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Abstract

Genomic medicine stands to be revolutionized through the understanding of single nucleotide variants (SNVs) and their ex-

pression in single-gene disorders (mendelian diseases). Computational tools can play a vital role in the exploration of such

variations and their pathogenicity. Consequently, we developed the ensemble prediction tool AllelePred to identify deleterious

SNVs and disease causative genes. In comparison to other tools, our classifier achieves higher accuracy, precision, F1 score,

and coverage for different types of coding variants. Furthermore, this research analyzes and structures 168,945 broad spectrum

genetic variants from the genomes of the Saudi population to denote the accuracy of the model. When compared, AllelePred

was able to structure the unlabeled Saudi genetic variants of the dataset to mimic the data characteristics of the known labeled

data. On this basis, we accumulated a list of highly probable deleterious variants that we recommend for further experimental

validation prior to medical diagnostic usage.
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AllelePred: A Simple Allele Frequencies 
Ensemble Predictor for Different Single 

Nucleotide Variants  
Turki M. Sobahy1*, Olaa Motwalli2, and Meshari Alazmi3  

Abstract— Background & Objective: Genomic medicine stands to be revolutionized  by understanding single nucleotide 

variants (SNVs) and their expression in single-gene disorders (Mendelian diseases). Computational tools can play a vital role in 

the exploration of such variations and their pathogenicity. Consequently, we developed the ensemble prediction tool AllelePred 

to identify deleterious SNVs and disease causative genes.Results: The model utilizes different population genetics 

backgrounds, and restricted criteria for features selection to help generate high accuracy results. In comparison to other tools, 

such as Eigen, PROVEAN, and fathmm-MKL our classifier achieves higher accuracy (98%), precision (96%), F1 score (93%), 

and coverage (100%) for different types of coding variants. Furthermore, this research analyzes and structures 168,945 broad 

spectrum genetic variants from the genomes of the Saudi population to denote the accuracy of the model. When compared, 

AllelePred was able to structure the unlabeled Saudi genetic variants of the dataset to mimic the data characteristics of the 

known labeled data. On this basis, we accumulated a list of highly probable deleterious variants that we recommend for further 

experimental validation prior to medical diagnostic usage.Conclusions: The ensemble prediction tool AllelePred enables 

increased accuracy in recognizing deleterious SNVs and the genetic determinants in real clinical data. 

Index Terms— Single nucleotide variants, Single-gene disorders, Predictive modeling  

 

——————————      —————————— 

1 INTRODUCTION

s the enigma of the human genome begins to unrav-
el, the study of genomics has found that many hu-

man diseases can be traced back to a genetic component 
[1],[2]. Both rare single-gene disorders (Mendelian diseas-
es) and complex disorders (diabetes) can be linked to var-
iations in the human genome [1], [3]. Therefore, it has 
become essential to identify disease-inducing genetic var-
iations that can help diagnose human disease and under-
stand its pathophysiological process [4], [5]. 
Genetic changes can be identified through human ge-
nome reference comparison and manifest in different 
types. These types can range from complex structural 
variations to simpler single nucleotide variants (SNVs). 
SNVs are the most common type of sequence change [6] 
and can be categorized into two main types; synonymous 
and non-synonymous. Synonymous SNVs involve the 
replacement of a codon. Contrarily, most non-
synonymous SNVs (nsSNVs) result in an encoded protein 
with an amino acid change that affects and alters func-
tionality [7], [8]. As a result, nsSNVs are the most com-
mon cause of Mendelian diseases and represent the ma-
jority of known disease-inducing genetic variations [7], 
[9]. Additionally, nsSNVs can be classified into three 
types of mutations; missense, nonsense, and frameshift. 
In a missense mutation, a DNA base pair is changed, re-
sulting in the encodement of different amino acids. Simi-
larly, a nonsense mutation involves a change in a DNA 
base pair; however, this produces a stop codon that ter-
minates the protein synthesis process prematurely. 
Meanwhile, frameshift mutations involve the insertion or 
removal of a single nucleotide that changes the protein 
reading frame. These types of mutations can result in the 

compromise and dysfunctionality of encoded protein.  
Moreover, SNVs can be classified based on the chemical 
properties of the changed nucleotide. In particular, the 
ring structure, which determines if a substitution is a 
transition or transversion [10]. Single-ring shaped mole-
cules known as pyrimidine, include cytosine (C) and 
thymine (T). While, two-ring shaped molecules called 
purines include adenine (A) and guanine (G). An ex-
change of the same ring (purine to purine, pyrimidine to 
pyrimidine) is called a transition substitution. On the con-
trary, transversions include an exchange of different ring 
size (purine to pyrimidine, vice versa) [10]. Note that 
transversions are known to be more impactful because of 
the structural effects they pose to DNA [10], [11]. 
SNVs have been experimentally validated and studied 
through laboratory-based methods. Yet, a single human 
exome can harbor around 20,000 SNVs [12], making such 
laboratory verifications both time-consuming and expen-
sive. As a result, computational tools have become valua-
ble in exploring the footprint of genetic variations and 
their pathogenicity [8], [13], [14]. Thus, tools such as Mu-
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tationAssessor, LRT, SIFT, CADD, PolyPhen, ClinPred, 
fathmm-MKL, and Eigen were created [15]-[17]. 
The first class of computational methods, individual clas-
sifiers (MutationAssessor, LRT, SIFT, CADD, and Poly-
Phen). These methods rely on sequence-based features 
such as; chemical properties of the replacement, experi-
mental data, sequence-based (e.g. CpG transition) and 
structure-based features, etc. [15], [16], [18]-[20] to gener-
ate a single classification model. On the other hand, the 
second class of methods, ensemble classifiers (VEST, 
ClinPred, fathmm-MKL, and Eigen). These methods in-
corporate more recent computational algorithms and in-
dividual predictor scores [17] to merge the predictions of 
multiple base models (refer to Figure 1). In general, en-
semble classifiers are known for their high dimensionali-
ty, reduced model bias, and complex data structures [21]. 
Nonetheless, current ensemble predictors are designed to 
estimate the impact of only missense genetic variations, 
except for fathmm-MKL and Eigen, whose coverage ex-
tends to nonsense, frameshift, and synonymous variants. 
Even so, Eigen only predicts variants with full annota-
tions, and fathmm-MKL does not consider one crucial 
feature [12], [18], [19]. The features of Allele Frequencies 
(AFs) are used to represent the population(s) background 
knowledge features [22]. The AFs are commonly applied 
during genetic variant interpretation workflows and can 
increase the precision of machine learning models [17], 
[23]. Thus, we used AFs to help create AllelePred; an ac-
curate ensemble tool that helps in identifying deleterious 
SNVs, actionable variants to fine-tune workflows, and 
disease causative genes.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 Fig.1. List of available predictive methods per class: individual and en-

semble. Only three methods used AFs. Mainly, Eigen, and ClinPred em-

ployed AFs of different populations.  

2 MATERIALS AND METHODS 

2.1 AllelePred Dataset 

We collected 168,945 broad-spectrum genetic variants for 
the Saudi population from the SHGP portal 
(https://shgp.sa/index.en.html). However, there was a 
high error rate of the used sequencing platform (Ion Pro-
ton™). In predictive modeling, identifying reliable, bal-
anced, and accurate sources of data is crucial. Thus, gno-

mAD was used to filter variants, leaving a total of 100,507 
variants. Then, intronic, splicing, frameshift, and non-
frameshift INDELS were removed. A final dataset of 
56,172 genetic variants remained; missense (50%), non-
sense (2%), and synonymous (48%). To classify the final 
dataset of genetic variants, the ClinVar database was 
downloaded in February 2019. ClinVar variants reviewed 
in January 2013 were used to label the variants into toler-
ated, likely tolerated, deleterious, or likely deleterious. 
Consequently, only 9% of the final dataset was labeled by 
ClinVar and resulted in 5,123 SNVs. This final dataset  
resulted in a highly unbalanced labeled dataset and an 
uneven distribution of deleterious and tolerated variants 
within the different variant classes (e.g., synonymous 
variants had no true positive variants). To solve the un-
balanced dataset issue, additional data was added by 
generating a ClinVar based testing dataset that accounts 
for all the investigated types of variations (missense, syn-
onymous, and nonsense). All deleterious (86) and tolerat-
ed (31) in synonymous and nonsense variants were col-
lected to even the distribution. A final 1,199 variants were 
then added to the dataset, 32 duplicate variants removed, 
and a final labeled dataset of  6,290 variants obtained (re-
fer to Figure 2). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig.2. Dataset acquisition and pre-model training preparation. 

2.2 Features 

We used ANNOVAR to download nine prediction scores 
of different predictive models: CADD, ExAC_pLI, M-
CAP, MetaSVM, MutationTaster, Polyphen2_HDIV, Pol-
yphen2_HVAR, REVEL and SIFT, and the allele frequen-
cies (AFs) of different populations (Supplementary Table 
1). The Saudi AFs were collected from the SHGP web ap-
plication. However, a challenge was encountered in find-
ing functional features for synonymous SNVs (Table 1). 
Thus, features that returned no prediction scores were 
given a value of zero. 
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Variant Type Number of 

Variants 

Missing Fea-

tures Count 

Average per 

Variant 

Missense 2,508 11,953 4.765948963 

Synonymous 3,378 34,003 10.06601539 

Nonsense 377 11,073 29.37135279 

Other 27 117 4.333333333 

Total 6,290 57,146 9.085214626 

Table.1. The number of unavailable features in each type of variation per 

type.   
Feature selection is a crucial component in training ma-
chine learning models and increasing model prediction 
accuracy and generalization [24]. To reduce our 41 fea-
tures, we used the Pearson correlation coefficient to 
measure the strength of association between features. By 
defining a correlation of 0.98 as the threshold value for 
high degree collinearity, we removed 17 features. Fur-
thermore, the chi-squared selection criteria were used to 
select highly dependent features on the target vector and 
provide a more stable model. Consequently, a final num-
ber of 20 features was selected. Through feature selection 
(supplementary table 1), we reduced the total number of 
features by 50% (20 of 41), resulting in a more reliable and 
generic model. The features were then normalized inde-
pendently between 0 and 1 using min-max normalization 
to avoid behavioral changes. 

2.3 AllelePred Model 

The data was divided into 70% training and 30% testing 
datasets. Random Forest Classifier model was used on the 
training set, and the number of the decision trees was 
tuned via 5-fold cross-validation (Table 2). Meanwhile, 
the 30% unseen testing dataset was used to compare the 
performance of the final model (after tuning) with the 
state-of-the-art methods (Table 4). 

3 RESULTS 

3.1 SAUDI GENETIC VARIANT STATISTICAL ANALYSIS  

Statistical analysis was performed on the 100,507 genetic 
variants of the Saudi population and compared to other 
population variants.  
First, the 95,416 unlabeled variants dataset were ana-
lyzed. Most of the variants were transition substitutions 
representing 73% of the data, while 27% were transver-
sions. As shown in Figure 3(a), 36% of the transition sub-
stitutions were between C→T and T→C (pyrimidines), 
while 37% were between G→A and A→G (purines). Con-
currently, in the transversion substitutions 13% were a 
purine ring to pyrimidine (A→C/T & G→C/T), and 14% 
a pyrimidine ring to a purine (C→A/G & T→A/G). This 
data is further analyzed after the AllelePred method was 
used to predict its label.   
Labeled by ClinVar were 5,091 genetic variants; 80% were 
transition substitutions, and 20% transversions. The la-
beled data also presented a skewed distribution; 98.6% of 
the variants were tolerated, and 1.4% were deleterious. Of 
the 5,020 tolerated variants 80% were transition substitu-
tions, and 20% were transversions (Figure 3(b)). In partic-

ular, 41% of the transitions were between C→T and T→C 
and 39% between G→A and A→G. While, of the trans-
versions, 10% were substitutions of a purine ring to that 
of a pyrimidine, and 10% were of the opposite.  
On the other hand, among the 71 deleterious variants, 
91% were transitions, and 5% were transversions (Figure 
3(c)). 57% of the transitions were between C→T and 
T→C, and 43% between G→A and A→G. Meanwhile, 2% 
of the transversions were of a purine ring to a pyrimidine, 
and 3% of the opposite. Note that only transversions of 
G→T, A→T, and C→G occurred. 
It seems that the data shows favor to the occurrence of 
transition substitutions.  Accordingly, most of the labeled 
deleterious variants, labeled tolerated variants, and unla-
beled variants were transitions. The data is almost evenly 
split between same ring changes in purines and pyrim-
idines within the transition substitutions. Similarly, there 
is an almost even split between purine ring to pyrimidine 
and pyrimidine ring to purine in transversion substitu-
tions. 
AllelePred was then used to provide predictive labels to 
the 95,416 genetic variants in the unlabeled dataset. Simi-
larly to the labeled dataset AllelePred predicted a high 
number of transitions and a lower number of transver-
sions, 73% and 27%, respectively. A skewed distribution 
was also predicted; 0.48% of the variants were deleteri-
ous, while 99.52% tolerated.  
Of the tolerated variants, 73% were transitions and 27% 
transversions. Moreover, 36% of the transition substitu-
tions were between C→T and T→C, and 37% between 
G→A and A→G. While in the transversions, 13% were 
purine to pyrimidine, and 14% the opposite. 
The deleterious variants, however, were 97% transition 
substitutions and 3% transversions. Of the transitions 49% 
were between C→T and T→C, and 48% between G→A 
and A→G. 1% of the transversions were purine to pyrim-
idine, and 2% of the opposite. Note that no transversions 
of A→C and G→C were found. 
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Fig.3. Frequency of the unlabeled, tolerated, and deleterious nucleic ac-

id changes in the original dataset of 100,507 SNVs. 

 

3.2 ALLELEPRED MODEL DEVELOPMENT PERFORMANCE 

These results were assessed through measuring the per-
formance of the model using the following metrics: recall, 
precision, F1-score, and accuracy measures. Table 2 
shows the average performance on the validation sets. 

 
 
 
 
 
 
 
 
 

 

No.of trees Precision Recall F1-score Accuracy 

1 0.89 0.90 0.89 0.97 

10 0.91 0.91 0.91 0.98 

100 0.93 0.91 0.92 0.98 

1000 0.92 0.91 0.92 0.98 

Table.2. Performance-based on the 5-fold cross-validation with decision 

tree number tuning. 

3.3 PERFORMANCE COMPARISON WITH SIMILAR TOOLS 

The results from the 30% unseen testing dataset were 
used to compare the performance of AllelePred with 
three other methods. The comparator tools were selected 
based on their ability to predict more than one type of 
mutation. Eigen and fathmm-MKL were the only ensem-
ble classifiers that met this criterion. Thus, the individual 
classifier PROVEAN was also added. The deterministic 
cut-off for Eigen and fathmm-MKL was a default raw 
score of 0.5. Meanwhile, PROVEAN predicted definitive 
variant classes (neutral or damaging). 
Additionally, AllelePred was tested against routine com-
putational workflow. The routine workflow is a method 
that utilizes the overall AFs in gnomAD (less than 1%) 
and CADD (scaled C-score of at least 15) while including 
AF filtration and model prediction [25]. 
 AllelePred demonstrated the best performance and cov-
erage for all coding variants.  Overall, Eigen did not re-
turn predictions for some variants (55%) and returned 
predictions for only 6% of the synonymous variants. 
Moreover, fathmm-MKL showed the lowest overall accu-
racy of 69.6%. In fact, for synonymous variants, fathmm-
MKL only achieved 73.6% accuracy, while other methods 
(except Eigen) achieved a tight accuracy; AllelePred 
(98%), the routine workflow (99%), and PROVEAN (98%). 
In the nonsense category, Eigen returned predictions for 
93% of the submitted variants with 71% accuracy; 
fathmm-MKL achieved an accuracy of 76%, and the rou-
tine workflow a 90% accuracy. AllelePred exceeded the 
other models with the highest accuracy of 99%. Note that 
PROVEAN was not designed to predict nonsense muta-
tions. Finally, missense variants had full coverage by all 
models, except for Eigen which missed approximately 4% 
of the variants. AllelePred, again, achieved the highest 
accuracy of 99%. While, fathmm-MKL, the routine work-
flow, PROVEAN, and Eigen achieved 63%, 76%, 86.2%, 
and 91% respective accuracies (Figure 4, Table 3). 

 
 

 

b 

c 
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Table.3. The table shows performance of AllelePred with other methods. 

 

Fig.4.The results of the testing dataset (1,883 genetics variants) of 

AllelePred and comparative approaches. 

3.3 CLINICAL TESTING 

AllelePred clinical applicability was evaluated in compar-
ison with the “routine” workflow on two clinical WES 
datasets. First, two VCF files contain a single homozy-
gous causative that was clinically verified and reported 
(NM_000466.2:c.3568C>T, NM_014780.3:c.2862+1G>A) 
were obtained from KFSHRC-R. The second WES (re-
search set) we had at KFSHRC-J (no published data for 
the study yet) (ethical approval No. 2018-36). We used 
two variants (from Arab patients) that were published in 
peer-reviewed journals: NM_017988.4:c.106C>T, which  a 
protein terminating variant with very low AF (< 1%) re-
ported in a Saudi family; the parents are first cousins, 
diagnosed with arthrogryposis multiplex congenita 
(AMC); and NM_000933.3:c.1862G>A. This is a rare (not 
found on gnomAD) missense alteration that was reported 
in an Egyptian family with history of auriculocondylar 
syndrome (ARCND) with highly variable clinical pheno-
types [26], [27]. The two variants were inserted into the 
two research WES files.  
In total, the four exomes had no true positive variants on 
ClinVar, and shared 3,835 unique true negative variants. 
AllelePred and the “routine” workflow were evaluated 
based on detecting the causative variants, and the number 
of false-positive variants based on their classification in 
the reviewed ClinVar dataset. False negatives were not 

accounted for because no true positives were found on 
ClinVar. Both methods were able to predict the four caus-
ative variants. AllelePred only had one false positive var-
iant, while the routine workflow had 58 unique false posi-
tive variants in all samples. AllelePred also predicted 
fewer variants as deleterious than the routine workflow 
(Tabel 4). 

Table.4. Total number of variants per sample, number of positive predictive 

(PP), true positive (TP) & false positive variants (FP) by AllelePred, and the 

routine workflow. 

4 DISCUSSION 

Elaborating on understanding genetic mutations is an 
integral aspect of medical genetics and is vital to provid-
ing opportunities to those with gene disorders [23]. To 
compensate for functional assays' costs and enable cost-
effective experimental validation, a computational ap-
proach can be used to evaluate SNV molecular conse-
quences [28]. Due to the high false-positive rates in the 
available predictive models [29], we designed AllelePred. 
This method uses different population’s genetics back-
grounds and restricted criteria for feature selection (AFs) 
to yield higher accuracy results. AFs enabled our method 
to display a high level of F1-score, precision, accuracy, 
and coverage compared to the other methods. 
Infrequent variants are increasingly crucial in diagnosing 
single-gene and complex disorders and tend to be popu-
lation specific. The rarity of a variant is often associated 
with an increased probability of variant causality [30]-
[36]. This was denoted by the AF feature in AllelePred, 
and played a significant role in ensuring the method's 
high performance. In fact, The Population Architecture 
using Genomics and Epidemiology (PAGE) consortium 
project [37] showed that the usage of AFs from different 
populations resulted in the identification of 27 novel vari-
ants. 
During the statistical analysis of the ClinVar labeled da-
taset, it was found that of the tolerated variants 80% were 
transition substitutions, and only 20% were transversion. 
The high number of transitions can be ascribed to the 
phenomenon called the transition bias. Since transition 
substitutions require less double-helix structure distor-
tion, this makes them a more frequent occurrence than 
transversions [38]. Additionally, a high tolerated transi-
tion substitution rate and a low tolerated transversion 
rate were expected; transversions were significantly more 
detrimental than transitions [39]. This is attributed to the 
structure of the genetic code as transitions often have a 
lower probability of causing radical changes to the physi-
cochemical properties of amino acids [40]. Surprisingly, 
however, in the deleterious variants 91% were transitions, 
and only 5% were transversions.  
To further evaluate this particular pattern, we accumulat-

Method Precision Recall F1-

score 

Accuracy Coverage 

AllelePred 0.96 0.90 0.93 0.98 1.00 

Workflow 0.54 0.90 0.68 0.90 1.00 

PROVEAN 0.50 0.69 0.58 0.93 0.94 

Eigen 0.76 0.75 0.75 0.89 0.46 

Fathmm-

MKL 

0.26 0.88 0.40 0.70 1.00 

Sample No. of 

variants 

TP Workflow AllelePred 
PP TP FP PP TP FP 

S1 84607 1 498 1 20 204 1 0 

S2 86889 1 521 1 13 245 1 0 

S3 56618 1 731 1 23 419 1 0 

S4 54610 1 513 1 6 357 1 1 
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ed other population data (from previously downloaded 
gnomAD) and analyzed the percentage of its transition 
and transversion substitutions. Interestingly, the pattern 
of high deleterious transitions and low deleterious trans-
versions was found among all other populations (with the 
exception of non-Finnish European population (NFE)) 
(Supplementary table 2). Furthermore, in the other popu-
lations, we found a high percentage of tolerated transi-
tions and a low percentage of tolerated transversions. 
Thus, based on our data, we can conclude that this is a 
recurring pattern in both the Saudi population and most 
other populations. Moreover, we statistically analyzed the 
unlabeled Saudi genetic variants that were predicted by 
AllelePred. We found that the pattern of the labeled Saudi 
genetic variants, and other populations mentioned above, 
was mimicked in AllelePred’s predictions. 
In addition, during the analysis of the substitutions be-
tween the populations, it was found that the Saudi da-
taset showed the highest number of transversions and the 
lowest number of transitions. It can be hypothesized that 
this high transversion rate results from consanguineous 
marriages, which have been known to increase the preva-
lence of genetic disorders [41], [42]. Yet, surprisingly, the 
percentage of deleterious transversions is the lowest in 
the Saudi population. 
From our findings, we were able to sum up the variants 
that have the highest probability of being deleterious (Ta-
ble 5) and Saudi variants without reference labels 
(https://drive.google.com/file/d/1bT9t_dfbvyQ4wgu-
hjTf7oIQRw1TC5oZ/view?usp=sharing  ). The listed var-
iants were predicted to be deleterious in at least three 
prediction tools or more. Thus, we recommend further 
experiential validation to verify the effect of variants be-
fore their use for medical diagnostic purposes. 

5 CONCLUSION 

The role of genetics in the diagnosis and treatment of dis-
eases is steadily becoming a paramount one. To further 
such advancements, we developed a meta-predictive and 
straightforward model for the impact relevance of multi-
ple types of SNVs. Random Forest classifier and compara-
tive analysis were applied to measure feature relevance, 
select 20 features, and combine predicted functional an-
notations and AFs. The resulting model proved to have 
high coverage, accuracy, precisions, F1, and recall in 
comparison to other models. Additionally, analysis on 
broad-spectrum labeled Saudi genetic variants was per-
formed. Wherein, AllelePred was able to mimic the high 
percentage of tolerated transitions and low percentage of 
tolerated transversions in predicting the unlabelled Saudi 
genetic variants. Based on this, our research suggests high 
probability deleterious Saudi genetic variants for further 
clinical trial and study. Future work could include larger 
Arab or Saudi annotated genetic datasets or burgeoning 
AFs applications for non-coding variants when reliable 
and curated sources become available. 
 
 
 

 

 

Table.5. This table identifies the variants that were predicted to be deleteri-

ous in three or more tools. 
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Fathmm-

Mkl 
  

15 66729163 C  T AllelePred Eigen 
Fathmm-

Mkl 
Provean 

2 47702265 C  T AllelePred Eigen 
Fathmm-

Mkl 
  

11 32413566 G  A AllelePred   
Fathmm-

Mkl 
Provean 

16 2114342 C  T AllelePred Eigen 
Fathmm-

Mkl 
  

10 89711899 C  T AllelePred Eigen 
Fathmm-

Mkl 
Provean 

5 
11217463

1 
C  T AllelePred Eigen 

Fathmm-

Mkl 
  

10 89717672 C  T AllelePred Eigen 
Fathmm-

Mkl 
  

11 
10819614

3 
C  T AllelePred Eigen 

Fathmm-

Mkl 
Provean 

5 
11216461

6 
C  T AllelePred Eigen 

Fathmm-

Mkl 
  

3 37042536 C  T AllelePred Eigen 
Fathmm-

Mkl 
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