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Abstract

This work introduces the application of Cohen’s kappa concordance coefficient as part of a comparative approach between

different methods used to improve the FMECA analysis. The proposed approach considers the concordance assessment between

different methodologies used in FMECA (Risk Isosurface function, VIKOR, ITWH, FWGM, Type-I and Type-II Fuzzy Inference

System) when applied to the same problem and regarding an FMECA ranking selected as the reference one. The analyzed

problem is a blood transfusion case study consisting of eleven failure modes widely used for benchmarking. Results show

that Type-II fuzzy inference systems achieve the highest agreement regarding the reference FMECA ranking; one possible

explanation for this result is that Type-II FIS considers uncertainty as an additional parameter. This approach proves effective

to compare statistically different FMECA methods instead of the classical qualitative comparison between rankings.
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 
Abstract—The comparison between improved FMECA 

methods is commonly conducted by comparing qualitatively the 
resulting rankings and the potential balance between the three risk 
factors. This paper introduces the application of Cohen’s kappa 
concordance coefficient as part of a comparative approach 
between different methods used to improve the FMECA analysis. 
The use of ranking agreement metrics allows comparing the 
rankings generated by independent raters; in this context, the 
application of Cohen’s kappa in medical and social sciences is 
broad, but despite its relevance, its application in the FMECA 
context is limited. The proposed approach considers the 
concordance assessment between different methodologies used in 
FMECA (Risk Isosurface function, VIKOR, ITWH, FWGM, 
Type-I and Type-II Fuzzy Inference System) when applied to the 
same problem and regarding an FMECA ranking selected as the 
reference one. The analyzed problem is a blood transfusion case 
study consisting of eleven failure modes widely used for 
benchmarking. Results show that Type-II fuzzy inference systems 
achieve the highest agreement regarding the reference FMECA 
ranking; one possible explanation for this result is that Type-II FIS 
considers uncertainty as an additional parameter. This approach 
proves effective to compare statistically different FMECA 
methods instead of the classical qualitative comparison between 
rankings. 

Index Terms— FMECA; Risk assessment; Type-II fuzzy 
inference systems; Fuzzy weighted geometric mean; Concordance 
measurement; Cohen’s kappa.  

I. INTRODUCTION

AILURE Modes, Effects and Criticality Analysis is a 
qualitative risk assessment method designed to identify 

potential failure modes, their causes, and systems performance 
effects [1]. The objective of FMECA is to identify the possible 
ways a failure can occur, how often it occurs, how severe the 
failure affects the system performance, and what should be the 
preventive measures to avoid the failure. 

The classical FMECA analysis is based on three factors, 
called risk factors, to characterize each failure mode [1]: the 
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funds through the Fundação para a Ciência e a Tecnologia, I.P., through 
IDMEC, under LAETA, Pproject UID/EMS/50022/2020, and by Secretaría 
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(SENESCYT) of the Ecuadorian Government through fellowship CZ05-
000291-2017. (Corresponding author: Andrés A. Zúñiga.)  

Severity (SEV) that characterize qualitatively the effect of the 
failure mode, the Frequency of Occurrence (OCC) that 
characterize how likely is it the failure mode to occur, and the 
Detectability (DET) that characterize how detectable is the 
failure mode before to occur. Each risk factor is classified in 
specific risk categories represented by a numerical scale, it can 
be a 1 to 10 scale as used in [1], or a 1 to 5 scale as in [2]. 

Each failure mode is assessed through a risk priority number 
(RPN); in general terms, the RPN results from the composition 
between SEV, OCC and DET as in (1), being the product the 
generally adopted approach. 

     RPN SEV OCC DET   (1)

 Because the RPN calculation in the classical FMECA 
approach results from the unique product between three 
integers, there is no associated computational complexity. 
Although FMECA is a very popular qualitative method for 
failure analysis, computation of the RPN has some 
disadvantages [3]–[5]. They are: 

1) The RPN computation does not consider any difference
degree between the three risk factors OCC, SEV, and
DET (i.e., no weight averaging each risk factor).

2) Although a higher RPN is usually associated with a more 
critical failure modes, this is not always true [6], [7],
and.

3) The scales for the three risk factors are generally
considered arbitrarily and may not accurately represent
the risk characteristics in specific problems.

To deal with these FMECA shortcomings, some approaches 
based on computational intelligence and decision-making 
methods were proposed in the past years. Bowles and Peláez [3] 
present one of the firsts applications of fuzzy inference systems 
FIS to improve the FMECA analysis; results shown that 
proposed FIS approach allows to overcome some FMECA 
issues like imprecise information related to the risk factors. In 
[6] authors conducted a literature review about FMECA
methods published between 1998 and 2018; the review shows
that publications about FMECA improvements increased in last
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ten years and methods like grey theory and fuzzy inference 
system are the most used to improve the FMECA analysis. In 
[7] it is shown the application of multi-criteria decision-making 
(MCDM) methods and uncertainty theory to model the 
vagueness related to FMECA processes. This book includes a 
broad review of academic works that apply MCDM methods to 
overcome FMECA issues. 

In [8], authors shown the application of type-I fuzzy 
inference systems to improve FMECA prioritization in the 
context of Smart Grid architectures. The method was applied to 
eight selected failure modes, and the results obtained were very 
promising for the Smart Grid context. In [9] authors present a 
combination of fuzzy rules base and grey relation theory to 
improve the FMECA analysis conducted for an ocean going 
fish vessel; the proposed method includes the use of linguistic 
terms and allows to assign weights to each risk factor. Liu et al. 
in [4] proposed the application of interval 2-tuple hybrid 
weighted distance (ITHWD) in an FMECA analysis conducted 
in a blood transfusion problem. The FMECA analysis identified 
nineteen potential failure modes related to healthcare risks, and 
eleven failure modes with RPN higher than 80 were selected to 
apply the proposed FMECA approach; results proved to be a 
useful way to prioritizing the failure modes in the presence of 
uncertainty and incomplete information. In [10], uncertainty is 
considered using interval type-2 fuzzy sets to rank failure 
modes in a real oil spill incident. Based on five experts, their 
criteria were aggregated considering a rule-based approach, 
with the final fuzzy set subsequently defuzzified to find the 
RPN. 

Reference [11] shows the application of type-2 fuzzy-based 
FMECA in the risk assessment of manufacturing facility in the 
automotive industry. The paper includes a fuzzy extension of 
the ordered weighted average (OWA) to assign an importance 
level to each of the fuzzy risk factors. Although the proposed 
method is limited to triangular membership functions; it is 
shown that the suggested approach offers additional flexibility 
to the experts in making judgments and provides better 
modeling of uncertainty in terms of intra and interpersonal 
uncertainty. 

In [12] authors developed an approach that combines interval 
type-2 fuzzy sets and evidential reasoning applied to FMECA 
analysis of a steam valve system, considering eight failure 
modes. The methodology revealed to be more precise than 
conventional methods like fuzzy VIKOR and fuzzy TOPSIS, 
also reducing the probability of producing the same RPN. The 
weighting scheme applied to the three risk factors has made the 
result more comprehensive and can better express the 
uncertainty than type-1 fuzzy methods. 

Anes et al. [13] show an FMECA approach based on two 
mathematical functions: the first one deals with cases where the 
order of importance of risk variables is sufficient to prioritize 
failure modes; the second functions are an extension of the first 
one and allow taking into account the relative weight of each 
variable. The proposed approach is applied to the blood 
transfusion problem analyzed in [4] and compared with other 
approaches but fuzzy-based ones. The results show that the 
proposed risk isosurface method has a good potential to 

prioritize failure modes according to their risk. 
Commonly, the efficacy of these new FMECA approaches is 

evaluated qualitatively by comparing the rankings obtained by 
each method and analyzing a potential balance between the 
three risk factors. When the number of failure modes is small, 
it is possible to conduct a simple qualitative analysis to identify 
how the different approaches rank the failure modes by 
considering a balance between the three risk factors SEV, OCC, 
and DET. Otherwise, for a high number of failure modes, a 
qualitative analysis becomes unpractical. 

As a result of FMECA analysis, the failure modes are ordered 
according to their RPN, from higher to lower, and an ordinal 
number is assigned for each ranked failure mode; consequently, 
the results of FMECA can be viewed as a single ordinal ranking. 
When different approaches are used to conduct an FMECA 
analysis, it is possible to determine the concordance or 
agreement between these methods. 

The measure of concordance can be defined as the level of 
agreement between two or more raters or judges and it is also 
known as a rank agreement, rank concordance, reproducibility, 
or interrater reliability. This is a well-known problem in 
biological and social sciences. 

The application of concordance measurements in the 
FMECA context is limited and focused to evaluate concordance 
between FMECA’s team human experts and not between 
FMECA methods. In [14] is presented an extension of the 
FMECA analysis using a Bayesian Belief Network as classifier 
for the FMECA parameters in the context of manufacturing 
process; the authors state that Kendall’s concordance 
coefficient is used to measure the concordance between the 
FMECA team experts but does not provide the results of the 
concordance measure. In his Ph.D Thesis, Okwesili includes the 
application of Kendall’s coefficient to determine the agreement 
between human experts in medical risk analysis context [15]. In 
[16] authors show the application of FMECA’s web-based 
three-round Delphi technique in the context of risk assessment 
related to transition from paper based records to digital based 
record in radiotherapy department; the Wilcoxon matched-pairs 
signed-ranks test and the Kendall’s coefficient of concordance 
were used to establish the consensus between the FMECA’s 
risk factor. In the three above mentioned papers, the 
concordance was measured between human experts conducting 
the classical FMECA’s. 

This paper introduces the application of Cohen’s coefficient 
of concordance in the FMECA analysis. The main goal of this 
work is to provide a methodology to conduct a statistical 
comparison between different approaches used to improve the 
FMECA analysis. 

The paper is organized as follows. Section II details the rank 
agreement problem; the selected metric for the rank agreement 
used in this paper is explained in Sections II.B to II.D. Section 
III introduces the use of the concordance coefficient in the 
FMECA context. Section IV shows the study case and Section 
V describes the developed fuzzy-based FMECA methods. 
Section VI shows the results of agreement between the 
reference ranking and different FMECA methods. Section VII 
shows a discussion about the obtained results, and Section  VIII 
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shows the paper's conclusion and future developments. 

II. PRELIMINARIES 

A. The measure of rank agreement 

Consider a collection of n objects classified by a particular 
characteristic, and let m a finite number of judges or evaluators 
who rank the n objects according to their appreciation of the 
objects’ characteristics. It is important to know the degree of 
agreement between the evaluators’ decisions. This kind of 
problem is usually named as the problem of m ranking. Kendall 
and Smith define it as: “If m persons rank n objects according 
to some quality of the objects, there arises the problem: does the 
set of m rankings of n show any evidence of a community of 
judgment among the m individuals?” [17]. The community of 
judgment is usually called an agreement. 

Agreement, also known as concordance, reproducibility [18], 
or interrater reliability [19],  is a concept closely related to, but 
fundamentally different from correlation [18]–[21]. The 
agreement focuses on the degree of concordance between two 
or more individuals or results between two or more assessments 
of interest variables [18]. The existence of agreement implies 
correlation, but the reciprocal may not be true [22]. Correlation 
statistics are usually applied to represent the association 
between two or more variables that do not necessarily measure 
the same attribute. In contrast, agreement statistically describes 
the measure of concordance in the opinion between individuals 
regarding the same attribute or characteristic. The concordance 
can be measured between a pair of raters or between several 
raters. 

Reference [19] contains an exhaustive analysis about some 
coefficients of agreement currently used in social and biological 
sciences: Cohen’s kappa, Scott’s Pi, Krippendorf’s Alpha, 
Gewt’s AC1, Aicking’s , Cronbach Alpha, Kendall’s Tau, 
among others. 

This paper considers the concordance measures between pairs 
of raters, then the Cohen’s Kappa coefficient was selected to 
conduct the concordance analysis. 

B. Cohen’s coefficient of concordance 

Cohen’s coefficient, usually known as Cohen’s kappa and 
denoted by , is a statistic useful for inter-rater or intra-rater 
reliability measures [23], [24]. Cohen’s coefficient compares 
the proportion of objects in which the raters agreed and the 
proportion of objects for which disagreement is expected [23]. 
Originally, the coefficient  was proposed as a measure of the 
agreement between two raters but it can be extended for more 
than two raters [24]. 

Follow, we resume how Cohen’s coefficient of concordance 
is computed. Let N objects, 1, 2, ,n N  , be classified 

independently into k categories by two separated and 
independent raters, observers or judges, called A and B, as 
shown in Table I. Here, as an example, Object 1 was rated as 
Category 5 by Rater A and Category 3 by Rater B. The 
categories can represent an intrinsic characteristic of the 
classified objects or a single ordinal ranking from 1 to k. 

 
Let ijp  be the proportion of objects that rater A classified in 

the category i, 1, 2, ,i k  , and rater B classified in the 

category j, 1, 2, ,j k  , respectively. Table II shows the 

proportion of classified objects. 
 

 
The proportions ip   and jp , where the symbol + represents 

summation over the index, are the frequencies or marginal 
probabilities for an object to be assigned into category i for rater 
A and category j for rater B: 

 
1

k

i ij
j

p p


   (2) 

 
1

k

j ij
i

p p


   (3) 

Where 
1

1
k

i
i

p 


  and 
1

1
k

j
j

p


 . Let 0p  be the observed 

proportion of agreement between raters [23] and expressed by 
(4): 

 0
1

k

ii
i

p p


   (4) 

The observed proportion of agreement does not take into 
account the agreement obtained only by chance (this means not 
really “agreeing” at all) [25]. Therefore, the expected 
proportion of agreement obtained by chance, denoted by ep , is 

based on the probability that rater A assigns the objects in the 
category i overall and rater B assigns the objects in the same 

TABLE I 
EXAMPLE OF N OBJECTS RANKED BY TWO RATERS 

 

Objects Rater A Rater B 

Object 1 Category 5 Category 3 
Object 2 Category 2 Category k 

⁝ ⁝ ⁝ 
Object n Category k Category 5 

⁝ ⁝ ⁝ 
Object N Category 1 Category 1 

 

TABLE II 
THE PROPORTION OF CLASSIFIED OBJECTS FOR EACH CATEGORY  

 

 
 Rater B 

 
Categories 1 2 … j … k Total 

Rater 
A 

1 11p  12p  … 1 jp  … 1kp  1p   

2 21p  22p  … 2 jp  … 2kp  2p   

⁝ ⁝ ⁝  ⁝  ⁝ ⁝ 

i 1ip  2ip  … ijp  … ikp  ip   

⁝ ⁝ ⁝  ⁝  ⁝ ⁝ 

k 1kp  2kp  … kjp  … kkp  kp   

Total 1p  2p  … jp  … kp  1 
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category overall, that is for all i j : 

  
1

k

e i i
i

p p p 


   (5) 

Then, Cohen’s  coefficient can be defined as: 

 0

1
e

e

p p

p






 (6) 

The lower and upper limits for  are -1 and 1, respectively, 
but usually falls between 0 and 1 [25]. When the observed 
agreement is greater than the agreement expected by chance,  
takes positive values. When the observed agreement is less than 
the agreement expected by chance,   takes negative values 
[23]. 

 1   occurs when (and only when) there is a perfect 
agreement between raters. For perfect agreement, there is a 
necessary condition where i jp p  [23]. 0   indicates that 

the observed agreement is no better than that expected by 
chance as if the raters had simply guessed every rating [25]. 

0   would mean that the agreement is worse than the one 
expected by chance. Because the upper limit of  is 1, then it is 
likely that values less than 0 mean poor agreement [23]. 

The  coefficient does not indicate at all whether the 
disagreement is due to random differences or systematic 
differences between raters [25], The value of  can be 
interpreted using labels assigned for different ranges, as 
proposed in [20] and shown in Table III. 

 

 
In some circumstances, the original  coefficient produces 

unexpected results; this problem has been referred in literature 
as the kappa paradoxes [19]. These paradoxes are related the 
use of marginal probabilities to quantify the agreement 
expected by chance ep . In book [19] the author lists two main 

paradoxes: 
1) If ep  is large, the correction process included in (6) can 

convert a relatively high value of 0p  into a relatively 

low value of . 
2) If unbalanced proportions ip   (or jp ) produce higher 

values of  than more balanced proportions. 
As indicated in book [19], the application of wights on the 

original  coefficient overcomes the paradoxes. Section II.C 
introduce the weighted version of Cohen’s kappa. 

C. Cohen’s weighted kappa  

The development of Cohen’s weighted kappa coefficient, 
denoted by w , was motivated by the “appearance of some 

disagreements in assignments, that is, some off-diagonal cells 
in the k x k matrix (Table II) that can have greater gravity than 
others” [26], and to avoid unexpected results or kappa 
paradoxes [19]. 
Let ijw  the weight for agreement assigned to the th thi j  cell 

of Table II. The weighted kappa coefficient can be defined by 
(7) [27]: 

 1 1 1 1

1 1

1

k k k k

ij ij ij i j
i j i j

w k k

ij i j
i j

w p w p p

w p p


 
   

 
 






 


 (7) 

Considering (7), the unweighted kappa is a special case of 
weighted kappa where all disagreements are given the same 
weight equal to 1 [26], [27]. The weights can be assigned using 
any judgment procedure, or, in many instances, they may result 
from a consensus of a committee of substantive experts [26]; in 
[19] the author proposed six weighting schemes for w . 

Nevertheless, the linear and quadratic weighting schemes are 
the most applied in the Cohen’s kappa calculation [25]–[32]. 

The linear weighting scheme considers the difference 
between categories i and j. Linear weighting scheme is defined 
by (8) [33]: 

  2 1
1ij

i j
w

n


 


 (8) 

The quadratic weighting scheme considers the squared 
difference between categories i and j. Quadratic weighting 
scheme is defined by equation reference goes here as in [33]: 

  
2

2 1
1ij

i j
w

n

     
 (9) 

D. Cohen’s weighted kappa test of significance  

Let H0 be the null hypothesis stated as raters’ agreement is 
no better than agreement expected by chance and let H1 be the 
alternative hypothesis stated as raters’ agreement is better than 
agreement expected by chance. The probability distribution of 

w  can be approximated by the Normal distribution [28]. The 

estimated variance when there is no association between raters’ 
assignments, that is, when the agreement is not better than the 
agreement expected by chance (null hypothesis), can be 
calculated using (10) [33]: 

 
  

 

2 2

1 12
2

ˆ
1

k k

i j ij i j e
i j

e

p p w w w p

n p


   
 

    





 (10) 

Where 
1

k

i ij j
j

w w p 


  represents the weighted average of 

the weights in the thi  row and 
1

k

j ij i
i

w w p 


   represents the 

weighted average of the weights in the thj  column [33]. 

TABLE III 
LABELS TO INTERPRET DIFFERENT VALUES OF   IN TERMS OF THE STRENGTH 

OF AGREEMENT  
 

 Range Strength of agreement 

 < 0.00 Poor agreement 

0.00 <   0.20 Slight agreement 

0.20 <   0.40 Fair agreement 

0.40 <   0.60 Moderate agreement 

0.60 <   0.80 Substantial agreement 

0.80 <   1.00 Almost perfect agreement 
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Assuming that ˆw   follows a normal distribution, it is 

possible to test the hypothesis of agreement expected by chance 
by reference to the standard normal distribution [27]. The test 
statistics is thus defined by (11): 

 
ˆ
wz




  (11) 

For a one-sided alternative, the null hypothesis H0 is rejected 

if z z , where z  is the value that leaves  in the upper tail 

of the standard normal distribution. In this work, the level of 
significance was selected as 0.05   and the critical value 

1.645z   [34]. Then, if the test statistics 1.645z   the null 

hypothesis will be rejected. 

III. THE MEASUREMENT OF RANK AGREEMENT IN THE 

FMECA CONTEXT 

In terms of the rank agreement problem, the FMECA's 
prioritized failure modes represent the n ranked objects, and the 
improved FMECA methods represent the m different judges or 
raters. Therefore, the rank agreement metrics can be used to 
evaluate the concordance between improved FMECA methods. 

Cohen’s concordance coefficient is a suitable metric to 
compare nominal rankings between two raters, therefore it was 
selected to compare different methods used to improve the 
FMECA analysis. 

The Cohen’s kappa   can be used to measure the concordance 
between different improved FMECA methods applied on the 
same system, considering the following assumptions: 

1) The failure modes represent the n classified objects. 
2) The FMECA methods represent the m independent 

raters. 
3) The ordinal failure modes’ ranking represents the   

categories. 
In this context, there are two possible ways to use Cohen’s 

kappa to assess the concordance in the FMECA context to: 
1) Assess the concordance between two different methods 

when applied to the same problem and without 
considering a reference one, and; 

2) Assess the concordance between two different methods 
when applied to the same problem and regarding an 
FMECA ranking selected as the reference one. 

Our approach considers applying the second way to measure 
the agreement between a pair of methods, considering a 
previously selected method as the reference one. That is, for the 
measurement of rank agreement between two FMECA results, 
as described below. 

IV. FMECA CASE STUDY 

The selected FMECA case study corresponds to a risk 
assessment in the blood transfusion process analyzed using the 
classical FMECA in [35] and subsequently analyzed using 
fuzzy-based and MCDM-based FMECA approaches in [4], [7], 
[13], [36]. According to [35], a total number of 19 failure modes 
were originally identified, being the 11 failure modes with RPN 
higher than 80 selected for further analysis. 

This FMECA case study was selected as a reference to apply 

the proposed concordance assessment approach considering the 
following reasons: 

1) This study case was already used for benchmarking in 
some studies; 

2) Because the study case has only 11 failure modes, 
comparing the different methods used to improve the 
FMECA prioritization in terms of the influence of the 
risk factors becomes more intuitive. 

Table IV shows the FMECA analysis for the case study 
including the ranking obtained using the classical RPN [35]. 

 

 
The failure modes FM9 and FM11 have RPN equal to 112 

and both was ranked as priority 6, and failure modes FM6 and 
FM7 have RPN 80 and both was ranked as priority 10. 

This case study was analyzed using different methods to 
improve the failure modes’ prioritization. Table V shows the 
ranking for the classical FMECA analysis included in [35], the 
Fuzzy VIKOR based FMECA shown in [37], the interval 2-
tuple hybrid weighted distance measure performed in [4], and 
the Risk Isosurfaces RPI(SC4) and RPI(SC5) proposed in [13]. 

Because our proposed approach requires an FMECA ranking 
as reference, the FMECA method denoted as RPI(SC4) 
proposed in [13] was selected as the reference ranking to be 

TABLE IV 
FMECA TABLE FOR THE CASE STUDY  

 

Failure 
mode 

Failure mode SEV OCC DET RPN RANK 

FM1 

Insufficient and/or 
incorrect clinical 
information on 
request form 

7 6 3 126 5 

FM2 Blood plasma abuse 6 6 5 180 4 

FM3 

Insufficient 
preoperative 
assessment of the 
blood product 
requirement 

7 5 7 245 1 

FM4 
Blood group 
verification 
incomplete 

7 5 3 105 8 

FM5 

Delivery of blood 
sample and/or 
request form 
delayed 

5 3 6 90 9 

FM6 
Incorrect blood 
components issued 

10 1 8 80 10 

FM7 
Quality checks not 
performed on blood 
products 

8 2 5 80 10 

FM8 
Preparation time 
before infusion >30 
min 

8 6 5 240 2 

FM9 
Transfusion cannot 
be completed within 
the appropriate time 

7 4 4 112 6 

FM10 

Blood transfusion 
reaction occurs 
during the 
transfusion process 

8 4 7 224 3 

FM11 

Bags of blood 
products are 
improperly disposed 
of bags 

7 4 4 112 6 
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used to measure the concordance between it and other FMECA 
methods. The reasons to justify this selection are those ones 
declared by its authors in [13]: 

1) The selected FMECA, RPI(SC4), does not require 
additional previous knowledge about the problem, and; 

2) The failure modes prioritization agrees with the 
expectation made for the risk scenario. 

 

 

V. FUZZY-BASED FMECA METHODS 

In addition to the FMECAs listed in Table V, this paper 
includes the application of FMECA approaches based on the 
Type-I and Type-II Fuzzy Inference Systems, and the Fuzzy 
Weighted Geometric Mean. These Fuzzy-FMECA approaches 
were also applied to the case study. 

The following membership functions were considered for the 
Type-I and Type-II Fuzzy Inference System and for the Fuzzy 
Weighted Geometric Mean [8], [38], [39]: 

1) Triangular membership function, denoted by trimf. 
2) Trapezoidal membership function, denoted by trapmf. 
3) Gaussian membership function, denoted by gaussmf. 
4) Generalized bell membership function, denoted by 

gbellmf. 
We defined eight fuzzy configurations for the Type-I Fuzzy 

Inference System, denoted follow as Type-I FIS, T1-FIS 01 to 
T-FIS 08 and as shown in Table VI. 

 

 
The term symm means that the used membership functions 

were all symmetrical, asymm means that the used membership 

functions were all asymmetrical, column MFSEV represents 
the type of membership function used to represent the severity 
(SEV), column MFOCC means the type of membership 
function used to represent the occurrence (OCC), column 
MFDET represents the type of membership function used to 
represent the detection (DET), and column MFRPN represents 
the type of membership function used to represent the RPN 
number. 

We defined eight fuzzy configurations for the Fuzzy 
Weighted Geometric Mean, denoted as FWGM, FWGM 01 to 
FWGM 08, as Table VII shows.  

 

 
Regarding the application of the Type-II Fuzzy Inference 

System (Type-II FIS), we considered an exhaustive 
combination of four different types of membership functions 
for the severity (MFSEV), occurrence (MFOCC), detection 
(MFDET), and RPN (MFRPN). Different Footage of 
Uncertainty FOU [39] and symmetry/asymmetry for each 
membership function, both establishing the FIS configuration, 
were used. The total combination of these set of parameters 
results in 41472 Type-II FIS configurations, denoted as T2-FIS 
01 to T2-FIS 41472. 

VI. RESULTS 

Results are organized in two sections: Section VI.A shown 
the results for the linear weighted kappa and Section VI.B 
contains results for the quadratic weighted kappa. Each section 
contains the results of agreement between the reference ranking 
RPI(SC4) and the following methods: 1) Fuzzy VIKOR, 2) 
ITHWD; 3) RPI(SC5); 4) Type-I Fuzzy Inference System; 5) 
Fuzzy weighted geometric mean FWGM; and 6) Type-II Fuzzy 
Inference System. 

At the end of the section is a comparison between the 
reference ranking and the ranking obtained by 5 methods with 
highest concordance coefficient. 

A. Results considering the linear weighted kappa   

Table VIII shows the linear weighted concordance 
coefficient w lin  , the value of the test statistics z, the strength 

of agreement and the result of the hypothesis test for the 
FMECA methods RPI(SC5), Fuzzy VIKOR and ITHWD, when 
compared with the reference ranking RPI(SC4). 

The computed w lin   takes values from 0.55 to 0.65, and the 

TABLE V 
DIFFERENT RANKINGS FOR FMECA IMPROVEMENT METHODS  

 

Failure 
mode 

RPN 
Rank 

Fuzzy 
VIKOR 

ITHWD RPI(SC4) RPI(SC5) 

FM1 5 4 4 4 5 
FM2 4 7 6 5 7 
FM3 1 2 1 2 4 
FM4 8 8 10 7 9 
FM5 9 11 11 11 11 
FM6 10 1 3 6 3 
FM7 10 6 9 9 6 
FM8 2 5 5 1 1 
FM9 6 10 7 8 8 
FM10 3 3 2 3 2 
FM11 6 9 8 10 10 

 

TABLE VI 
CONFIGURATIONS FOR THE FMECA BASED ON TYPE-I FUZZY INFERENCE 

SYSTEM  
 

Config Symmetry MFSEV MFOCC MFDET MFRPN 

T1-FIS 01 symm trimf trimf trimf trimf 
T1-FIS 02 symm trapmf trapmf trapmf trapmf 
T1-FIS 03 symm gaussmf gaussmf gaussmf gaussmf 
T1-FIS 04 symm gbellmf gbellmf gbellmf gbellmf 
T1-FIS 05 asymm trimf trimf trimf trimf 
T1-FIS 06 asymm trapmf trapmf trapmf trapmf 
T1-FIS 07 asymm gaussmf gaussmf gaussmf gaussmf 
T1-FIS 08 asymm gbellmf gbellmf gbellmf gbellmf 

 

TABLE VII 
CONFIGURATIONS FOR THE FMECA BASED ON FUZZY WEIGHTED GEOMETRIC 

MEAN  
 

Config Symmetry MFSEV MFOCC MFDET MFRPN 

FWGM 01 symm trimf trimf trimf trimf 
FWGM 02 symm trapmf trapmf trapmf trapmf 
FWGM 03 symm gaussmf gaussmf gaussmf gaussmf 
FWGM 04 symm gbellmf gbellmf gbellmf gbellmf 
FWGM 05 asymm trimf trimf trimf trimf 
FWGM 06 asymm trapmf trapmf trapmf trapmf 
FWGM 07 asymm gaussmf gaussmf gaussmf gaussmf 
FWGM 08 asymm gbellmf gbellmf gbellmf gbellmf 
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scenario RPI(SC5) achieves the better concordance with w lin    

equal to 0.65, which can be considered a substantial agreement 
according to the strength of agreement proposed in Table III. 

 

 
Regarding the hypothesis test, the critical value for the test 

statistics is 0.05 1.645z  . The value of z for the three methods 

is greater than test statistics, then the null hypothesis H0 raters’ 
agreement is no better than agreement expected by chance is 

rejected. 
Table IX shows now the concordance results between 

RPI(SC4) and the FMECA based on the eight Type1-FIS 
proposed configurations (Table VI). The best concordance 
coefficient value is 0.55 and corresponds to configurations T1-
FIS-05 and T1-FIS-08 and can be considered moderate 
agreement.  

There are two differences between T1-FIS-05 and T1-FIS-
08: the ranking of the failure modes and the shape of the 
membership functions. If the FMECA has few failure modes 
the most appropriated configuration can be selected through a 
qualitative comparison between the rankings. For larger 
FMECAs an analysis of the shape of the membership function 
could be necessary. 

 Two of the Type1-FIS configurations, T1-FIS-03 and T1-
FIS-04 achieve the worst value for w lin   as 0.3, which can be 

considered fair agreement. Also, in both cases, the null 
hypothesis H0 was accepted because 0.05z z . 

 
Table X shows the results for the FMECA that was based on 

eight FWGM proposed configurations (Table VII). In this case, 
the concordance coefficient  between RPI(SC4) and each 

FWGM approach achieved a value between 0.40 and 0.50. In 
all cases the agreement is moderate and the hypothesis tests 
were satisfactory. 

 

We present now in Table XI the results for the FMECA that 
now was based on the 41472 Type-II FIS proposed 
configurations. These eight configurations shown in Table XI 
achieved the highest value of all types of FMECA for the 
concordance coefficient  as being 0.85. This can be considered 
as an almost perfect concordance, also having the hypothesis 
test H0 being satisfactory in all scenarios. However, it must be 
notice that the fact that  is equal for all the eight Type-II FIS, 

it does not imply that the rankings are the same. 
Since the concordance coefficient is equal for the eight Type-

II FIS configurations, the most appropriate configuration can be 
selected by conduct a qualitative analysis if the FMECA has 
few failure modes, or, in the case of larger FMECAs can be 
performed an analysis that considers the membership functions 
and their footprint of uncertainty FOU. 

 
 

 

TABLE VIII 

LINEAR WEIGHTED KAPPA w lin   BETWEEN REFERENCE RANKING RPI(SC4) 

AND METHODS RPI(SC5), VIKOR, AND ITHWD  
 

 RPI(SC5) Fuzzy VIKOR ITHWD 

w lin   0.65 0.55 0.6 

Strength of agreement Substantial Moderate Moderate 
z  3.346 2.832 3.226 

H0 test Reject Reject Reject 

 

TABLE IX 

LINEAR WEIGHTED KAPPA w lin   BETWEEN REFERENCE RANKING RPI(SC4) AND TYPE-I FUZZY INFERENCE SYSTEM  

 

 
T1-FIS 

01 
T1-FIS 

02 
T1-FIS 

03 
T1-FIS 

04 
T1-FIS 

05 
T1-FIS 

06 
T1-FIS 

07 
T1-FIS 

08 

w lin   0.45 0.40 0.30 0.30 0.55 0.45 0.45 0.55 

Strength of agreement Moderate Moderate Fair Fair Moderate Moderate Moderate Moderate 
z  2.317 2.059 1.545 1.545 2.832 2.317 2.317 2.832 

H0 test Reject Reject Accept Accept Reject Reject Reject Reject 

 

TABLE X 

LINEAR WEIGHTED KAPPA w lin   BETWEEN REFERENCE RANKING RPI(SC4) AND FUZZY WEIGHTED GEOMETRIC MEAN  

 

 
FWGM 

01 
FWGM 

02 
FWGM 

03 
FWGM 

04 
FWGM 

05 
FWGM 

06 
FWGM 

07 
FWGM 

08 

w lin   0.50 0.45 0.45 0.50 0.40 0.40 0.50 0.50 

Strength of agreement Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate 
z  2.574 2.317 2.317 2.574 2.059 2.059 2.574 2.574 

H0 test Reject Reject Reject Reject Reject Reject Reject Reject 
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B. Results considering the quadratic weighted kappa   

Table XII shows the quadratic weighted concordance 
coefficient w quad  , the value of the test statistics z, the strength 

of agreement and the result of the hypothesis test for the 
FMECA methods RPI(SC5), Fuzzy VIKOR and ITHWD, when 
compared with the reference ranking RPI(SC4). 

 

As shown, quadratic weighted kappa takes values between 

0.727 and 0.855, revealing the scenario RPI(SC5) as those one 
achieving better concordance of 0.855, which can be considered 
as an almost perfect agreement. 

Using now coefficient w quad  , Table XIII shows the results 

for the FMECA based on the eight Type1-FIS proposed 
configurations. 

Results obtained show the best agreement coefficient value 
equal to 0.8 corresponding to the configuration T1-FIS-08 (all 
membership functions type gbell and asymmetrical). Two of the 
Type1-FIS configurations (T1-FIS 03, T1-FIS 04) achieved the 
worst value for the agreement coefficient, 0.536, which can be 
considered as moderate agreement. However, the null 
hypothesis was rejected in both cases. 

Table XIV shows the results for the FMECA based on the 
eight FWGM proposed configurations. wherein this case, the 
agreement coefficient achieves a value between 0.6 and 0.7. 
The agreement between these scenarios and the reference 
ranking can be considered a substantial agreement. In all cases, 
the hypothesis tests were rejected. 

 

 

 
At last, the quadratic weighted kappa is used in the FMECA 

based the 41472 Type-2 FIS proposed configurations. Table 
XV shows the results achieved for the eight best scenarios. 
Concordance coefficient achieves its highest value, 0.973, 
which can be considered as an almost perfect concordance, with 
the null hypothesis H0 rejected in all scenarios. 

VII. DISCUSSION 

Results confirm that the quadratic weighted kappa achieves 
concordance values greater than linear weighted kappa, as it 
was documented in [32]. In the FMECA context, the 
relationship between categories is not always linear and is 

TABLE XI 

LINEAR WEIGHTED KAPPA w lin   BETWEEN REFERENCE RANKING RPI(SC4) AND TYPE-II FUZZY INFERENCE SYSTEM  

 

 
T2-FIS 
25361 

T2-FIS 
29969 

T2-FIS 
30033 

T2-FIS 
34580 

T2-FIS 
35089 

T2-FIS 
35153 

T2-FIS 
38673 

T2-FIS 
38675 

w lin   0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

Strength of agreement Perfect Perfect Perfect Perfect Perfect Perfect Perfect Perfect 
z  4.376 4.376 4.376 4.376 4.376 4.376 4.376 4.376 

H0 test Reject Reject Reject Reject Reject Reject Reject Reject 

 

TABLE XII 

QUADRATIC WEIGHTED KAPPA w quad   BETWEEN REFERENCE RANKING 

RPI(SC4) AND RPI(SC5), VIKOR, AND ITHWD  
 

 RPI(SC5) Fuzzy VIKOR ITHWD 

w quad   0.855 0.727 0.809 

Strength of agreement Perfect Substantial Substantial 
z  2.834 2.412 2.683 

H0 test Reject Reject Reject 

 

TABLE XIII 

LINEAR WEIGHTED KAPPA w quad   BETWEEN REFERENCE RANKING RPI(SC4) AND TYPE-I FUZZY INFERENCE SYSTEM  

 

 T1-FIS 01 T1-FIS 02 
T1-FIS 

03 
T1-FIS 

04 
T1-FIS 05 T1-FIS 06 T1-FIS 07 T1-FIS 08 

w quad   0.70 0.60 0.536 0.536 0.764 0.682 0.736 0.80 

Strength of agreement Substantial Substantial Moderate Moderate Substantial Substantial Substantial Substantial 
z  2.322 1.990 1.799 1.779 2.533 2.261 2.442 2.653 

H0 test Reject Reject Reject Reject Reject Reject Reject Reject 

 

TABLE XIV 

LINEAR WEIGHTED KAPPA w quad   BETWEEN REFERENCE RANKING RPI(SC4) AND FUZZY WEIGHTED GEOMETRIC MEAN  

 

 FWGM 01 FWGM 02 FWGM 03 FWGM 04 FWGM 05 FWGM 06 FWGM 07 FWGM 08 

w quad   0.70 0.636 0.627 0.70 0.60 0.627 0.70 0.70 

Strength of agreement Substantial Substantial Substantial Substantial Substantial Substantial Substantial Substantial 
z  2.322 2.111 2.080 2.322 1.990 2.080 2.322 2.322 

H0 test Reject Reject Reject Reject Reject Reject Reject Reject 
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difficult to establish; this relationship should determine the 
weighting scheme that will be used for the calculation of w , 

however, in this paper were used the linear and quadratic 
weighting schemes.

The results of the simulations show that FMECA methods 
that achieve a higher linear weighted kappa also achieve a 
higher quadratic weighted kappa. In practical terms, it can be 
stated that the main difference between the obtained results of 
kappa using the two weighting schemes (linear and quadratic) 
can be determined by the labels associated to the strength of 
agreement detailed in Table III. For example, the w lin   

obtained for the method FWGM 01 can be considered a 
“moderate” and its respective w quad   obtained using the same 

approach can be considered as “substantial”. 
Nevertheless, for the scenarios T1-FIS 03 and T1-FIS 04, the 

null hypothesis is accepted when the linear weighting scheme 
is used and rejected when the quadratic weighting scheme is 
used. This could mean that the weighting scheme influence the 
statistical significance of the kappa value. A more in-depth 
study is needed to quantify the influence of the weighting 
scheme on the Cohen’s kappa.Table XVI shows the ranking for 
the reference FMECA RPI(Sc4), the RPI(Sc5), ITHWD, T1-
FIS 05, FWGM 08, and T2-FIS 38675, and their corresponding 
linear and quadratic weighted concordance coefficients; the 
rankings were ordered from highest to lowest kappa. 

 

 
 Because the FMECA case study has only a few failure 

modes, it is possible to identify the concordances and 
discordances between the five FMECA methods. The ranking 
for failure modes FM1, FM2, FM5, FM10 and FM11 are the 

same for the reference RPI(SC4) and T2-FIS 38675; both 
models agree 5 times and disagree 6 times. Comparing the base 
case with RPI(SC5), the rankings agree 4 times and disagree 7 
times. For ITHWD and T1-FIS 05, the rankings agree 3 times 
and disagree 8 times. 

For FWGM 08, the rankings agree 2 times and disagree 9 
times. Notice, that the number of agreements and disagreements 
can indicate the level of concordance between two raters in a 
simple way, however, it does not provide an effective metric to 
measure it; the Cohen’s coefficient deals with this issue and 
also gives a concordance level based on the coincidences 
between ratings and the agreement that occurs by chance. 

Fig. 1 shows a radar chart for the three best FMECA methods 
(RPI(Sc5), ITHWD, and T2-FIS 38675) and the reference one. 
The chart greatly simplifies the comparison between the 
different rankings assigned to each failure mode. The blue line 
in Fig. 1 represents the reference FMECA ranking and the red 
line represents the ranking for the method with highest  (T2-
FIS 38675).  

When compared with the reference raking RPI(Sc4), the 
approach T2-FIS 38675 has perfect agreement in 5 failure 
modes (FM1, FM2, FM5, FM10 and FM11), the approach 
RPI(Sc5) has perfect agreement in 4 failure modes (FM5, FM8, 
FM9 and FM11), and the approach ITHWD has perfect 
agreement in 3 failure modes (FM1, FM5 and FM7). 

VIII. CONCLUSION AND FUTURE WORK 

This paper introduces an approach based on the Cohen’s 
kappa concordance coefficient to compare different methods 
used in the FMECA context. A simple and further analyzed case 
study was selected to conduct the comparisons. FMECA 
approaches based on Type-I Fuzzy Inference System, Fuzzy 
Weighted Geometric Mean, and Type-II Fuzzy Inference 
System were developed and conducted to rank the failure 
modes. From our results and its previous discussion, one pulls 
out four critical conclusions: 

1) The comparison between different FMECA methods is 
commonly based on the qualitative comparison of 
ranking and balance between the three risk factors; 
nevertheless, this approach can be impractical for more 
extensive problems. 

2) The proposed approach aims to contribute to the 
quantitative comparison between methods used to 
improve the prioritization of failure modes regarding a 

TABLE XV 

QUADRATIC WEIGHTED KAPPA w quad   BETWEEN REFERENCE RANKING RPI(SC4) AND TYPE-II FUZZY INFERENCE SYSTEM  

 

 
T2-FIS 
25361 

T2-FIS 
29969 

T2-FIS 
30033 

T2-FIS 
34580 

T2-FIS 
35089 

T2-FIS 
35153 

T2-FIS 
38673 

T2-FIS 
38675 

w quad   0.973 0.973 0.973 0.973 0.973 0.973 0.973 0.973 

Strength of agreement Perfect Perfect Perfect Perfect Perfect Perfect Perfect Perfect 
z  3.226 3.226 3.226 3.226 3.226 3.226 3.226 3.226 

H0 test Reject Reject Reject Reject Reject Reject Reject Reject 

 

TABLE XVI 
DIFFERENT RANKINGS FOR FMECA IMPROVEMENT METHODS  

 

Failure 
mode 

RPI(SC4) 
T2-
FIS 

38675 
RPI(SC5) ITHWD 

T1-
FIS 
05 

FWGM 
08 

FM1 4 4 5 4 8 6 
FM2 5 5 7 6 5 10 
FM3 2 1 4 1 3 1 
FM4 7 6 9 10 9 8 
FM5 11 11 11 11 11 11 
FM6 6 7 3 3 2 4 
FM7 9 8 6 9 10 9 
FM8 1 2 1 5 1 3 
FM9 8 9 8 7 6 7 

FM10 3 3 2 2 4 2 
FM11 10 10 10 8 7 5 

w lin   Reference 0.850 0.650 0.60 0.550 0.50 

w quad   Reference 0.973 0.855 0.809 0.764 0.70 
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reference ranking. 
3) The results shown that the Cohen’s  coefficient   gives 

a quantitative level for the agreement between two 
different rankings in the FMECA analysis context. 

4) The ranking based on Type-II Fuzzy Inference System's 
achieves the best agreement regarding the reference 
FMECA method. This occurs due to the uncertainty 
being considered now as an additional parameter in the 

fuzzy inference process. 
5) The selection of the weighting scheme is another 

essential aspect to take into account in the proposed 
approach; since the relationship between categories in 
FMECA’s risk factors is not linear, results show that 
quadratic weighting scheme allows obtaining a better 
strength of agreement. 

6) The reference FMECA’s ranking identification is a 
critical aspect for the success of the proposed approach.

 

The main shortcoming in our proposed approach is the 
selection of the reference FMECA ranking. In practical 
applications, it can be demanding to identify a suitable FMECA 
reference ranking. An acceptable procedure to conduct this kind 
of comparison could be to apply different FMECA approaches 
to a well-known problem whose failure modes’ ranking can be 
considered as optimal and then compute the concordance 
coefficient to identify the best FMECA method respect to this 
reference. Once the best FMECA method is identified, it can be 
applied to another case study with similar characteristics. The 
solution to this shortcoming is being addressed and will be 
included in future works. 

Additional aspects are currently in development and will be 
include in forthcoming works: 

1) The application of the proposed approach in the context 
of smart substations; 

2) The definition of tailor-made scales for the FMECA risk 
factors in the context of smart substations; 

3) The proposal of a new weighting scheme based on the 
above-mentioned risk factors’ scales; 

4) The use of paradox-resistant concordance coefficients. 
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