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Abstract

Frequency-domain modeling is an effective technique in the dynamic analysis of power electronic converters-based power systems.

In this paper, a unified single-input single-output (SISO) loop gain modeling for the three-phase grid-tied VSCs under both

symmetric and asymmetric ac grids is presented, which facilitates the physical measurement and stability analysis. Based on the

linear-time-periodic (LTP) modeling technique, the harmonic admittance model of the three-phase grid-tied VSC is developed

in the stationary (αβ)-frame. Instead of the transfer function matrix, the frequency-coupling effects are modeled by the transfer

function vector, which simplifies the modeling process. According to the idea of mathematical induction, a two-by-two recursive

admittance matrix (RAM) model that can accurately capture the coupling dynamics introduced by the power grid is derived.

The RAM has an analytical form and is easy to include harmonic coupling components of arbitrary order. Furthermore, the

RAM is converted to its equivalent SISO models following the concept of loop gain. The system stability is thus assessed by the

SISO stability criteria (e.g., Nyquist stability criterion). In addition, the loop gain allows the traditional SISO perturbation and

measurement scheme to be used for detecting the stability margin information. Finally, simulation results verify the feasibility

and correctness of the theoretical analysis presented above.
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Abstract—Frequency-domain modeling is an effective 

technique in the dynamic analysis of power electronic converters-

based power systems. In this paper, a unified single-input single-

output (SISO) loop gain modeling for the three-phase grid-tied 

VSCs under both symmetric and asymmetric ac grids is presented, 

which facilitates the physical measurement and stability analysis. 

Based on the linear-time-periodic (LTP) modeling technique, the 

harmonic admittance model of the three-phase grid-tied VSC is 

developed in the stationary (αβ)-frame. Instead of the transfer 

function matrix, the frequency-coupling effects are modeled by the 

transfer function vector, which simplifies the modeling process. 

According to the idea of mathematical induction, a two-by-two 

recursive admittance matrix (RAM) model that can accurately 

capture the coupling dynamics introduced by the power grid is 

derived. The RAM has an analytical form and is easy to include 

harmonic coupling components of arbitrary order. Furthermore, 

the RAM is converted to its equivalent SISO models following the 

concept of loop gain. The system stability is thus assessed by the 

SISO stability criteria (e.g., Nyquist stability criterion). In addition, 

the loop gain allows the traditional SISO perturbation and 

measurement scheme to be used for detecting the stability margin 

information. Finally, simulation results verify the feasibility and 

correctness of the theoretical analysis presented above. 

Index Terms—Frequency-domain modeling, loop gain, 

frequency-coupling effect, measurement, voltage source converter. 

I. INTRODUCTION 

OWADAYS, voltage source converters (VSCs) have been 

widely used in power grids, such as distributed generation 

and flexible power transmission [1], [2]. The dynamic 

interactions between power converters and passive components 

(e.g., power filter and grid impedance) may lead to some 

unstable phenomena, which would damage the safe operation 

of power systems [3]-[5]. Therefore, it is of great importance to 

analyze the stability of the converter-grid interactive systems. 

To address the stability challenges in VSC-grid systems, the 

analytical impedance-based approach is an attractive solution. 

A classic approach to model VSCs is to utilize the Park 

transformation to transform the time-periodic operating 

trajectory as the time-invariant point in the dq-frame, and then 

linearize the system to obtain a linear time-invariant (LTI) 

multi-input multi-output (MIMO) impedance model [6]. On 

this basis, many detailed impedance models including different 

factors are formulated, e.g. constant power load [7] and PLL [8], 

[9]. In [10]-[12], variants of the dq-impedance modeling 

technique are comprehensively overviewed. However, the dq-

frame modeling relies on the assumption that the VSC system 

is three-phase balanced, thereby limiting its application in 

asymmetric ac grids. 

As for VSCs connecting with asymmetric ac grids, the dq-

frame modeling is not suitable since the time-periodic operating 

trajectories cannot be transformed into time-invariant operating 

points by Park transformation. After performing linearization, 

the resulting VSC model is characterized by linear time-

periodic (LTP). Unlike the LTI model, translating the LTP 

model into the frequency domain is no longer straightforward 

due to the presence of frequency couplings [13], [14]. Thus, 

many research efforts have been made to address time-

periodicity challenges. 

In general, there have been three general multi-frequency 

modeling methods that can deal with time-periodic systems. 

The first approach is dynamic phasor modeling [15], [16]. 

Initially, dynamic-phasor-based modeling is mainly used for 

efficient simulations [17]. After being validated, numerous 

works have been focused on stability analysis based on dynamic 

phasor models. In dynamic phasor modeling, different 

coordinate transformations (e.g., multiple Park transformation 

[18]) can be embedded for model simplification. The harmonic 

linearization method behind the idea of describing function is 

the second approach [19]. When the frequency coupling effect 

(FCE) is not neglectable (strong asymmetry of the controller 

and grid condition, extremely weak grid), this method was 

confirmed to be inaccurate [20], [21]. Therefore, some 

improved versions of harmonic linearization have been 

proposed in [22] and [23], which incorporate the cross-coupling 

terms into modeling. Recently, the harmonic transfer function 

(HTF) modeling established on the Floquet theory has gained 

popularity, which is the third approach [13], [24]. Unlike the 

first two methods, the HTF method directly linearizes the 

system around the time-periodic trajectories [4], [25]. Note that 

the information of the Toeplitz matrix is redundant in 

describing the FCEs, a general LTP modeling is further 

proposed in [26] that improves model compactness. 

The dynamic phasor models under unbalanced grid voltages 

have been studied in [27] and [28]. However, the dynamic 

phasor models are mostly formulated in the time domain so that 

the explicit frequency-domain representations need to be 

further derived. In contrast, the harmonic linearization and the 

HTF approach directly establish the model in the frequency 

domain. Based on the harmonic linearization technique, the 

sequence impedance models of the VSC under asymmetric ac 
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grids are obtained in [29] and [30]. The convolution operation 

is required that increases the modeling complexity. Besides, in 

[29], it is improper that replacing unbalanced grid voltages with 

asymmetric grid impedances because the grid impedance would 

introduce additional closed-loop frequency coupling dynamics. 

The use of HTF for VSC modeling in unbalanced grids has been 

recently reported in [31] and [32]. Although the frequency-

coupling dynamics inside the converter have been fully studied 

in the works, the inherent cross-coupling between the converter 

and the power grid is not well studied. 

At present, the existing impedance models of grid-tied VSC 

systems considering the asymmetric ac grids are all represented 

by impedance matrices [29]-[32]. In this regard, the generalized 

Nyquist criterion (GNC) should be adopted for stability 

analysis and multiple perturbations are required in the 

frequency-sweeping. Therefore, finding the analytical SISO 

equivalents of grid-tied VSC systems is attractive due to their 

simplicity and convenience for physical interpretation. The 

model reduction techniques under balanced grids have been 

discussed in [10] and [33]. In [10], following the definition of 

impedance, the SISO equivalent grid/converter impedances are 

separately obtained through algebraic calculation. Hereafter, 

the two SISO equivalent impedances are further simplified to a 

SISO loop impedance in [33], which is the characteristic 

equation of the system. Overall, the SISO equivalent modeling 

technique for asymmetric ac grid analysis is still missing here. 

On the other hand, it was demonstrated in the single-phase 

system that there is low-order harmonic coupling between the 

converter and the power grid, and the coupling becomes 

stronger with the increase of the grid impedance [26]. However, 

the converter-grid coupling analysis in the three-phase VSC 

system is not well studied so far. The above reasons motivate 

the authors to do the work of this paper. 

To explore the modeling, measurement, and stability analysis 

of VSCs, this article proposes a unified SISO loop gain 

modeling for the three-phase grid-tied VSC system under both 

symmetric and asymmetric ac grids. The main contributions of 

this paper are summarized as: 

1) A simple and general harmonic admittance modeling 

method of three-phase VSC is presented, which accurately 

captures the FCE inside the converter. 

2) Incorporating the converter-grid coupling, a two-by-two 

recursive admittance matrix (RAM) model is proposed. It is 

illustrated that the VSC admittance varies along with the grid 

admittance in the low-frequency regions. 

3) Based on the concept of loop gain, an analytical and 

compact SISO equivalent model is derived from the RAM. The 

existing measurement schemes and SISO stability analysis 

criteria can be directly applied to the developed loop gain model. 

The rest of this paper is organized as follows. In Section II, 

the system configuration is described and the frequency 

coupling effect is briefly introduced. Section III presents the 

harmonic admittance modeling under a general grid condition. 

In Section IV, the SISO loop gain modeling is presented. In 

Section V, model validation is provided and the system stability 

analysis is conducted under asymmetric ac grids. Finally, 

Section VI concludes this paper. 
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Fig. 1. Schematic of a three-phase VSC for grid-connected applications. 
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Fig. 2. The simplified block diagram of the three-phase VSC system. 

II. THREE-PHASE GRID-TIED VSC SYSTEM 

A. System Configuration 

The studied three-phase grid-tied VSC and its control system 

are depicted in Fig. 1. It is comprised of a typical two-level 

voltage source converter, symmetric L-type filter (Lf/Rf), and a 

Thevenin equivalent grid. The dc-link voltage udc is assumed to 

be constant. Phase voltages at the point of common coupling 

(PCC) are denoted as ua, ub, and uc, while phase currents as ia, 

ib, and ic. Lga/Rga, Lgb/Rgb, and Lgc/Rgc denote the per-phase 

equivalent grid impedance, respectively. The phase grid 

voltages are uga, ugb, and ugc. A general grid condition is 

considered in this paper that the grid impedances and the grid 

voltages are not necessarily balanced. 

Without loss of generality, only the current controller and 

phase-locked loop (PLL) are considered for simplicity, while 

the same conclusions with other control methods are achieved 

in the same way. 

In the control system, the dual second-order generalized 

integrator phase-locked loop (DSOGI-PLL) is used due to its 

superior adaptivity to the fault grids [34]. The DSOGI-PLL 

tracks the phase θ of the positive-sequence PCC voltage, 

avoiding the phase oscillation caused by negative-sequence 

voltage. The phase currents are regulated by a proportional-

resonant (PR) current controller (CC). The current references 

(Id_ref and Iq_ref) are assumed constant. 

Fig. 2 depicts the simplified block diagram of the three-phase 

VSC system in the stationary frame. The sampling delay is 

modeled as 

 ( )
1

1
si

i

G s
s 

=
+

 (1) 

 ( )
1

1
sv

v

G s
s 

=
+

 (2) 

where ωi and ωv are the cutoff frequency of anti-aliasing filters 

for current and voltage measurement, respectively. 
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Fig. 3. Block diagram of the DSOGI-PLL. 

The PR regulator is given as 

 ( )
2 2

1

rc

PR pc

k s
G s k

s 
= +

+
 (3) 

where ω1 is the angular frequency of the grid, and kpc and krc are 

the PR controller parameters. 

Zero-order hold (ZOH) effects and calculation delays are 

taken into consideration as 

 ( )
1 s

s

sT
sT

d

s

e
G s e

sT

−
− −

=  (4) 

where Ts is the control period. 

Fig. 3 draws the block diagram of DSOGI-PLL, which 

consists of two second-order generalized integrator quadrature-

signals generators (SOGI-QSGs) and a synchronous reference 

frame (SRF)-PLL [34]. The SOGI-QSG and the proportional-

integral (PI) regulator are given as 

 ( ) 1

2 2

1 1

2

2
D

s
G s

s s



 
=

+ +
 (5) 

 ( )
2

1

2 2

1 1

2

2
QG s

s s



 
=

+ +
 (6) 

 ( )
ip

PI pp

k
G s k

s
= +  (7) 

where ξ is the damping ratio, kpp and kip are the PI controller 

parameters. 

B. Frequency-Coupling Effect In VSC 

To establish the impedance model or measure the ac-side 

impedance of the VSC system, the perturbation voltage or 

current is usually injected into the ac system [10]. However, it 

was observed that the injected perturbation voltage/current not 

only generates the current/voltage at the same frequency but 

also the sideband components whose frequencies are shifted 

with twice the fundamental frequency, which is called the 

frequency-coupling phenomenon [4], [5]. 

To better visualize the frequency-coupling phenomenon, the 

typical time-domain waveform is illustrated in Fig. 4, where the 

PCC phase voltage ua is intentionally perturbed at the frequency 

70 Hz (3% of the fundamental). The a-phase current ia is taken 

as an example for spectral analysis and the same conclusions 

are achieved in other phases. Fig. 4(b) shows that the phase 

current is composed of the corresponding component (70 Hz) 

and the coupling components (30 Hz, 170 Hz). 

As reported in [20]-[26], [29]-[32], the neglect of FCE in the 

modeling would degrade the model accuracy. Moreover, due to 

the FCE, additional sideband loops are formed through the grid 

impedance, which strengthens the converter-grid coupling [26]. 

In summary, it is necessary to consider the FCE in the system 

modeling. 

 
Time (s)

3.05 3.1 3.15 3.2 3.25 3.33

u
a

b
c 
(p

.u
.)

-1.5

1.5

1

0.5

0

-0.5

-1

i a
b

c 
(p

.u
.)

-1.5

1.5

1

0.5

0

-0.5

-1

ia ib ic

ua ub uc

 
(a) Time-domain waveforms 

30Hz

70Hz

170Hz

0 20 40 60 80 100 120 140 160 180 200
Frequency (Hz)

0

0.5

1.5

2.5

3

M
ag

 (
%

 o
f 

F
u
n

d
a
m

en
ta

l)

1

2

 
(b) Spectrum of ia 

Fig. 4. Illustration of the FCE phenomenon when the PCC voltage is perturbed 
at the frequency 70 Hz. 

III. HARMONIC ADMITTANCE MODELING 

In this paper, the three-phase VSC is directly modeled in the 

stationary frame. Compared with the dq-frame model, no 

additional transformation is needed so that the αβ-frame model 

is of clear physical insight and facilitates the physical 

measurement. 

A. DSOGI-PLL Modeling 

According to the structure of the DSOGI-PLL, the q axis 

voltage uq is obtained as 

 ( ) ( )sin cosqu u u  + += − +  (8) 

where uα+ and uβ+ are the positive-sequence component of αβ-

frame voltages uα and uβ, respectively. 

Perturbing the variables in the time-domain, the linearized 

form of (8) is derived as 

( ) ( ) ( ) ( )sin cos cos sinqu u u u u       
+ + + += − + − −  (9) 

where the superscript ‘~’ and ‘-’ represent the small-signal and 

steady-state quantities, respectively. The steady-state quantities 

are given by θ̅=ω1t, u̅α+=Vpcos(ω1t), and u̅β+=Vpsin(ω1t), where 

Vp is the magnitude of the positive-sequence voltage component 

at the fundamental frequency. 

Substituting the steady-state quantities into (9) gives 

 ( ) ( )1 1sin cosq pu u u Vt t   + += − + −  (10) 

Then, according to [26], the frequency domain expression of 

(10) can be obtained as 

 

( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

2
1

2

q

p

j
u s u s j u s j

u s j u s j V s

 

 

 

  

+ +

+ +

 = − − + 

 + − + + − 

 (11) 

Based on the DSOGI-PLL diagram, the following 

relationships hold 
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( )1u s j +

( )1u s j +

( )1u s j −

( )1u s j −

( )1s j +

( )s

( )1s j −

( )1qu s j+

( )
qu s
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( )1u s j + +

( )u s
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+

( )u s

+
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( )1u s j + −
 

Fig. 5. Harmonic signal-flow graph of the DSOGI-PLL. 

 ( )
( )

( ) ( ) ( ) ( )
2

sv

D Q

G s
u s G s u s G s u s  

+ =  −    (12) 

 ( )
( )

( ) ( ) ( ) ( )
2

sv

D Q

G s
u s G s u s G s u s  

+ =  +    (13) 

 ( ) ( ) ( )
PLL qs G s u s =  (14) 

where GPLL(s)=GPI(s)/s. 

Substituting (12)-(14) into (11) gives (15), shown at the 

bottom of the page. The expression of TPLL(s) is given as 

 ( )
( )

( )

1

2

PLL

PLL

p PLL

G s
T s

s V G s
=

+
 (16) 

As denoted by (15), it clearly shows that the perturbed PLL 

output θ̃ at a given frequency ω is related to the PCC voltages 

ũα and ũβ at the two coupled frequencies ω±ω1. Fig. 5 plots the 

harmonic signal-flow graph of DSOGI-PLL, where the transfer 

function gain is omitted for brevity.  

B. Harmonic Admittance Modeling 

The inverter current references are expressed as 

 
( ) ( )

( ) ( )
_ _

_ _

cos sin

sin cos

ref d ref

ref q ref

i I

i I




 

 

    − 
=    
    

 (17) 

Following the same steps as before, the linearized model of 

(17) in the frequency domain can be derived as 

 
( )
( )

( )
( )

_ 1 2

1 2_

ref s

ref s

i s s jk k

jk jki s s j





 

 

   − 
=     − +    

 (18) 

where k1=(-Iq_ref +jId_ref)/2 and k2=-(Iq_ref +jId_ref)/2. 

For the grid side, the closed-loop response of the current 

control loop can be given by 

( )1s j +

( )s

( )1s j −

( )_ 1refi s j +

( )_ 1refi s j +

( )
_ refi s

( )
_ refi s

( )_ 1refi s j −

( )_ 1refi s j −

( )1i s j +

( )1i s j +

( )i s

( )i s

( )1i s j −

( )1i s j −
 

Fig. 6. Harmonic signal-flow graph of the current control loop. 

 
( )
( )

( )
( )
( )

( )
( )

( )
_

_

_

ref

plant inv o

ref

i si s u s
G s Y s

u si s i s

 

 

    
= −    

    
 (19) 

where 

 ( )
( ) ( ) ( )

( ) ( ) ( ) ( )1

L d PR

plant

L d PR si

G s G s G s
G s

G s G s G s G s
=

+
 (20) 

 ( )
( )

( ) ( ) ( ) ( )_
1

L

inv o

L d PR si

G s
Y s

G s G s G s G s
=

+
 (21) 

 ( )
1

L

f f

G s
L s R

=
+

 (22) 

The harmonic signal-flow graph of the current control loop 

is depicted in Fig. 6. Likewise, the frequency-coupling effect 

exists in the current control loop that the grid current ĩα(ĩβ) at a 

given frequency ω is dependent on θ̃ at two coupled frequencies 

ω±ω1.  

Combining (15) and (18) into (19), the harmonic admittance 

model of the VSC is deduced as 

( ) ( ) ( ) ( ) ( )

( ) ( )
1 1 0

1 1

2 2

2 2
p

n

s s j s j s s

s j s j
  



 

 

= − − +

+ + +

i Y u Y u

Y u
 (23) 

where bold lowercase letters are used to indicate the spectral 

vector of the corresponding quantity for brevity, i.e., 

ĩαβ(s+jkω1)=[ ĩα(s+jkω1), ĩβ(s+jkω1)]T, ũαβ(s+jkω1)=[ũα(s+jkω1), 

ũβ(s+jkω1)]T, and k∈. In addition, the functions in bold capital 

format e.g., Yp(s), Y0(s), and Yn(s) denote two-by-two transfer 

function matrices, whose expressions are given in (24)-(26), 

shown at the bottom of the page. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1

2
1

2

PLL sv D Q D Q

PLL sv Q D Q D

s T s G s j jG s j G s j u s j G s j jG s j u s j

T s G s j G s j jG s j u s j jG s j G s j u s j

 

 

       

      

+ +

+ +

= − − + − − + − − − −      

+ + + − + + + + + + +      

 (15) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

1 12
2

Q D D Q

p PLL plant sv

Q D D Q

G s jG s G s jG sk
s T s j G s j G s

jG s G s jG s G s
 

 + − 
= + +  

− + − − 
Y  (24) 

( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

1 1

_

0

_

2 1

01

02

Q D D Q

PLL

Q D D Q inv o

plant sv

inv oQ D D Q

PLL

Q D D Q

G s jG s G s jG s
k T s j

jG s G s jG s G s Y s
s G s G s

Y sG s jG s G s jG s
k T s j

jG s G s jG s G s





  − + 
−  

− − − +    
= −   

 + −    
+ +   − +  

Y  (25) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2

1 12
2

Q D D Q

n PLL plant sv

Q D D Q

G s jG s G s jG sk
s T s j G s j G s

jG s G s jG s G s
 

 − + 
= − −  

+ − 
Y  (26) 
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Fig. 7. Multi-frequency diagram of the three-phase grid-connected VSC 

considering the grid impedance. 

From (23), it is shown that the perturbed grid current ĩαβ at a 

given frequency ω is related to the PCC voltage ũαβ at the three 

coupled frequencies ω and ω±2ω1, which agrees with Fig. 4. 

Moreover, it is found that the negative sequence voltage Vn 

caused by PCC voltage imbalance has no impact on the 

converter harmonic admittance due to the use of DSOGI-PLL. 

Remark: Many modeling methods can lead to accurate 

models, but the modeling procedures and the resulting models 

are different. On one hand, the describing-function-based 

methods require the concept of signal injection [19]-[22], [29], 

[30], where the form of perturbations needs to be defined 

empirically and complex convolution operation is required. In 

the HTF-based modeling methods [25], [31]-[32], the use of 

large-dimensional matrix operation degrades the model 

analyticity and increases the computation effort. In contrast, the 

proposed harmonic admittance modeling does not need 

perturbation injection and large-dimensional matrix operation, 

therefore reducing the modeling complexity. 

On the other hand, the harmonic admittance model in (23) is 

represented by the real-valued vector. Compared with the 

complex-valued models [12] and [32], the real-valued models 

have the following characteristics: 

1) There is no need to perform additional transformations. 

2) The complex conjugation is avoided. 

3) The FCE is intuitively interpreted in the original frame. 

IV. SISO LOOP GAIN MODELING OF THE GRID-TIED VSC 

A. Recursive Admittance Matrix Modeling 

The developed VSC harmonic admittance model in (23) is 

physically intuitive but it is not straightforward to be used for 

stability analysis due to the cross-coupling terms. The most 

simplified admittance model derived from (23) is -Y0(s). 

However, the simplified model may lead to inaccurate analysis 

results and hides the converter-grid coupling phenomenon. 

Therefore, the frequency couplings should be considered. 

Y0(s0)

Yn(s2)

Yp(s-2)

Zgαβ(s0)

Zgαβ(s2P)

Zgαβ(s-2N)

Yn(s2-2N)
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( )2Psu ( )2Psi

( )2 2Ps −u

( )2su

( )0su ( )0si

( )2s −u

( )2 2Ns −u

( )2Ns −u ( )2Ns −i

 
Fig. 8. Truncated multi-frequency diagram with P positive loops and N negative 

loops. 

Considering the sideband loops caused by the FCE, the 

multi-frequency diagram of the three-phase grid-connected 

VSC is drawn as Fig. 7, where sk is defined as s+jkω1 (k∈). It 

is observed that the converter is coupled with the grid since the 

additional loops caused by the FCE are closed through the grid 

impedance. Undoubtedly, the converter-grid coupling will have 

an impact on the VSC admittance, which has not been fully 

studied in the existing literature. 

As shown in Fig. 7, the sideband loops are the translated 

copies of the fundamental loop (denoted by the black line) with 

frequency shifting ±kω1. Moreover, the order of harmonic 

coupling extends to infinite in the presence of the grid 

impedance. In this case, the complete admittance should be 

represented by an infinite-dimensional matrix conceptually [31], 

[32], which is rather complicated to analyze and implement. 

Thus, from the view of analysis and validation, finding the low-

dimensional equivalent admittance model is appealing [26]. 

According to Fig. 7, the relationship between ĩαβ and ũαβ in 

different frequency domains can be consistently expressed as 

 
( ) ( ) ( ) ( ) ( )

( ) ( )
2 2 0

2 2

K p K K K K

n K K

s s s s s

s s

  



− −

+ +

= +

+

i Y u Y u

Y u
 (27) 

where K∈.  

In addition, due to the existence of grid impedance, it is 

established that 

 
( )

( ) ( )
( ) ( ) ( )

( ) ( )

g K g K
K K

g K g K

g K K

Y s Y s
s s

Y s Y s

s s

 
 

 

 

 
=  
 

=

i u

Y u

 (28) 

where K∈ and Ygαβ(s)=Zgαβ
-1(s). The detailed derivation of 

the grid admittance model Ygαβ(s) under a general grid condition 

is given in Appendix-A. 

To obtain a reduced-order model, assume firstly that the 

multi-loop system is truncated to P (P∈) positive loops and 

N (N∈) negative loops as depicted in Fig. 8, the truncation 

conditions are expressed as 

 
( )
( )

2

2

0,         1

0,        1

X

Y

s X P

s Y N



 −

=  +


=  +

u

u
 (29) 

where X∈ and Y∈. 

The positive loop truncation is taken as an example to 

illustrate the recursive modeling technique. Based on the idea 

of mathematical induction, assume firstly that 

 ( ) ( ) ( )( ) ( )( )22 2 11n X PX X
s ss P X  −

= − −Y u F u  (30) 

where 1≤X≤P+1, FP(P-(X-1)) is a two-by-two mapping matrix 
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from ũαβ(s2(X-1)) to ũαβ(s2X) that needs to be determined, and 

FP(0)=02×2 due to (29). 

Next, replacing K in (27) with 2X gives 

( ) ( )( ) ( )( ) ( ) ( )

( )( ) ( )( )

2 0 2 22 1 2 1

2 1 2 1

X p X XX X

n X X

s s s s s

s s

  



− −

+ +

= +

+

i Y u Y u

Y u
 (31) 

Combining (28) and (30) into (31) yields (32), shown at the 

bottom of the page. Comparing (30) and (32), FP(•) can be 

solved as (33), shown at the bottom of the page. 

In the same way, a recursive relationship for the negative 

loop truncation can be derived as 

 ( ) ( ) ( )( ) ( )( )2 2 2 11p Y Y N Y
s s sN Y − − − −

= − −Y u F u  (34) 

where 1≤Y≤N+1, FN(•) is given as (35), shown at the bottom of 

the page. 

Finally, combining (27), (30), and (34), a two-by-two RAM 

model Y(s) can be derived as 

 
( ) ( ) ( ) ( )

( )

( )
0 N P

s

s s N P s − − + +  

Y

i = Y F F u  
(36) 

Compared with the existing three-phase VSC frequency-

domain models [29]-[32], the advantages of the RAM model 

Y(s) are summarized as: 

1) The RAM model has an analytical and compact expression, 

and it is easy to include harmonic coupling of arbitrary order. 

2) The coupling effect between the converter and the power 

grid is embedded in the RAM model. 

B. SISO Loop Gain Modeling 

The RAM Y(s) greatly simplifies the system model, but it is 

still a MIMO model with the order of two. To measure Y(s), 

cumbersome frequency-sweeping is required that perturbations 

should be injected twice at each frequency point. In addition, 

the GNC is needed for stability analysis, which is not intuitive 

due to the lack of traditional margin information. All these 

arguments point to the benefits of using a SISO model. 

An intuitive SISO model is the one that only preserves the 

diagonal element of -Y0(s) or Y(s). Although the diagonal 

element considers the FCE to a certain extent, its accuracy 

decreases as the asymmetry increases. 

uα
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Yβα 

Yαβ 
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Zgββ 
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~
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iα

L

~
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iβ

ptb

~
iα

ptb

~
iβ

S

 
Fig. 9. Equivalent block diagram of the three-phase VSC in the stationary frame. 

The concept of loop gain has been widely used in 

characterizing the dc/dc system [35]-[37]. The loop gain not 

only reflects the system stability margin but also can be directly 

measured through frequency sweeping. In this subsection, 

following the definition of loop gain, Y(s) is further simplified 

to its SISO equivalent model. 

For the load (VSC) subsystem, its admittance model is 

 

L L

L L

Y Yi u

Y Yi u

  

  

    
−     

    
=  (37) 

For the source (grid) subsystem, its impedance model is 

 

S S
g g

S S
g g

Z Zu i

Z Zu i

  

  

    
=    
    

 (38) 

where the superscript ‘L’ and ‘S’ represent the VSC-side 

variable and grid-side variable, respectively. 

Observing from (37) and (38), there are four channels that 

can be perturbed, i.e., 

 
L S ptbu u u  +=  (39) 

 
L S ptbu u u  +=  (40) 

 
S L ptbi i i  +=  (41) 

 
S L ptbi i i  +=  (42) 

where the superscript ‘ptb’ denotes the injected perturbation. 

Based on (37)-(42), the equivalent block diagram in the αβ-

frame is plotted as Fig. 9. According to the definition of loop 

gain [35], four SISO loop gain models can be obtained by 

solving the linear system equations (37)-(42), which are given 

in (43)-(46) shown at the bottom of the page. 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
1

2 2 2 2 0 2 2 1 2 1n X X n X g X X P p X X
s s s s s s sP X  

−

− −
= − − − Y u Y Y Y F Y u   (32) 

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )
1 2 2

02 1 2 1 2 1 2
1       0P n g P p PP p P p P p P p

p s s s p s with

− 

− + − + − + −
 = − − − =
 

0F Y Y Y F Y F  (33) 

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )
1 2 2

02 1 2 1 2 1 2
1       0N p g N n NN n N n N n N n

n s s s n s with

− 

− − + − − + − − + − −
 = − − − =
 

0F Y Y Y F Y F  (35) 
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0, 0, 0
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+

1 +ptb ptbptb

S
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u g gL

g gu i i

Z Y Z Y Z Y Z Yu
T Z Y Z Y

Z Y Z Yu
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       
    
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+
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Z Y Z Y Z Y Z Yu
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       
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       
    

    = = =

+ +
= − + −

+ +
=  (45) 

( )( )
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TABLE I 
MAIN CIRCUIT AND CONTROL PARAMETERS 

Symbol Description Value 

ugabc Rated grid voltage amplitude 0.62 kV 

Srated Rated power 2 MVA 

ω1 Fundamental angular frequency 100π rad/s 

udc DC-link voltage 1200 V 

Lf/Rf Input filter inductance/resistance 0.4 mH/0 Ω 

Lg/Rg Grid inductance/resistance 0.5 mH/0 Ω 

ωi/ωv ADC cutoff frequency 2000π rad/s 

ξ Damping ratio of the SOGI-QSG 0.707 

kpp Proportional gain of the PLL 0.2 

kip Integral gain of the PLL 903 

kpc Proportional gain of the current regulator 0.64 

krc Resonant gain of the current regulator 210 

fs Switching frequency 2.5 kHz 

Although the obtained loop gain models Tαu, Tβu, Tαi, and Tβi 

have different expressions, they are the same on the stability 

assessment, whose proof is given in Appendix-B. Thus, any 

loop gain can be used for stability analysis. In the following, 

only the Tαu is considered for simplicity. 

The merits of the developed SISO loop gain models are 

summarized as: 

1) The loop gain directly reflects the stability margin 

information of the system. 

2) The loop gain model includes the coupling effects of 

cross-channel and grid impedance. 

3) The system stability can be assessed by applying the 

Nyquist criterion to Tx (x=αu, βu, αi, and βi). 

4) The traditional SISO perturbation and measurement 

scheme becomes a viable solution for three-phase systems. 

Remark: In [10], the equivalent SISO converter/grid 

impedance models are separately calculated by 

 
0, 0, 0

ptb ptbptb

L

L

L

u i i

u
Z

i
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


 = = =

= −  (47) 

 
0, 0, 0

ptb ptbptb

S

S

S

u i i

u
Z

i
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


 = = =

=  (48) 

It is observed that Tαu=ZαS/ZαL ( ĩ αL= ĩ αS). To obtain a more 

compact model, [33] defines the loop impedance ZαLOOP=-ũαptb/ 

ĩαL=ZαS+ZαL, which is the closed-loop characteristic equation. 

Clearly, all three models are identical for stability assessment. 

From the perspective of measurement, the equivalent SISO 

converter/grid impedances (ZαS and ZαL) need to be separately 

measured. In contrast, the loop impedance ZαLOOP and the 

proposed loop gain Tαu both can be obtained by a single 

measurement test, reducing the measurement complexity and 

information redundancy. However, most stability criteria (e.g., 

Nyquist stability criterion) are designed for the open-loop 

transfer function (i.e., loop gain), which limits the application 

of loop impedance for stability analysis. In addition, the loop 

gain can directly reflect the stability margin information. 

In summary, the use of the loop gain concept in system 

modeling is promising due to its simplicity and convenience for 

physical interpretation. 
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Fig. 10. Comparative analysis of the RAM Y(s) with different truncation orders. 
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Fig. 11. Frequency responses of Y(s) under Case 1-3. Lines: Model prediction; 

Dots: Simulation results. 

V. SIMULATION VALIDATION 

In order to verify the proposed models, a time-domain 

simulation model is built in Matlab/Simulink according to the 

three-phase grid-tied VSC structure in Fig. 1. The system 

parameters are provided in Table I. 

A. Frequency Scan Validation 

The model accuracy depends on the chosen truncation order. 

When finite-order truncation is performed, frequency response 

deviation may occur. In Fig. 10, under uga=ugb=ugc=1 p.u. and 

Lga/Rga =0 p.u., Lgb/Rgb=1 p.u., Lgc/Rgc=2 p.u., the RAM Y(s) 

with different truncation orders are compared. The selection of 

truncation order mainly influences the frequency response of 

Y(s) below the fundamental frequency. Moreover, the 

frequency response deviation decreases as the truncation order 

increases. An explicit formula for truncation order selection has 

not been given yet. As a result, the truncation parameters P and 

N are usually evaluated iteratively. In the work presented in the 

following, N=3 and P=3 have been chosen. 

Under the grid impedances of Lga/Rga=Lgb/Rgb=Lgc/Rgc=0.5 

p.u., three different grid voltage conditions are tested to 

illustrate the impact of grid voltage imbalances: 

1) Case 1: uga=ugb=ugc=1 p.u. (Vp=0.96 p.u., Vn=0 p.u.); 

2) Case 2: uga=ugb=ugc=0.66 p.u. (Vp=0.6 p.u., Vn=0 p.u.); 

3) Case 3: uga=ugb=1 p.u., ugc=0 p.u. (Vp=0.6 p.u., Vn=0.33 

p.u.). 
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Fig. 12. Frequency responses of Tαu(s) under Case 1-3. Lines: Model prediction; 

Dots: Simulation results. 
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Fig. 13. Frequency responses of Y(s) under Case A-C. Lines: Model prediction; 

Dots: Simulation results. 
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Fig. 14. Frequency responses of Tαu(s) under Case A-C. Lines: Model prediction; 

Dots: Simulation results. 

The resulting frequency response curves for Case 1-3 are 

shown in Fig. 11 for the RAM model Y(s) and in Fig. 12 for the 

loop gain model Tαu. 

To analyze the converter-grid coupling effect, the following 

three cases are considered in the frequency scanning: 

1) Case A: Lga/Rga=Lgb/Rgb=Lgc/Rgc=0.1 p.u. (Vp=1 p.u., Vn=0 

p.u.); 

2) Case B: Lga/Rga=Lgb/Rgb=Lgc/Rgc=1 p.u. (Vp=0.84 p.u., 

Vn=0 p.u.); 

3) Case C: Lga/Rga =0 p.u., Lgb/Rgb=1 p.u., Lgc/Rgc=2 p.u. 

(Vp=0.84 p.u., Vn=0.31 p.u.). 

The resulting frequency response curves for Case A-C are 

shown in Fig. 13 for the RAM model Y(s) and in Fig. 14 for the 

loop gain model Tαu under the balanced grid voltages 

(uga=ugb=ugc=1 p.u.). 

The following observations support the claims in the 

previous sections: 
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Fig. 15. Nyquist diagrams for the loop gains under different m. 

1) The two established models match the measured results in 

all cases. This validates the accuracy of the proposed modeling 

approach. 

2) Fig. 11 shows that the converter admittance is decoupled 

with the negative-sequence voltage Vn due to the use of DSOGI-

PLL.  

3) From Fig. 13, it is observed that the converter admittance 

varies along with the grid impedance, which is mainly in the 

low-frequency regions. 

4) Although both the unbalanced grid voltages and 

asymmetric grid impedances lead to the PCC voltage imbalance, 

they have different effects on the VSC admittance. 

B. Stability Analysis Against Various Grid Impedances 

To analyze the effect of asymmetric grid impedances on 

system stability, Zgc is taken as an adjustable parameter, i.e., 

Zga=Zgb=0.7 p.u. and Zgc=m p.u.. The value of m denotes the 

asymmetrical factor of grid impedance. In what follows, under 

the grid voltage conditions of uga=ugb=ugc=1 p.u., two 

asymmetric factors: m=2.3 and m=2.4 are considered for 

stability assessment. 

Fig. 15(a)-(b) shows the Nyquist diagrams of the loop gain 

Tαu and the reduced-order impedance ratios Y(1,1)Zgαβ
(1,1) and -

Y0
(1,1)Zgαβ

(1,1). It can be found that the stability performance 

degrades with the increase of m. Specifically, when m=2.4, a 

conflicting stability conclusion is arrived at. The system is 

predicted to be unstable by Tαu, whereas it is deemed to be stable 

by Y(1,1)Zgαβ
(1,1) and -Y0

(1,1)Zgαβ
(1,1). 

To further identify where the harmonic frequencies are 

located, the Nyquist diagram of Tαu under m=2.4 is plotted in 

Fig. 16. It is observed that a negative amplitude margin (GM=-
13.6 dB) and a negative phase margin (PM=-37.5°) are 

respectively identified at the frequencies 13.3 Hz and 14.4 Hz, 

indicating an unstable VSC-grid system [36]. In addition, the 

harmonic frequency fc is expected to be around 14 Hz. Due to 

the FCE, it is emphasized that other sideband components will 

also appear with harmonic frequency shifting proportional to 

the double fundamental frequency (fc±2kf1, f1=ω1/(2π), k∈). 
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Fig. 16. Nyquist diagram of Tαu(s) under m=2.4. 
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Fig. 17. Simulation results with m=2.3 changed to m=2.4 at 4 s. 

Fig. 17 shows a time-domain simulation where m is changed 

from 2.3 to 2.4 at 4 s to complement the stability analysis. As 

observed, the PCC voltages uabc are unbalanced, which is 

caused by the asymmetric grid impedances Zgabc. Moreover, 

oscillations can be found in PCC voltages uabc and grid currents 

iabc when m=2.4. By performing a Fourier analysis on the phase 

current ia, the oscillation frequencies of 14.2 Hz and the coupled 

frequencies of 85.8 Hz, 114.2 Hz, and 185.8 Hz are all 

identified as shown in Fig. 17(b), which closely agrees with the 

analyzed results in Fig. 16. 

Based on the above analysis and validation, it is known that 

the reduced-order impedance models are over-optimistic on the 

stability assessment, while the loop gain model gives accurate 

results. As a result, an accurate stability analysis must take all 

the frequency coupling components into account. 

VI. CONCLUSION  

In this paper, a unified SISO loop gain modeling for three-

phase VSCs under both symmetric and asymmetric ac grids is 

proposed, which takes account of the FCE. It is illustrated that 

the two-by-two RAM model and SISO loop gain model can 

accurately characterize the frequency coupling dynamics of 

arbitrary order without large-dimensional matrix operation. The 

concept of admittance is extended by RAM. The RAM depends 

not only on the VSC itself but also on the grid admittance. 

Different choices of the perturbation injection point lead to 

different loop gains, and they are identical on the stability 

assessment. The stability analysis can be simplified by applying 

the classic SISO stability criteria (e.g., Nyquist criterion) to the 

loop gain model. In addition, the loop gain allows the traditional 

SISO perturbation and measurement scheme to be used for 

detecting the stability margin information of the system. The 

use of the loop gain concept can greatly simplify measurement-

based analysis where tedious modeling is not necessary.  

APPENDIX 

A. Derivation of grid admittance model Ygαβ(s) 

In this study, a general grid impedance condition is 

considered that Yga(s)=sLga+Rga, Ygb(s)=sLgb+Rgb, and 

Ygc(s)=sLgc+Rgc are not necessarily the same. In the following, 

how to derive Ygαβ(s) is briefly introduced. 

In the abc-frame, the three-phase admittance model is 

 

0 0

0 0

0 0

gaa a

b gb b

cc gc

Yi u
i Y u

ui Y

     
     =
         

 (A1) 

where Laplace variable s is omitted for brevity. 

The normalized-Clarke transformation is applied firstly, the 

voltage vector and current vector can be translated from the 

abc- to the αβγ-reference frames as 

 

1

0 0

0 0

0 0

g

ga

Clark gb Clark

gc

Yi u
i T Y T u

uYi



 

 



−

     
     =
     

   
Y

 
(A2) 

where 

 

1 1
1

2 2

2 3 3
0

3 2 2
1 1 1

2 2 2

ClarkT

 
− − 

 
 = −
 
 
 
 

 (A3) 

Denoting Ygαβγ as 

 
11 12 13

21 22 23

31 32 33

g

Y Y Y

Y Y Y

Y Y Y


 
 =
 
 

Y  (A4) 

where the detailed expressions of the entries Yxy (x=1, 2, 3; y=1, 

2, 3) in Ygαβγ can be easily solved from (A2). 

Due to the three-wire structure of the studied VSC system, 

ĩγ≡0 always holds so that 

 
31 32

33 33

Y Y
u u u

Y Y
  = − −  (A5) 

By substituting (A5) into (A2), it is derived that 

 

13 31 13 32

11 12

33 33

23 31 23 32

21 22

33 33

g

Y Y Y Y
Y Y

i uY Y

uY Y Y Yi
Y Y

Y Y



 



 
− −    

 =   
     − −
 
 

Y

 
(A6) 

Comparing (A6) and (28), Ygαα, Ygαβ, Ygβα, and Ygββ are 

obtained. 
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B. Proof of the identical stability assessment of different SISO 

loop gain models 

According to the definition of loop gain, the system stability 

is assessed by the characteristic equations [35], which are 

consistently expressed as 

 ( )1 0,       ,  ,  ,  xT x u u i i   + = =  (B1) 

Substituting (43)-(46) into (B1) and performing simple 

mathematical manipulations, it is not hard to obtain that the four 

characteristic equations share the same solution, which is given 

by 

 
( )( )

1 + +

0

g g g g

g g g g

Z Y Z Y Z Y Z Y

Z Z Z Z Y Y Y Y

       

       

+ +

+ − − =
 (B2) 

The system stability is determined by the roots of (B2) [35]. 

Therefore, Tαu, Tβu, Tαi, and Tβi are the same in terms of stability. 
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