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Abstract

Continual exploitation of Electronic Health Records (EHRs) has led to increasing amounts of ransomware and identity theft in

recent years. Existing cryptosystems protecting these EHRs are weak due to their inherently transparent software that allows

adversaries to extract encryption keys with relative ease. I designed a novel cryptosystem that employs Physically Unclonable

Functions (PUFs) to securely encrypt user EHRs in a protected SGX enclave. The CPU-attached PUF provides a secret, device-

unique value or a ‘digital fingerprint’ which is used to derive a symmetric key for subsequent AES-NI hardware encryption.

Since the cryptographic operations, from key derivation to encryption, transpire in a confidential SGX enclave, the keys are

always protected from OS-privileged attacks- a capability lacking in most existing systems. I used my system APIs to evaluate

the performance of various hash and encryption schemes across multiple EHR block sizes. SHA512 and AES-NI-256-GCM were

selected for cryptosystem implementation because they demonstrated high performance without compromising on security.
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1. Introduction

Accompanying the explosion in popularity of elec-

tronic biometric tracking devices, from FitBits to Apple

Watches, consumer Electronic Health Records (EHRs)

are being harvested at unprecedented rates [1]. Upon

being collected, these EHRs leave the user’s possession

and often fall into the wrong hands or are used for unau-

thorized purposes. In fact, this private data has quickly

become the very essence of black market exchanges,

being traded and exploited all without the user’s con-

sent or even their knowledge [2]. As the prevalence of

smart technologies increases, so does the severity and

frequency of these fraudulent exchanges. In the first half

of 2019 alone, 4.1 billion records were estimated to have
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been breached, indicating the presence of explicit gaps

in existing cryptosystems tasked with protecting EHRs

[3].

Many modern cryptosystems are highly reliant on

the software for purposes like key derivation, encryption,

and key protection, which is in itself sub-optimal. Ad-

versaries are able to extract relevant information about

cryptographic operations from the innately transparent

software with relative ease (such as through software

side-channel attacks) [4]. If the encryption key is ever

betrayed to the adversary, they will have full, undisputed

access to the EHRs, which makes it all the more essen-

tial that the key remains securely protected- preferably

by the robust hardware. The focus of my research is to

develop and test a novel hardware cryptosystem that ef-

fectively protects the keys, giving users complete control

over their medical data records.

1.1 Encryption

Encryption is the process of encoding information

such that only authorized parties possessing the encryp-

tion key can decrypt and read that data. There are two pri-

mary types of encryption: symmetric and asymmetric. In

symmetric encryption, a single private key has the power

to both encrypt and decrypt data [5]. The most prevalent

symmetric encryption algorithm is Advanced Encryption

Standard (AES), which has modes such as Cipher-Block

Chaining (CBC) and Galois/Counter Mode (GCM) along

with various key sizes.

Figure 1. This is a typical AES hardware core, prior to
any specifications like GCM or CBC

The other subset of encryption, asymmetric, involves

the use of a public and private key pair [6]. The former

can only be used to encrypt the data and is thus released

to the public. The private key, however, stays only with

authorized parties and is what is used to decrypt the data

that was encrypted by the public key. RSA is consid-

ered an intractable asymmetric encryption algorithm that

uses relatively prime numbers to generate this pair of

encryption keys [7].

Regardless of which algorithm or subset of encryp-

tion is being implemented, what remains essential is

always the protection of the encryption key. This in-

volves everything from its generation by a key derivation

function (KDF) to encryption to key disposal or stor-

age. With small key sizes, adversaries can easily run

exhaustive key searches- the brute force process of test-

ing different key possibilities to find the correct one.

Since the key possibilities vs. key length graph

demonstrates an exponential relationship, one of the

best defenses against these attacks is to merely increase

the key size [8]. For example, a 256-bit key has 2256 key

combinations, which is estimated to be the total number

of atoms in our universe [9]. Hence, an adversary would
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have to run through magnitudes of combinations -a pro-

cess that would elapse multiple centuries- before they

found the right key. Other factors that contribute to the

key strength include the salt(s) that went into making the

key and their availability to external parties.

1.2 Hash

Hash functions are one-way functions that take an

arbitrary n-bit input and always output a seemingly ran-

dom sequence of bits of predetermined length. For ex-

ample, the digest of the SHA512 algorithm will always

consist of 512-bits, irrespective of the input size. Un-

like encryption, the hash pre-image property prevents

hash functions from traversing backward from the out-

put digest to what was initially supplied in the input

[10]. These properties are why many KDFs rely on in-

ternal hash-based mechanisms to generate their secure

encryption keys [11].

Every secure hash function must also be collision-

resistant. A collision is displayed below:

Hash function H()

Message space M

Tag space T = 2tag length

For m1 and m2 ∈ M where m1 6= m2

H(m1) = H(m2)

As modeled above, a collision transpires when two

unique inputs produce the same hash digest. Since the

message space is vastly larger than the tag space, there

will invariably be collisions due to the pigeonhole princi-

ple [12]. A good hash function ensures that it minimizes

these collisions and makes them non-generalizable such

that an adversary cannot print or predict a collision at

will.

1.3 PUFs

Due to inherently unpredictable silicon fluctuations

during the manufacturing process, each Physically Un-

clonable Function is a random, unique, and immutable

‘digital fingerprint.’ The PUF can employ its underlying

physical characteristics to generate a secret 256-bit value

[13].

A PUF could be created, for example, if someone

sprinkled reflective flakes on a melting gold brick and let

the gold solidify. Shining a flashlight on this resulting

contraption would result in a light pattern that has the

same properties as a PUF: it cannot be feasibly repli-

cated as it would be nearly impossible to get the exact

positioning and angle of each flake in the gold bar, it

is random, and it is immutable. I propose that the PUF

be embedded on the CPU, where its 256-bit secret con-

tributes towards generating a secure, hardware-confined

AES key for subsequent EHR encryption.

Figure 2. The underlying silicon properties of a PUF
make it akin to the device’s digital fingerprint.
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1.4 SGX

Software Guard Extensions (SGX) is Intel’s instruc-

tion set for implementing confidential computing on

Intel CPU [14]. SGX ensures that upon calibration, the

BIOS will set aside a portion of the device’s memory for

trusted operations that are only accessible to the CPU.

The CPU performs access control and encryption on the

secure computing enclave to prevent higher privileged

software like the OS and BIOS from accessing the con-

tents of this memory. These security measures make

SGX a prime location for key storage and secret pro-

visioning that doesn’t involve third parties (unlike key

escrowing) [15]. However, it is important to note that

while it keeps adversaries out in many ways, SGX itself

does not protect against side-channel attacks if the code

executed within the enclave is not software side-channel

resistant. Hence, it is typically advised to only execute

small portions of trusted code in each enclave lest ev-

erything become compromised from an intrinsic code

vulnerability.

2. System Architecture

My hardware encryption system employs PUFs to

securely encrypt user EHRs, giving consumers com-

plete control over their data. Upon receiving the user’s

EHRs from medical tracking devices, the Health appli-

cation needs to secure these records by encrypting them.

Rather than participating in traditional software encryp-

tion methods that are inadequate for providing high se-

curity, I propose that the EHRs are sent to the hardware

using my set of APIs. Upon arriving, the records un-

dergo secure PUF-based encryption, and the resulting

ciphertext is sent back to the application for local stor-

age. Alternatively, if the application wants to send the

EHRs to the cloud, the PUF will be used to negotiate

an RSA key with the cloud. After authentication (via

CAs), the PUF can securely send the EHR ciphertext to

the cloud in this privacy-preserving manner. Regardless

of the type of encryption being used, the entire life cycle

and implementation of the key occurs not only within

the hardware but in a secure SGX enclave, ensuring the

key is always protected.

2.1 Threat Model

The trusted computing base for EHRs consists of

Health app, OS, PUF, Software Guard Extensions (SGX),

and CPU. For encryption keys, only the CPU, PUF, and

SGX are trusted. This cryptosystem possesses valuable

security properties lacking in many existing systems

including its resilience against side-channels, local mal-

ware, and OS-privileged attacks.

2.2 Novel PUF Key Derivation

The first step in the key derivation process is to hash

the PUF secret using the SHA-512 hash primitive. The

resulting digest, along with the Health app’s ID and Salt,

is inputted to a KDF to generate a secure AES key. Intel

AES-NI then uses the newly minted symmetric encryp-

tion key to securely encipher the consumer’s EHRs. In

addition to maintaining the confidentiality of the records,

the cryptosystem can also perform integrity protection
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via digital key signing.

Figure 3. The key derivation transpires in an SGX
enclave to protect keys from OS-compromised attacks.

Although the application’s seed components are es-

sential to ensuring the uniqueness of each key (using

one key for all encryption tasks makes it easier to break

the encryption), the key strength is largely provided by

the PUF. This is because, as mentioned in my trusted

computing base, the Health application cannot be trusted

with the key, so we cannot rely on its inputs as a source

of the key’s security. Since KDFs require the same in-

puts to produce the same key (which may be needed for

purposes like decryption), each PUF must maintain its

physical properties -and hence its secret- throughout its

lifetime [16].

Because the PUF utilizes its hardware structure to

generate the secret, an alteration to the PUF would re-

sult in a significant change to the digital fingerprint it

provides. Existing protocols for PUF error correction

are able to significantly minimize this, resulting in neg-

ligible risk posed toward the PUF-based key derivation

[17]. As discussed in the system architecture, even if

the PUF breaks or the phone is lost (hence losing the

encryption keys forever), there is a cloud-based system

in place to ensure the records are still accessible by your

new device.

Listed below is an overview of the encryption/decryption

steps for the EHRs.

1. The key is securely derived in the enclave using a

trusted built-in hardware path from the PUF that

contains the 256-bit secret

2. The plaintext EHRs are delivered to the enclave

via a hardware path from the Health App

3. AES-NI encryption & integrity protection are per-

formed on EHRs using the PUF-derived key

4. EHR ciphertext is sent to the application for local

storage

For decryption:

1. EHR ciphertext is sent from the Health app to the

enclave

2. The KDF is seeded with the same inputs, resulting

in the rederivation of the encryption key that was

used to encrypt the records

3. EHRs are decrypted and sent to the Health app

through the trusted hardware path, arriving in the

clear text.1

1Hence, the OS and Health app are trusted for EHRs and not keys
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Figure 4. In the event that an adversary manages to
corrupt the OS or implant malware on the device, they
will find that they cannot breach the key from the
software since the key’s entire life-cycle is restricted to
the CPU-protected SGX enclave.

3. Methods

Due to a commercial unavailability of CPU-embedded

PUFs, the secret was replicated by generating a random

256-bit value. Using Oracle JRE and Eclipse IDE, I

developed a prototype that followed the same structural

format as the system architecture. I also created a set of

Java APIs that enable software applications to interact

with and use hardware PUFs for secure key derivation,

encryption, and hash operations. These APIs are directly

executed in a trusted enclave for enhanced security.

To determine which encryption algorithms (and modes

if applicable) and hash functions were most computation-

ally optimal for implementation in my design, I tested

various cryptographic algorithms on my prototype using

Java Cryptography Extensions (JCE) and OpenSSL.

Real-world EHR data sizes from 16 bytes to 8k bytes

were inputted for each of these algorithms to test them

under real-world conditions, and the throughput was

calculated for each trial. In addition to evaluating their

performance, the encryption and hash algorithms were

also evaluated under a security rubric.

Figure 5. Program software stack

4. Data and Analysis

I conducted three different cryptography compar-

isons and performed two primary analyses (performance

and security) on each comparison.

4.1 Software Encryption Algorithms

In this particular evaluation, I conducted performance

and security tests on different software encryption algo-

rithms. This largely included subtypes of the predomi-

nant AES scheme with varying modes and key sizes.

AES-GCM had much higher throughput than AES-

CBC and ChaCha20-Poly1305 for all data input sizes.

Data shows that at the 8k Bytes EHR size, AES-GCM

had a throughput about 15 times that of AES-CBC. In

addition to its high level of performance, AES-GCM
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offers a reliable mode of authenticated encryption using

GHASH.

Figure 6. This performance chart for software
encryption algorithms indicates the highest performers
were both subtypes of AES-GCM.

Authenticated encryption serves a dual purpose by si-

multaneously encrypting data and confirms its authentic-

ity, removing the need to include a separate key-signing

algorithm. If a different encryption algorithm was cho-

sen without authenticated encryption, that would further

reduce performance by necessitating a separate form

of authentication like HMAC-SHA256. Due to its ex-

treme inefficiency in comparison to other encryption

algorithms tested, ChaCha20-Poly1305 was eliminated.

For algorithms such as AES that are semantically

secure, it is important to analyze their security against

exhaustive key searches: standard dictionary attacks that

attempt billions of different keys at a rapid pace to find

the correct key. Strong algorithms naturally have a large

keyspace, thus exponentially increasing the total possi-

ble key combinations. For example, 256-bit key lengths

(such as AES-256) have so many possible key combi-

nations that it is approximated to be the total number

of atoms in the universe. Due to the additional secu-

rity it provides and in accordance with the US NIST

Post-Quantum Guidelines, a key length of 256 bits was

preferred over that of 128 bits [18]. The need for a

256-bit key length, high performance, and authenticated

encryption make AES-256-GCM an attractive candidate

for design implementation.

4.2 Software vs. Hardware Encryption

To determine the feasibility of hardware encryption,

I evaluated the performance and security of hardware

(Intel AES-NI) encryption schemes against the control

values provided by software encryption.

Figure 7. This performance chart depicts the
throughput increase provided by hardware encryption.

The throughput tests between AES-NI and AES in-

dicate that hardware encryption is significantly more

performant than its software counterpart. As seen in the

comparison at the 16 Byte EHR size between AES-NI-

128-CBC and AES-128-CBC, the respective encryption

rates (MB/sec) are 1431.075 and 172.896. This demon-

strates a nearly 700% performance jump with hardware

encryption. AES-NI was consistently 5-7X faster for

AES-CBC across all key and EHR sizes and 5-8% faster
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for AES-GCM.

4.3 Hash Functions

There are no existing hardware hash instruction sets

which is why my analysis had to be conducted on a soft-

ware level for hash functions. Primitives from the SHA2

family were chosen along with other algorithms like

GHASH, all of which were evaluated on their through-

put and collision resistance for performance and security,

respectively.

Figure 8. The performance chart for software hash
algorithms shows that GHASH outperformed the other
hash functions by a significant margin. With the
exception of GHASH, the remaining functions had very
similar throughputs for each EHR size.

Hash 64B 256B 1024B 8096B
MD5 223.8 492.8 685.3 791.9
HMAC-MD5 205.3 474.4 670.9 794.7
SHA1 279.0 595.3 818.6 998.8
GHASH 2073 3698 3839 3876
SHA-256 172.6 289.9 346.5 373.5
SHA-512 248.3 370.2 506.3 577.3

All collision-resistant hash functions must have:

1. No efficient algorithm, “A,” which can print colli-

sions at will (no generalizable collisions).

2. Large tagspace with a preferable size of at least

256 bits to decrease collisions.

MD5 failed both of the criteria for collision resis-

tance, indicating that it severely lacked security and was

not feasible for my design. These results are consistent

with its current NIST classification that states it is con-

sidered deprecated for all practical implementations [19].

Even though it consistently had throughput 2-3 times the

other hash algorithms, GHASH was also eliminated due

to its relatively small digest size of 128 bits. This was ex-

pected since its most prevalent function is in AES-GCM

for authentication.

Since the remaining hash algorithms had little vari-

ance (nearly negligible) to one another in their rate of

hashing for all byte sizes, SHA-512 was selected due to

its strong collision resistance (large output size of 512

bits is greater than the other digests).

5. Discussion

My data indicated that for software encryption, the

most performant schemes were AES-256-GCM and AES-

128-GCM. With regards to the intrinsic security of the

algorithm, I used the exhaustive key search metric to de-

termine their relative strengths. With semantic security

and a key size of 256 bits, AES-256-GCM is exponen-

tially stronger in defending exhaustive key searches than

other schemes (like AES-128-GCM). Due to its stronger

defense against brute force attacks on the key, high per-

formance rate, and additional bonus of authenticated

encryption, AES-256-GCM was selected for software
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encryption.

However, this was only part one of two in the en-

cryption evaluation process. The other analysis sought to

evaluate the effectiveness of hardware encryption on my

design prototype. Results indicated that incorporating

AES-NI in my system accelerated the rate of encryption

for all modes and EHR block sizes. In addition, AES-

NI directly runs the encryption rounds on the CPU in

constant time, defending against various side-channel

attacks (namely timing and cache side-channels). As out-

lined in the threat model, my cryptosystem is designed to

protect the key from side-channels, local malware, and

OS-privileged root attacks. The latter two are defended

against by my specific usage of Intel SGX while the

former is addressed by AES-NI. My results indicate that

the optimal cryptographic schemes for this design are

AES-NI-256-GCM and SHA512.

Societal Impact 1: Users Control their EHRs

Users have an inherent right to be in control of who

has access to their personal data, anything from health

records to financial data to transaction logs. In an in-

creasingly data-driven world, artificial intelligence and

neural networks enable data-hungry companies to not

only monetize from user data but also predict users’ be-

havioral traits. This is often done without user consent,

and in fact, most users fail to realize how their informa-

tion is being used to map their traits.

In my cryptosystem, the only way that EHRs can be

decrypted is by first accessing the PUF for key derivation

and subsequent decryption. The importance of this is

seen when contrasted with existing encryption. In these

systems, the key can be hacked with relative ease since

the attackers has an arsenal of attacks that can compro-

mise the relatively weak software holding the key. This

design addresses this security vulnerability by confining

the key not only to the hardware but to a trusted exe-

cution environment (SGX) in which all the important

cryptography processes transpire. By effectively protec-

tion cryptographic operations, users can be assured that

their data is not being exploited and immorally processed

without their consent.

Societal Impact 2: Enhances Security & Performance

• Hardware and silicon-rooted security greatly en-

hance the security and performance of the overall

system. Moreover, hardware security is vastly

more resilient against software bootkits, rootkits,

malware, and remote hacking.

• Greater availability: silicon vendors (Intel, AMD,

ARM) are directly building security into their

CPUs and processors/SoCs, rather than relying

on software-based security.

• Higher performance and reliability in hardware en-

cryption, as shown by the comparison in through-

put between AES-NI and AES.

This design utilizes the benefits of hardware security

while addressing the prevalent issue regarding key stor-

age in existing forms of encryption.

Societal Impact 3: Open-Sourced Protocols

By designing the first-ever Java PUF APIs, cryp-

tography interactions could occur between PUFs and
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software level applications that were otherwise not possi-

ble. Moreover, these APIs blueprinted how PUFs would

be used for processes such as key derivation and encryp-

tion. Lastly, I developed a hierarchical class prototype

of the system architecture, open-sourcing the Java code

at https://github.com/soodadityab/PUF-User-Java-API. I

plan on improving and diversifying these APIs so they

can be reliably used on various platforms to encrypt user

data securely.

Since many of the core technologies in my cryptosys-

tem, like SGX and PUF, are still in their early stages of

research, a key impact of my project was that it identified

certain silicon enhancements that should be made for

stronger security.

1. Hardware-protected path from the SGX to the PUF

that is accessible by SGX enclaves

2. Hardware-protected path from the IO (display,

keyboard, etc) to the SGX enclave, removing the

Health app from the EHR trusted computing base

3. The development of SHA-512 New Instructions

that permits hardware hashing
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