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MegaStitch:
Robust Large Scale Image Stitching

Ariyan Zarei, Emmanuel Gonzalez, Nirav Merchant, Duke Pauli, Eric Lyons, and Kobus Barnard

Abstract—We address fast image stitching for large image
collections while being robust to drift due to chaining trans-
formations and minimal overlap between images. We focus
on scientific applications where ground truth accuracy is far
more important than visual appearance or projection error,
which can be misleading. For common large-scale image
stitching use cases, transformations between images are often
restricted to similarity or translation. When homography is
used in these cases, the odds of being trapped in a poor
local minimum and producing unnatural results increases.
Thus, for transformations up to affine, we cast stitching
as minimizing reprojection error globally using linear least
squares with a few, simple constraints. For homography, we
observe that the global affine solution provides better ini-
tialization for bundle adjustment compared to an alternative
that initializes with a homography-based scaffolding, and at
lower computational cost. We evaluate our methods on a
very large translation dataset with limited overlap, as well
as four drone datasets. We show that our approach is better
compared to alternative methods such as MGRAPH in terms
of computational cost, scaling to large numbers of images,
and robustness to drift. We also contribute ground truth
datasets for this endeavor.

I. INTRODUCTION

AUTOMATED crop monitoring and high-throughput
phenotyping have become important research topics

both in plant sciences and in computer science [1] [2] [3]
[4]. Unoccupied aerial vehicles (UAVs) and large-scale,
ground-based systems are now providing high resolution
alternatives to aerial and satellite image capture. Thus,
having accurately georeferenced image mosaics with large
fields of view encompassing all parts of the monitored re-
gion is important for remote sensing, automatic phenotype
extraction, and crop monitoring systems.

The fundamentals of image stitching have been well
studied and documented in computer vision. However,
there has been less effort on the challenges of image
alignment and georeferencing in large scale datasets, and
where minimal overlap of neighboring images makes
global stitching brittle. Our motivating context is assessing
how different water-stress treatments of 40, 000 individual
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plants of 240 different genotypes affect measured phe-
notypic features. This requires individual plant tracking
throughout an entire growing season, across different
types of image data captured by different cameras and
sensors including RGB, Thermal and Photosystem II (PS2)
camera (a camera that measures plant tissue fluorescence
at night to determine photosynthetic capabilities). Here,
having accurately georeferenced mosaics is essential for
tracking individual plants, fusing data across sensors and
time, extracting phenotypic features, and inferring plant
performance.

In this project, sensors and cameras are mounted on a
specialized, ground-based gantry system that scans two
acres throughout the entire season day and night (see
Figure 1). Each scanned image is associated with gantry
coordinates, which have non-negligible error. This error
increase when the gantry coordinates get converted to
GPS. The RGB images need to be very high resolution and
are thus taken close to the ground (2−3.5m). As a result,
the images include large regions of soil. In addition, the
plants are aligned in uniform rows, and due to the design of
the gantry system, the images have as little as 10% overlap.
Both these attributes increase the ambiguity of visual
feature matches between image pairs. Additionally, the
orthomosaic must have a high degree of accuracy as it will
be used to track approximately 40, 000 individual plants
from 10, 000 images per day throughout the growing
season. Due to these factors, minor local errors in pairwise
image stitching can easily contribute to major errors in
estimated quantitative phenotypes. Further, images need
to be accurately aligned to absolute coordinates, and thus
to other sensor modalities and field measurements, which
is a different task than having results that are visually
appealing. Arranging this manually entails far too much
human intervention for the scale of these continuously
collected data.

Current approaches to image stitching rely on robust
pairwise image matching typically from combining a
geometry model with invariant features (e.g., SIFT [5])
using RANSAC [6]. One can consider chaining together
pairwise transformations to create a large orthomosaic.
However, doing so inevitably suffers from drift (error ac-
cumulation) leading to global inconsistencies in position.
In particular, there is no reason to expect that chains along
two paths between distant images will give the exact same
transformation. This can be ignored to some extent if the
transformations are very accurate, as is possible if there
are plenty of pairwise feature matches due to significant
image overlap. Generally, and definitely for challenging
imaging data, there is a need for a more global approach
that can make paths consistent and make image placement
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Fig. 1: The gantry system scanning lettuce plants. Different
crops are grown under the gantry and scanned daily using
various high-resolution sensors and scanners seen hanging
below the cross beam and able to move left-to-right as the
rig moves forward and back. In the bottom right corner,
one can see a GPS marker that we use to develop ground
truth for data from this device, as well from the drone.

more accurate.
The usual solution for homography transformations is

bundle adjustment (e.g. [7]), which entails a non-linear
optimization that potentially has many local minimums.
As such, bundle adjustment requires a good starting point,
which might be hard to find or need human interven-
tion [8]. Additionally, bundle adjustment operates on large
matrices with each row representing an equation for each
of the keypoint correspondences. When the scale of the
problem is very large, this becomes a computational
bottleneck. Because of these computational challenges,
one certainly does not want to use methods designed for
homography if homography is not warranted.

In this paper we show that non-projective transforma-
tions permit fast global solutions for minimizing feature
matching error using linear least squares (§III). While
linear least squares is not robust in general, we are able
to use it to an advantage because we only apply it to
inliers found by robust matching (e.g., RANSAC). We
demonstrate that the proposed method works very well on
five datasets, three of which are images of an agricultural
field. The one dataset, collected by the gantry system (Fig-
ure 1), captures the field with ∼ 6, 000 − 10, 000 very
high resolution but minimally overlapping images which
are related by a translation. The second and the third
datasets image the same field with about 450 drone images
that are related by a similarity transformation (the drone
is relatively level during image capture). The other two
datasets are drone images of a golf course and a reservoir
in Colorado available online [9].

When the images are related by a homography, instead
of initializing bundle adjustment parameters with iterative
or graph-based approximation methods, which are prone
to drift and often lead to unacceptable results, we use the
results of the linear least squares with affine to estimate
good initializations for bundle adjustment. This effectively

decreases the computation time while maintaining an
acceptable level of alignment accuracy.

II. RELATED WORK

Early progress in image stitching in computer vision is
summarized by Szeliski [10]. Image mosaicking methods
typically have four components: 1) feature detection; 2)
feature correspondence estimation; 3) transformation es-
timation and global alignment; and 4) seamless stitching
and blending [11]. However, scientific applications need
accurate alignment of geo-referenced images, but do not
necessarily need absolutely seamless stitching. For homog-
raphy transformations, a significant step forward was using
robust matching of invariant features (e.g., SIFT [5]) under
a geometry model using RANSAC [6], as proposed by
Brown and Lowe [12], [13], and followed on by many
others. Multiple researchers (e.g., [14], [15], [16]) opted
for using the Harris-Laplacian detector [17] to detect fea-
ture points, and some (e.g., [18], [19]) found advantages to
using speeded up robust features (SURF) [20]. To evaluate
matches within the RANSAC framework, in addition to
the nearest-neighbour based methods proposed originally,
Zhao et al. [14] considered normalized correlation, and De
Cesare et al. [15] proposed entropy and mutual information
based measures.

Different from the above methods, Xie et al. [21] used
the fast Fourier transform to estimate the displacement
between two images, and subsequently estimate the trans-
formation needed for stitching. And Preibishch et al. [22]
used Fourier matching together with global optimization
for translated confocal microscopy images.

Related work on orthomosaic generation from large-
scale, geo-referenced images includes Mizotin et al. [23],
who proposed a voting scheme for shift and rotation
estimation in the mosaicing of aerial images with low
overlap and significant angle rotation, Xiang et al. [24]
who emphasized the importance of using GPS coordinates
to find neighboring images to speed up the mosaicing by
avoiding matching all possible image pairs, and Moussa
et al. [25] who proposed an iterative, region growing
approach which combines using GPS coordinates with
constrained Delaunay triangulation [26] to avoid exhaus-
tive matching. Although some image mosaicing challenges
were addressed in the later method, it accumulates small
transformation errors in locations distal from the center
(seed) of the mosaic. Similar iterative methods have been
proposed by others [27], [28], [29], [30], [31].

In the case of mosaicking drone images, others have
used the positional information system (POS) to correct
drone’s attitude before performing bundle adjustment [32].
Additionally, Liu et al. [33] proposed a new approach in
which they constructed each of the projection matrices
using the POS information and separately estimated geo-
metric and camera parameter errors.

Finally, Ruiz et al. [34] proposed MGRAPH, which
attempts to reduce drift by using a non-linear optimization
similar to bundle adjustment. They represent the image
dataset by a minimum spanning tree (MST) computed
using pairwise matching errors, and then estimate absolute
homographies for each image with respect to a reference
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by chaining the pairwise transformations along the MST
paths. These absolute homographies are refined as to
minimize the error between matched points computed
by transforming one of them to the reference image
coordinates, followed by the inverse mapping to the other
image. They cast their method in terms of homography,
although, as near as we can tell, they use similarity in
practice for their drone data. Because they explicitly seek a
globally consistent solution, we implemented their method
against which to compare our method.

In summary, there has been good progress on managing
computation, finding initial matches, iterative stitching,
and reducing computational costs assuming homography
is needed. What remains is dealing with drift in large
scale data, which we address using global optimization
for non-projective transformations, either as an appropriate
assumption for many scientific data sets, or as an effective
initialization for bundle adjustment in cases when homog-
raphy is needed.

III. ALGORITHMS

For non-projective transformations such as translation,
similarity, and affine, we can directly minimize the total
reprojection error with constrained linear least squares.
Without loss of generality, given a reference image indexed
by 0, we denote the 2 × 3 transformation that rewrites
the coordinates with respect to image i into the reference
image coordinates by T (i), and use T (i)>

r for row r of this
transformation as a column vectors. We constrain T (0) to
be the identity transform, so T

(0)
1 = [1, 0, 0] and T

(0)
2 =

[0, 1, 0]. Our variables are then the stacked rows of T (i),
i.e., [T (0)>

1 , T
(0)>
2 , T

(1)>
1 , T

(1)>
2 , . . . T

(N)>
1 , T

(N)>
2 ],

where N is the number of images.
We denote the homogeneous coordinates of an arbitrary

inlier feature point in image i by p(i), and the set of pairs
of corresponding inliers for image pair i and j by Ii,j . For
an inlier pair (p(i), p(j)) ∈ Ii,j , the mapping from p(i) to
absolute coordinates should be the close to the mapping
from p(j) to absolute coordinates, i.e., T (i)p(i) ≈ T (j)p(j).
This gives an equation for each of the two transformation
rows, and we get the following dot products for the system
of equations that we will solve in the least squares sense:

p(i) • T
(i)
1 − p(j) • T

(j)
1 ≈ 0 ∀(p(i), p(j)) ∈ Ii,j

p(i) • T
(i)
2 − p(j) • T

(j)
2 ≈ 0 ∀(p(i), p(j)) ∈ Ii,j .

(1)

Solving for affine T gives us the absolute transformations
which we can use to align and warp the images into the
reference frame.

However, as discussed above, often similarity or transla-
tion is called for, and for these cases, we need additional
constraints, and we can make additional simplifications.
For similarity, we augment (1) with the constraints:

T
(◦)
1,2 = −T (◦)

2,1 and T (◦)
1,1 = T

(◦)
2,2 , (2)

using ◦ for i or j. To reduce the size of the least squares
problem, we use shared variables for T

(◦)
1,2 , T

(◦)
2,1 and

T
(◦)
1,1 , T

(◦)
2,2 , negating two of the coefficients in (1) to

account for the negation in T (◦)
1,2 = −T (◦)

2,1 .

For translation, we can further simplify the equations
by only considering the translation parameters for the x
and y directions. This gives:

T
(i)
1,3 − T

(j)
1,3 ≈ p(i)x − p(j)x

T
(i)
2,3 − T

(j)
2,3 ≈ p(i)y − p(j)y .

(3)

This has far fewer parameters and therefore can be solved
faster. While it is known that translation can be addressed
with least squares [11], we are not aware of this formula-
tion being exploited for large-scale stitching.

Corner point oriented translation. If we have noisy
corner point location estimates (e.g., GPS), then incorpo-
rating those priors is easier if we recast the above equation
in terms of corners, c(i)k , indexed by k where k = 1
is top-left, k = 2 is top-right, k = 3 is bottom-left,
and k = 4 is bottom-right corner of image i. We use
ĉ
(i)
k for noisy corner measurements, and assume that we

have measured σGPS which is the ratio of the standard
deviation of the point location estimates to the standard
deviation of transformation estimation. We use this ratio
to inversely weight the matrix rows for corner estimation.

Similarly, if we have a ground truth (GT) anchor lo-
cation, a(i) for image i, we want to constrain the result
so that the pixel corresponding to that anchor has that
location. We denote the constrained pixel coordinates for
a(i) by (h,w), where h counts down from the top, and
w counts rightwards from the left, in images with height
H and width W . The corner coordinates in the reference
coordinate system are then constrained by the anchor via:

4∑
k=1

φ(k, h, w)c
(i)
k = a(i) , (4)

where

φ(1, h, w) = (1− h

H
)(1− w

W
)

φ(2, h, w) = (1− h

H
)(
w

W
)

φ(3, h, w) = (
h

H
)(1− w

W
)

φ(4, h, w) = (
h

H
)(
w

W
) .

(5)

This reflects that the affine transformation preserves the
convex combination. We use the same construct to write
the reprojection error as the difference of two convex com-
binations coming from the two mappings for inlier pairs.
Finally, for translation, we ensure that the corner points are
consistent with a fixed rectangle being a translated image
in the anchoring coordinate system. Here we constrain
the corners to have the same first/second coordinate as its
horizontal/vertical neighbor. This prevents rectangles from
being deformed during the optimization process.

Allowing for all sources of information, the restructured
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formulation for translation is:

c
(i)
k ≈

1

σGPS
ĉ
(i)
k ∀i, k (noisy corners)

4∑
k=1

φ(k, h, w)c
(i)
k = a(i) (fixed anchors)

ci1,y − ci2,y = 0, ci3,y − ci4,y = 0, (translation)

ci1,x − ci3,x = 0, ci2,x − ci4,x = 0 (translation)
4∑

k=1

φ(k, p(i)x , p(i)y ) c
(i)
k −

4∑
k=1

φ(k, p(j)x , p(j)y ) c
(j)
k ≈ 0

∀(p(i), p(j)) ∈ Ii,j . (reprojection)

(6)

We can further improve the efficiency for translation by
directly using the initial transformation estimates instead
of simply using them to get inliers. Here, each overlapping
image pair contributes a pair of equations, rather than
twice the number of inliers we choose to use. Hence the
least squares problem is significantly reduced. While this
results in a larger reprojection error, we find (Table II) the
difference is not significant, and this more efficient method
provides better ground truth accuracy.

For each overlapping image pair i and j, we form the
following equations:

cix − cjx ≈ T̂ (i,j)
x (translation in x)

ciy − cjy ≈ T̂ (i,j)
y (translation in y)

c
(i)
k ≈

1

σGPS
ĉ
(i)
k ∀i, k (noisy corners)

c(i)x = a(i)x − αxw (fixed anchors in x)

c(i)y = a(i)y − αyh , (fixed anchors in y)

(7)

where cix and ciy are the variables corresponding respec-
tively to the x and y coordinates of the upper-left corner
of the image i, T̂ (i,j)

x and T̂
(i,j)
y are the estimated x

and y pairwise transformation between image i and j,
and αx, αy are the ratio of the GPS field of view over
the width and height of the images respectively. Using
these linear least squares equations, we can solve for the
upper-left corner of each image and calculate the other
corners afterwards. This approach uses much less memory
and CPU but is not linearly generalizable to other more
complicated transformations such as similarity, affine and
homography.

Lastly, for the case of projective transformations, instead
of initializing the parameters of the bundle adjustment
using naive approaches that are susceptible to drift, one
can use the proposed method to solve for an affine
approximation of the transformations and use it as the
starting point of the non-linear bundle adjustment to speed
up the convergence.

IV. IMPLEMENTATION

We implemented our proposed methods in Python
(version 3.6) and we used the Scipy optimization li-
brary (version 1.4.1) to solve the least squares problems
(“lsq linear” for linear systems, and “least squares” for
non-linear systems, specifically for bundle adjustment and
for our implementation of MGRAPH [34]). Both functions
implement the Trust Region Reflective method [35]. For

non-linear least squares, we derived the Jacobian matrix
analytically for computational efficiency. We also used
OpenCV (version 3.4.2) for extracting SIFT keypoints,
finding matches, and estimating transformations. However,
we implemented a RANSAC-based method for estimating
translation parameters to enable additional optimizations.

We used the GPS coordinates associated with the drone
images to find the nearest neighbors in order to reduce
the number of pairwise transformations to be estimated.
However, for the experiments on the gantry images, we
also used them as priors on the coordinates of the corners
as described in equations 6 and 7. Using these associated
GPS coordinates, for each image we selected its k nearest
neighbors using the following approach. For each pair
of neighboring images, we extracted the SIFT keypoint
locations and descriptors and computed putative matches
using the two nearest neighbours in the descriptor space,
dropping second neighbours whose score was not less
than 80% of the first one. We used k = 4 and k = 8
for the drone and gantry experiments respectively. Using
these pairs of keypoints, we estimated transformations
of the appropriate type using RANSAC and saved them
alongside with the inliers for subsequent use. Following
Ruiz et al. [34], to reduce computation time and memory
usage we used only the top 20 inliers to form the equations
in all variations of our methods. All of our experiments
were performed on a system with Intel(R) Xeon(R) CPU
X7560 and 882 GB of RAM.

V. EVALUATION METHODOLOGY

Datasets. We evaluated our proposed method on
datasets of agricultural images captured by UAVs and the
field gantry machine described above as well as two drone
datasets from the DroneMapper website [9] (also used by
Ruiz et al. [34]). The subject of the agricultural image
datasets was a two acre research field crop where different
plants were grown and monitored during different growing
seasons throughout the year. Accurate orthomosaics are
needed to closely monitor different phenotypes of indi-
vidual crops growing over time. One set of agricultural
images was captured by a DJI Phantom 4 v2 drone (quad-
copter) which flies over the field and takes about 450
images on average from the field in each scan and it
remains almost level during the flight. Another set of
agricultural images was taken by cameras on board the
gantry machine scanning the field with cameras near the
ground to capture detailed features of the crops. The gantry
system takes 6000 − 9000 images on each scan of the
field at a resolution of 0.3 mm per pixel. The resulting
images have very low overlap (∼ 9% vertically and ∼
30% horizontally) and few distinct visual features which
pose a challenge to the image stitching problem. The
other two datasets are images of a reservoir (Gregg) and
a golf course (Back 9 Golf Course) in Colorado which
were captured by a drone. The Gregg and Golf Course
datasets consist of 187 and 664 images respectively, and
are available in the DroneMapper website.

Ground truth and evaluation measures. Given the sci-
entific requirements of our setting, we needed to evaluate
stitching with respect to ground truth locations. For this
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purpose, in the agricultural field we had ground control
points (GCPs) installed on specific locations that were
detected and identified in the images. For the Golf Course
and Gregg datasets we found the imaged regions on
Google Maps and manually selected a number of distinct
locations as GCPs, noting the GPS locations provided
by Google Maps. We evaluated all methods using four
different measures: GCP root mean square error (RMSE),
projection RMSE, normalized projection RMSE, and op-
timization time.

Computing GCP RMSE for the experiments with the
gantry data is straight-forward as we include the rough
estimates of the image corner GPS coordinates, as well
as a single GCP anchor point in our equations (6,7),
leading to orthomosaics in GPS units. A single anchor
point suffices to correct for any global error assuming
translation, but the evaluation does not depend on this.

For drone data we estimate the transformation between
the reference image coordinate system and the GPS using
all the GCPs to compute either a similarity or a homog-
raphy as appropriate. We then transform the GCPs into
the GPS space and calculate the root mean squared error
between these transformed coordinates and the known
locations of the GCPs.

Projection RMSE, which measures how well points in
overlapping areas align, is commonly used to evaluate
stitching and alignment methods, and hence we report
it. However, projection RMSE does not take into account
the arbitrary deformations of the final mosaic, and so we
also report normalized projection RMSE which is simi-
larly computed after transforming to GPS coordinates as
described above for computing the GCP RMSE measure.

VI. RESULTS

We evaluated our method on the drone datasets using
similarity as a solitary alignment method, as well as as-
suming that an affine transformation is a good initialization
for the bundle adjustment. We compared these two variants
to our implementation of MGRAPH [34]). Quantitative
results are provided in Table I and qualitative results are
shown in Figures 2, 4, and 5.

As illustrated in the mosaics in Figure 2, the drift caused
by a bad initialization in MGRAPH unnaturally warps
the mosaic. In this case, although the keypoints might
be nicely aligned as indicated by the projection RMSE
in Table I, the ground truth GPS accuracy is inaccurate
as both the qualitative and quantitative results suggest.
This example supports our focus on GCP RMSE, and
normalized projection RMS as a better proxy.

For the two drone datasets of the agricultural field,
MegaStitch with similarity yields the best results. For the
Gregg II and Golf Course datasets homography is called
for. For Gregg II, MegaStitch with affine as initialization
for the bundle adjustment produces the best results. By
contrast, the MGRAPH initialization is not good, and the
optimization process rapidly finds a poor local minimum,
explaining the very fast optimization time. Further inspec-
tion reveals that the bulk of the mosaic, which includes all
GCPs, is visually reasonable (Figure 5), but to make this
figure we had to remove outliers. Specifically, we removed

Fig. 2: Mosaics generated by MegaStitch and MGRAPH
for the lettuce drone dataset. The sorghum dataset yields
similar results. Red circles are the GCP locations, and
green squares are their estimated locations. MegaStitch
with similarity (left) is the best at estimating GCP location.
On the other hand, the MGRAPH mosaic (right) exhibits
drift which is not repaired by the optimization, and the
final result has unwanted warp and global inconsistency.
By contrast, bundle adjustment assuming homography
from an affine initialization (center), does not have these
issues on this data.

Fig. 3: Mosaic generated by MegaStitch on the gantry
dataset based on the intermediate translations found using
RANSAC (7). The keypoint-based method yields visually
indistinguishable results, but uses about 10 times the
resources. The scale of this data set (≈ 10, 000 images) de-
feated multiple alternative methods, motivating this work.

the top and bottom 5% of mapped image sizes. These
outliers partly explain the quantitative results being several
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Measure Methods
Datasets (Drone)

Ag.
Field

Lettuce

Ag.
Field

Sorghum

Golf
Course

Gregg II

GCP RMSE

MegaStitch Similarity 1.52× 10−06 4.79× 10−06 3.22× 10−04 9.71× 10−05

MegaStitch Affine + Bndl. Adj. 1.47× 10−05 9.33× 10−05 9.26× 10−05 8.08× 10−06

MGRAPH 7.89× 10−05 6.18× 10−05 7.07× 10−05 2.67× 10−04

Projection
RMSE

MegaStitch Similarity 6.93× 10−01 6.84× 10−01 1.15× 10+00 1.96× 10+00

MegaStitch Affine + Bndl. Adj. 5.67× 10−01 4.35× 10+00 1.40× 10+00 1.37× 10+00

MGRAPH 7.21× 10−01 8.54× 10−01 1.69× 10+00 8.15× 10+03

Normalized
Projection

RMSE

MegaStitch Similarity 1.27× 10−07 1.36× 10−07 4.54× 10−06 4.36× 10−06

MegaStitch Affine + Bndl. Adj. 8.38× 10−05 7.61× 10−04 4.37× 10−04 5.42× 10−04

MGRAPH 1.78× 10−04 1.76× 10−04 7.06× 10−04 1.35× 10−01

Optimization
Time

MegaStitch Similarity 2m 22s 2m 45s 8m 27s 9s

MegaStitch Affine + Bndl. Adj. 13m 58s 4m 50s 10m 14s 1m 17s

MGRAPH 11m 6s 4m 46s 37m 13s 16s

TABLE I: Results of our proposed method and MGRAPH on four drone datasets. Qualitative results are shown in
figures 2,4, and 5. GCP RMSE and normalized projection RMSE are distances in the GPS coordinate system and
projection RMSE are distances in the reference image coordinate system (pixels). On the agricultural field drone
datasets MegaStitch with similarity produces the best GCP RMSE, normalized projection error and optimization time.
For the Golf Course dataset, MegaStitch with affine and bundle adjustment produces comparable results to MGRAPH
(GCP RMSE is slightly worse and projection error is slightly better), but three times faster. For the Gregg II dataset,
MGRAPH quickly goes to a poor local minimum, with accuracy being orders of magnitude worse than MegaStitch
requiring pruning outliers to show part of the mosaic in Figure 5.

Methods
Performance on the Gantry datasets

GCP
RMSE

Projection
RMSE

Optimization
Time

Keypoint-based 1.81× 10−6 9.84× 10−8 6h 16m 58s

RANSAC
Transformations

1.65× 10−6 1.07× 10−7 11m 1s

TABLE II: Results for the two methods for gantry data
assuming translation. MegaStitch expressed in terms of
translation parameters estimated by RANSAC (7) yields
a better GCP RMSE result than raw keypoints (6) in a
considerably shorter period of time.

orders of magnitude worse than those for MegaStitch.
For the Golf Course images, MGRAPH does not run

into these issues, and does slightly better then MegaStitch
on GCP RMSE, and slightly worse on projection RMSE,
which we attribute to projection RMSE being closer to
what MegaStitch actually optimizes. However, MGRAPH
runs three times slower compared to MegaStitch which
undermines its gain in GCP RMSE.

We also evaluated our method on the gantry images.
Since the gantry has only two perpendicular axes of
motion, images are connected by translations. We in-
corporated the initial noisy locations of each image in
the equations. One of the GCPs was also included in
the equations as an anchor point. We evaluated methods
corresponding to equations 6 and 7 on the gantry images.
The quantitative results are presented in Table II and the
qualitative results are illustrated in Figure 3.

We find that optimizing with the translation parameters

(7) is substantially faster than the raw keypoint based
projection minimization (6). This second approach also
consumes 10 times more memory since it takes into
account a large subset of keypoint matches rather than
the robustly estimated translation parameters. While this
is the case for all the general bundle adjustment methods,
translation affords the alternative approach. The accuracies
of the two methods are similar, with the second (faster)
approach being slightly better on GCP RMSE, and slightly
worse on projection RMSE, likely because projection
RMSE is closer to what the raw keypoint method is
optimizing.

VII. CONCLUSION

We contribute methods for large scale image alignment
for scientific monitoring applications where accuracy with
respect to ground truth is critical. Our approach is more
robust and significantly faster than alternatives. We use
inliers from pairwise transformations directly for global
least squares solutions, as for many applications non-
projective transformations suffice. Moreover, we found
that non-projective alignment using non-linear optimiza-
tion is sensitive to initialization, and that the globally
valid approximate solution from MegaStitch can efficiently
provide a good initialization. We also developed a large-
scale ground truth dataset for this task that we plan to
release along with our code.
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