terms of the anisotropy angle and the velocity ratio. This is useful to visualize three-dimensional models
in a two-dimensional image. However, it may not be clear whether each point in this figure corresponds to a single anisotropy
model or a set of models with equal velocity ratio. In order to clarify this point, we show two additional figures of the same
result. Figure 4(a) shows the parameters ϕ and v1 of the models, whereas Figure 4(b) shows ϕ and v1. We can see that each
point in Fig. 4 of the main manuscript and the intersection point of the curves represent a single anisotropy model.
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Fig. 3. Schematic illustration showing two equivalent experimental setups. (a) Our original setup considers the reflector inclined by α with respect to the
x1-axis. The vertical distance between the first transducer element (origin of the coordinate system) and the reflector is L. The anisotropy symmetry axis of
the medium has the orientation ϕ with respect to the x2-axis. (b) We rotate the whole system by α in order to imagine an equivalent setup with no reflector
inclination. Now, the probe is inclined with respect to the x1-axis, the anisotropy of the medium has the orientation ϕ+ α, and the vertical probe-reflector
distance becomes L cosα.

Fig. 4. Figures corresponding to the result shown in Fig. 4 of the main manuscript. We show muscle models equivalent to m̂ = (1560 m/s, 1540 m/s, 0◦)
(orange) in terms of first-arrival reflection traveltimes using reflector inclination angles α = 0◦, 10◦, and 20◦. Each model is defined by three parameters:
anisotropy angle ϕ and velocities v1 and v2. For visualization, we show in (a) the parameters ϕ and v1 of the models and in (b) the parameters ϕ and v2
of the same models. We can observe that the three curves intersect in a single point that represents m̂.

IX. EXTENDED BAYESIAN FORMULATION FOR UNCERTAIN REFLECTOR INCLINATION ANGLES

In this section, we show numerical examples supporting the uniqueness of the solution shown in Fig. 9(b) (in gray) of
the main manuscript. We use the same Bayesian formulation that considers inclination angles as unknown model parameters
and perform the inversion initializing the Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithm with models
that deviate strongly from the true model mtrue = (1560 m/s, 1540 m/s, 0◦, 0◦, 5◦). This allows us to explore a wider
area of the model space and converge to other maxima of the posterior probability density function, if any. Figs. 5–7
show the results obtained when the MCMC is initialized with models minit = (1350 m/s, 1350 m/s, 40◦, 10◦, 15◦), minit =
(1750 m/s, 1750 m/s,−40◦, 15◦, 15◦), minit = (1750 m/s, 1750 m/s, 40◦, 15◦, 0◦), minit = (1310 m/s, 1310 m/s,−40◦, 15◦, 0◦),
minit = (1310 m/s, 1750 m/s, 40◦, 5◦, 0◦), and minit = (1750 m/s, 1310 m/s,−40◦, 5◦, 0◦). Note that parameter values chosen
for these initial models are close to the extreme limits imposed by our uniform priors, which are defined within the range
of [1300 m/s, 1800 m/s] and [−45◦, 45◦) for velocities and the anisotropy angle, respectively. Yet, all MCMC realizations
converge to the same maximum of the posterior as in Fig. 9(b) (gray), suggesting that the solution uniqueness is still given
within the model subspace defined by the priors in this extended Bayesian formulation.

X. PHASE VELOCITIES IN ELLIPTICALLY ANISOTROPIC MEDIA

The Christoffel equation relates the stiffness tensor cijkl to the phase velocities V as

det[cijklninl − ρV 2δjk] = 0, (52)

where the Einstein summation convention is implied for repeated indices. Here, ρ denotes medium density, δjk is the Kronecker
delta, and ni refers to the ith component of the wavefront normal vector. If we assume the muscle as an elliptically anisotropic
medium, the stiffness tensor will have only three relevant components, which are c1111 ≡ c11, c1122 ≡ c12, and c2222 ≡ c22 in
Voigt notation.
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Fig. 5. Marginal probability density functions obtained when we initialize the Metropolis-Hastings Markov chain Monte Carlo algorithm with models (a)
minit = (1350 m/s, 1350 m/s, 40◦, 10◦, 15◦) and (b) minit = (1750 m/s, 1750 m/s,−40◦, 15◦, 15◦).

We consider a two-dimensional problem defined in the x1x2-plane. For an arbitrary wavefront direction n = (sinφ, cosφ),
the determinant in (52) reduces to∣∣∣∣c11 sin2 φ− ρV 2 c12 sinφ cosφ

c12 sinφ cosφ c22 cos
2 φ− ρV 2

∣∣∣∣ = ρ2V 4 − ρV 2(c11 sin
2 φ+ c22 cos

2 φ) + (c11c22 − c212) sin2 φ cos2 φ. (53)

Following (52), we equate (53) to zero. This gives a second order polynomial for ρV 2 with solutions

ρV 2 =
1

2

[
(c11 sin

2 φ+ c22 cos
2 φ)±

√
(c11 sin

2 φ+ c22 cos2 φ)2 − 4(c11c22 − c212) sin
2 φ cos2 φ

]
. (54)

Here we can simplify the term inside the square root as

ρV 2 =
1

2

[
(c11 sin

2 φ+ c22 cos
2 φ)±

√
(c11 sin

2 φ− c22 cos2 φ)2 + c212 sin
2 2φ

]
. (55)

In general, only the positive sign guarantees a solution for V . Thus, the phase velocity of longitudinal waves is given by

V 2(φ) =
1

2ρ

[
c11 sin

2 φ+ c22 cos
2 φ+G(φ)

]
(56)
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Fig. 6. Marginal probability density functions obtained when we initialize the Metropolis-Hastings Markov chain Monte Carlo algorithm with models (a)
minit = (1750 m/s, 1750 m/s, 40◦, 15◦, 0◦) and (b) minit = (1310 m/s, 1310 m/s,−40◦, 15◦, 0◦).

with

G(φ) =
[(
c11 sin

2 φ− c22 cos2 φ
)2

+ c212 sin
2 2φ

] 1
2

. (57)
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Fig. 7. Marginal probability density functions obtained when we initialize the Metropolis-Hastings Markov chain Monte Carlo algorithm with models (a)
minit = (1310 m/s, 1750 m/s, 40◦, 5◦, 0◦) and (b) minit = (1750 m/s, 1310 m/s,−40◦, 5◦, 0◦).


