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Abstract

A review paper on the current state of the art in robotic automation of in vivo patch-clamp electrophysiology
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1 Introduction

Patch-clamp electrophysiology is among the most reliable methods for monitoring single neuron function
and determining cell type, despite the high dexterity required and relatively low throughput. The use
of the patch-clamp technique in live animal preparations has traditionally been limited to “blind” (non-
visually-targeted) recordings (Pei et al., 1994; Margrie et al., 2002). Robotic automation has improved
throughput without compromising the quality and the duration of recordings (Kodandaramaiah et al.,
2012; Annecchino and Schultz, 2018) and can encourage the diffusion of the technique. Combining auto-
mated patch-clamp with two-photon imaging allows selection of specific cell types and has the potential
to integrate anatomical, physiological and pharmacological information, therefore reconciling target cell
characteristics and network behaviour (Annecchino et al., 2017; Suk et al., 2017). Importantly, this affords
the capability to test hypotheses concerning how circuits involving particular cells or cell types operate
during physiological and pathological states.

The advantages of robotic patch-clamp can potentially be even more impactful when attempting
simultaneous recordings from multiple cells (Markram et al., 1997; Crochet and Petersen, 2006; Ko-
dandaramaiah et al., 2018). Paired patch-clamp recordings enable unambiguous measurements of the
connectivity between two neurons and allow testing for the presence of both electrical and chemical con-
nections with high temporal accuracy, as well as revealing subthreshold correlations. These also have
the potential to provide even more complex biological information in single-cell transcriptomics (Cadwell
et al., 2016; Mun et al., 2020). For example, transcriptomic changes underlying neuronal computation and
development can be effectively studied. Comparable sensitivity enabling the detection of synaptic connec-
tivity has not yet been routinely demonstrated with other techniques such as genetically-encoded calcium
indicators (GECIs) like GCaMP, or genetically-encoded voltage sensors (Lin and Schnitzer, 2016; Yang
and St-Pierre, 2016). Given the technical difficulty of performing multiple in vivo patch-clamp recordings,
robotic automation appears very promising. With increasing automation of other experimental steps -
craniotomies (Ghanbari et al., 2019), trajectory obstacle avoidance (Stoy et al., 2017), pulsatile motion
prediction and correction (Stoy et al., 2021) and pipette reuse (Kolb et al., 2016; Landry et al., 2021) -
there is the potential for further reduction in experimental variability due to human factors.

2 Overview of the technical specifications

2.1 Experimental setup

Automatic whole-cell recording systems have been implemented using standard hardware and software
available in conventional in vivo electrophysiological setups (Annecchino and Schultz, 2018). This includes
one or more micromanipulators, a signal amplifier, a digital/analogue acquisition board, a data acquisition
software and a personal computer. The only unconventional components are (1) an electropneumatic
pressure regulator system to control the internal pressure of the pipette, and (2) an algorithm to monitor
the pipette impedance signal in real time, and execute pressure and manipulator controls accordingly.
Such a system is sufficient for performing automated “blind” whole cell recording (WCR).

Two-photon guided WCR requires a two-photon microscope in addition to tissue labelled with fluo-
rescent reporters (Fig. 1). This consists of a commercial mode-locked laser (such as a Ti:Sapphire laser)
and two galvanometric scanning mirrors (or alternative sample scanning device such as acousto-optic
deflectors). The resulting fluorescence signal is split into specific wavelength bands by dichroic beam
splitters and optical filters, and collected by one or more photo-multiplier tubes (detectors). Two-photon
images of fluorescently labelled cells are reconstructed and streamed, in real-time, to dedicated software
responsible for object identification, target selection and tracking. Tracking information is then used to
control the manipulator and adjust the trajectory and dynamics of pipette navigation towards the target.



2 The handbook of electrophysiology: a practical guide for neurophysiologists

Fig. 1. Two-photon guided patch-clamp setup. It consists of a conventional commercial two-photon microscope,
a mode-locked Ti-Sapphire laser, a patch setup equipped with a programmable three-axis micromanipulator,
a signal amplifier, an analogue to digital converter board, a computer, and a custom-made electro-pneumatic
actuator for controlling micropipette internal pressure. “Blind” patch-clamp is achieved with the same setup but
excluding the imaging components (microscope and laser). Adapted from Annecchino et al. (2017).

Finally, in both “blind” and image-guided experiments, sealing and break-in are performed automatically
by the computer-controlled pressure system.

2.2 Pipette navigation and target cell engagement

The insertion of a sharp electrode into soft tissue leads to non-negligible mechanical strain and stress.
The mechanical response of the tissue undergoing morphological deformation may change the shape and
position of the target. Therefore we need to compensate for pipette-induced movements while moving
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the pipette through the tissue. One way to do this is by persistently monitoring the target position using
a computer vision tracking algorithm, and using it to provide closed-loop visual servoing for controlling
pipette navigation. Automatic fine control of the pipette position for navigation and target engagement
relies on real-time analysis of the light signature of the fluorescent targets in the tissue. During the target
engagement procedure, the position of the target is continuously reassessed and the approach trajectory
of the pipette re-adjusted.

2.3 Automated analysis of two photon images and visual feedback

Automated two-photon targeted patch-clamp systems developed so far have used similar image analysis
methods, with some small differences such as programming language and image processing libraries used.
OpenCV is an example of such a library, and is compatible with multiple platforms including Python, C,
C++ and Java. It is used in the system by Wu et al. (2016)(Python). MATLAB (Mathworks, Natick,
MA, USA) has a dedicated Image Processing toolbox and has been used by Long et al. (2015) and Suk
et al. (2017), while similar capabilities are offered by the IMAQ suite available for LabVIEW (National
Instruments, Austin, TX, USA), used by Annecchino et al. (2017).

Commercial two-photon microscope acquisition software (e.g. LabView-based SciScan, Scientifica Ltd,
or MATLAB-based ScanImage, Vidrio Technologies LLC) can be used to acquire and stream image frames
to an automated image analysis modules in the system. Image averaging, optimisation and segmentation
((Otsu, 1979)), are then used to detect salient objects in the scene, separate bright cell(s)/pipette(s)
from the background and identify candidate targets. The system described by Annecchino et al. (2017)
performs local thresholding: a spatial modulation of the threshold value by dividing the image into
windowed segments and then calculating a threshold value specific to that local neighbourhood of pixels.
Global thresholding can be a viable approach if it accounts for inter-object intensity variation. Such an
algorithm might involve performing multiple segmentations over a range of threshold values followed by a
selection of the threshold value that gives the closest match for the target segment to a stored reference,
similar to methods used by (Wu et al., 2016; Suk et al., 2017). All salient objects are then geometrically
classified in terms of area, contour, bounding rectangle and centre of mass and used to define a set of
pixel masks. Measurements from pixel intensities within the masks can then be used to assess the depth
and degree of focus of the neuron target(s).

Focus and depth can be assessed by measuring the sharpness of the identified object contour. This
can be calculated as the difference between the average intensity of the pixels belonging to the internal
boundary region of the object and the average intensity of the pixels belonging to the external boundary
region, normalised by the average intensity of pixels within the internal boundary region (Annecchino
et al., 2017). The target’s depth is taken as the z-position of the focal plane of maximum contrast or
intensity. If “shadowpatching”- using an extracellular dye to produce ’shadows’ of the cells (they would
appear as the negative parts of the image) (Kitamura et al., 2008), a different approach should be adopted
for target tracking. In this context, the reduced axial variation in the fluorescence signal one would have
with individually labelled neurons, makes it more challenging to determine a target’s z-coordinate. An
alternative approach could be based on morphological feature matching to establish and follow a target’s
position.

2.4 Expanding to automated in vivo multipatching

Robotic patch-clamp has been scaled up to allow the independent control of up to four micropipettes
and obtain blind WCRs from up to three different neurons at the same time in the neocortex of both
anaesthetised and awake animals (Kodandaramaiah et al., 2018). This system obtained a dual or a triple
WCR in 18% of the trials in awake mice and 29% of trials on anaesthetised mice. The relative decrease
in performance when attempting multiple recordings is related to the fact that each electrode moves
and encounters a cell at different times. This aspect, compounded with the different gradients of tissue
deformation induced by each electrode, can be challenging especially when it is critical to prevent any
relative motion between the pipette tip and the target cell (i.e., during sealing). Additionally, in a blind
paradigm there might the possibility of pipette collision. Visual targeting, can likely prevent pipette
collision and potentially enable strategies to compensate for tissue and target deformation induced by
multiple penetrating electrodes, but it does not eliminate them completely. Additionally, concurrent
navigation control of multiple electrodes and the tracking of their target cells can be a comparatively
demanding task due to the limited depth-of-field of two-photon imaging. Generally, an all-at-once strategy
whereby sealing is attempted at the same time after all electrodes are in close contact with their target
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Fig. 2. Steps of the multipatcher algorithm (Kodandaramaiah et al., 2018). (i) Manual positioning of the pipette
tips on the brain surface. (ii) Automatic positioning of the tips over the target brain region and initiation of
neuron hunting. (iii) Deactivation of clogged pipettes. (iv) Simultaneous movement of the tips in small steps until
(v) a cell is detected. (vi) Sealing is initiated while all other pipettes remain motionless. (vii) Steps (iv)-(vi) are
repeated until all pipettes have attempted a seal. (viii) Break in is attempted in seals with resistance above 1 GΩ,
simultaneously. Adapted from Kodandaramaiah et al. (2018).

cell, appears to be relatively more successful than one-at-a-time strategy (Kodandaramaiah et al., 2018).
The steps of the multipatcher algorithm by Kodandaramaiah et al. (2018) are depicted in Fig. 2.

2.5 Control of pipette internal pressure

The precise and timely control of the pipette internal pressure is crucial for i) keeping the pipette tip
clean, ii) obtaining a good seal, and iii) effectively rupturing the patch membrane and achieving a stable
whole cell recording configuration to yield high quality recording. Traditionally, the pipette internal
pressure is controlled manually by means of a three-way valve and a syringe, and the experimenter
uses their mouth to apply suction to help form the seal and break into the cell (Hamill et al., 1981;
Margrie et al., 2002; DeWeese, 2007).Several custom-built electro-pneumatic control devices have been
implemented as part of robotic “blind” and image guided patch-clamp systems (Kodandaramaiah et al.,
2012; Perin and Markram, 2013; Wu et al., 2016; Annecchino et al., 2017; Suk et al., 2017; Holst et al.,
2019; Peng et al., 2019; Kolb et al., 2019; Koos et al., 2021) but they can be potentially used as part of
classic manual patch-clamp setups to minimise human error and increase precision and sensitivity. Those
systems typically employ solenoid valves, one or more pressure sensors, a positive pressure source (air
pump, compressed air tank or outlet) and either a negative pressure source or a vacuum ejector (Fig.
3). All the components can be connected by silicone or polyurethane tubes or alternatively attached to
a plastic platform with drilled in reservoirs (Annecchino et al., 2017). The airflow through each valve in
the system can be controlled with some basic electronics components and data acquisition/control board
(i.e., National Instrument DAQ Boards) or a dedicated micro-controller (i.e., Arduino board) running a

Fig. 3. Pressure system. Solenoid valves modulate the airflow in the system and are controlled in closed-loop by
an electronic circuit and maintain a stable pressure output. Negative pressure (suction) can be generated by a
vacuum ejector or alternatively sourced from another pump or reservoir. A 3-port valve selects either the positive
or the negative pressure branch to the output to manipulate the pipette internal pressure. The sensor is positioned
as close as possible to the output. A microcontroller reads the pressure signal(s) from the sensor(s) and regulates
all the valves as required.
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proportional-integrative-derivative (PID) algorithm for closed-loop control (see Annecchino et al. (2017)).
An automatic pressure control system is also necessary to automatise a pipette cleaning process and afford
the possibility of reusing the same pipette for multiple patching attempts by cleaning them in between
trials (Kolb et al., 2016).

These electro-pneumatic systems can be assembled relatively easily, with instructions available in Desai
et al. (2015); Kodandaramaiah et al. (2016); Wu and Chubykin (2017), or bought commercially (Sensapex,
Neuromatic devices).

3 Practical Tips

The patch electrodes and capillaries typically used for automated patch-clamp are the same as those
used in manual methods. For two-photon guided experiments, the internal solution is augmented with a
fluorescent dye (e.g. 50 µM Alexa Fluor 594) to make the pipette visible under laser excitation.

However, dye filled pipettes can release large amounts of fluorescent internal solution and create sub-
stantial background fluorescence which will eventually degrade image contrast and the ability to visualise
the pipette and target cells. One alternative to fluorescent dyes is coating the pipettes with quantum-dots
to make them visible under two-photon imaging while avoiding diffusing fluorescent internal solution and
degrading contrast. Quantum-dot-coated pipettes seems to be visible even at larger depths when compared
to dye filled ones and yield recordings of comparable quality to non-coated glass pipettes (Andrásfalvy
et al., 2014).

Pipette tip coordinate updates rely on position readouts from the micromanipulator. These position
values carry some level of uncertainty due to the limited precision of the micromanipulator. In addition,
unwanted movements from drift and backlash may compound errors even further. These are unintended
movements when the device is stationary and excess movements at the end of intended motions respec-
tively. Therefore, when selecting micromanipulators, consideration should be given to devices with the
highest precision, drift and backlash control. Also worthy of mention is the fact that old manipulators
tend to become more imprecise and may drift, which is acceptable in manual patch but will lead to
imprecise approaches in autopatchers.

4 Data Acquisition

4.1 Procedures for robotic “blind” and two-photon guided whole-cell recordings in vivo

Depending on the level of automation, the system can automatically perform all the steps involved in
the patch-clamp experiment or only a subset (see section 5). In two-photon guided experiments, object
identification and tracking information control manipulator movements that guide pipette navigation
towards the target. In blind experiments, however, the algorithm makes decisions and executes timed
actions solely based on the temporal trajectory of the pipette impedance. The simplified stages of an
automated algorithm for both “blind” (B) and image guided (I) experiments are presented in Fig.4 and
described as follows:

– Setup (B/I): The experimenter fills the pipette with internal solution (B) augmented with a flu-
orescent dye (I), then loads it into the pipette holder and automatically sets the internal pressure
to a relatively high value (50-100 KPa). The pipette is manually placed at the centre of the field of
view (I) or craniotomy (B) and is manually or automatically driven to the desired depth (i.e. brain
surface).

– Start imaging (I): The low-magnification objective is exchanged for a water immersion one, and
after forming an aCSF meniscus, image acquisition is initiated. The dye-filled pipette tip and fluores-
cently labelled cells are visualised using two-photon imaging. A computer vision algorithm identifies
fluorescent objects within the streamed images.

– Acquire pipette tip and target location (I): The imaging system focuses on either the pipette(s)
or the target(s), then these are automatically detected or selected manually and their location coor-
dinates stored. The system automatically calculates the path of the pipette(s) to the target(s).

– Cell hunting (B/I): The pipette internal pressure is reduced to a lower positive value (∼10 KPa).
If the pipette is not blocked (determined by the impedance), the manipulator is moved in small steps
(∼2 µm) until a cell is encountered (B) or the targeted cell is reached (I). (I) The system continually
monitors the target position and makes adjustments to the pipette trajectory to compensate for any
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Fig. 4. Automated whole-cell patch-clamp procedure. (Left) Block diagram of the automated patch procedure.
Steps in blue are common to both “blind” and targeted patch while additional steps for the two-photon guided
patch are shown in light red. (Right) Schematic representation of the robotic patching procedure: Setup and
pipette placement, tip and target coordinate acquisition, pipette positioning, automatic approach, target cell
detection, seal formation, and break-in followed by whole-cell recording. Adapted from Annecchino et al. (2017).

tissue movement until the target is engaged. Note that while this step occurs in both blind and two-
photon targeted mode, in the former case it is true ”hunting”, whereas in the latter, the presence of
a cell in the locality is known, and the object is merely to precisely localise its position.

– Cell detection (B/I): A monotonic increase in impedance levels over two or more consecutive steps
implies that a cell has been detected.

– Seal (B/I): At this point, the system automatically releases the internal pressure to allow the cell
membrane to establish contact with the tip. To facilitate the seal, the pipette potential can be set
to a negative value close to that of the intracellular potential of the cell (∼ -65 mV). A light suction
may be applied to form a tight seal. These can be executed through a set of control algorithms. A
seal is obtained when the pipette resistance is constantly higher than a user defined seal threshold
(usually 1-1.5 GΩ or ’gigaseal’).

– Break-in (B/I): A WCR is achieved by breaking the patch membrane with one or more suction
pulses. The automatic detection of a drop in the impedance signal and relative increase in current
indicates a successful break-in.

– Cell recording (B/I): A successful break-in and viable WCR configuration is confirmed (i) elec-
trophysiologically by verifying properties like membrane potential, firing properties, access resistance
(B/I) and also (ii) optically observing the gradual filling of the target cell with fluorescent internal
solution (I). At this point the recording can begin.



Robotic automated blind and 2-photon targeted patching in vivo 7

4.2 Example recordings from “blind” (single and multi-neuron) and targeted in vivo
patch-clamp experiments

Fig. 5. (a,b) Example of an automatic “blind” whole cell single recording in vivo. (a) Intrinsic response of a neuron
in the mouse cortex during hyperpolarising and depolarising current injections applied through the recording
pipette electrode (400 ms-long pulses from -100 to +100 pA in 25 pA steps) and (b) recording for the same
neuron at rest. Figures adapted from (Annecchino, 2016) (c) Examples of automatic blind whole cell multi
recording in vivo. On the left, voltage recordings from three different neurons that were patched at the same time
in S1 (somatosensory cortex) of an awake head-fixed mouse. On the right, same but for anaesthetised. Figures
adapted from (Kodandaramaiah et al., 2018) (d,e) Example of a robotic two photon targeted whole cell single
recording in vivo. Same as (a,b) but for a GAD67-GFP positive interneuron in the mouse cortex. Current injected
in 400 ms-long pulses from -100 to +100 pA in 50 pA steps. Figures adapted from (Annecchino et al., 2017)
(f) Two-photon image of the same neuron as (d,e). (g,h) Pipette approach trajectory and state during a typical
robotic two photon targeted single patching process.(g) Automatic navigation of the pipette toward the target cell,
with real-time feedback control of trajectory enabled.(h) Example of time-courses of pipette resistance, current,
holding potential, internal pressure and pipette depth during the patching procedure (stages color coded; numeric
labels correspond to points on the approach trajectory in (g). Time intervals relative to the different stages of the
automated patching algorithm are colour coded. Figures adapted from (Annecchino et al., 2017)

5 Performance evaluation

Success rates for automated experiments in vivo have matched or exceeded manual approaches (An-
necchino and Schultz, 2018). However, they are still dependent on high quality experimental preparation,
and good internal solution composition.

Table 1 has a summary of the in vivo systems developed thus far. The autonomous degree represents
the steps that have been automated within the patch-clamping pipeline according to the following: [1]
Pulling pipettes [2] Filling the pipette with internal solution [3] Placement of the pipette on the electrode
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holder [4] Pipette detection under microscope [5] Navigation of the pipette towards sample [6] Final cell
approach [7] Pressure control [8] Sealing and break-through. However, it should be noted that these are
not the only steps being automated, as the first strides towards the automation of craniotomies have been
taken (Ghanbari et al., 2019; Rynes et al., 2020).

Paper and year Anaes-
thetised
or awake

Number
of ma-
nipula-
tors

Imaging
system

Autono-
mous degree

WCR yield Time
(min)

Kodandaramaiah
et al. (2012)

AN 1 “Blind” [5][6][7][8] 32.9% in
C57BL/6 mice

5 ± 2

Long et al.
(2015)

AN 1 Two-
photon
targeted

[4][5][6] (Manual) 66% in
Cux2 mice and
22% in SST mice

6.55 ±
0.53

Desai et al.
(2015)

AW 1 “Blind” [4][5][6]
[7][8]

17.9% in
C57BL/6 mice

5

Annecchino
et al. (2017)

AN 1 Two-
photon
targeted

[5][6][7][8] 22.2% in
GAD67-GFP
mice

6.1 ± 0.6

Suk et al. (2017)

AN 1 Two-
photon
targeted

[4][5][6]
[7][8]

22.2% in PVCre
x Ai14 mice, and
20% in
CaMKIIa-Cre x
Ai14 mice

10 ± 3

Kodandaramaiah
et al. (2018)

AN and
AW

4 “Blind” [5][6][7][8] 30.7% (AN) and
17.5% (AW) of
recordings were
dual or triple
recordings, 0%
were quadruple,
all in C57BL/6
mice.

10.5 ±
2.6 for
one or
more
success-
ful
WCR

Holst et al.
(2019)

AN 1 “Blind” [2][3][4][5]
[6][7][8]

9% in C57BL/6
mice

5.3

The time column represents the minutes that the automated steps took, which is relevant not only
for time-efficiency purposes but also for yield, as there is a negative correlation between time taken
to break-in from pipette insertion and its success rate (Jouhanneau and Poulet, 2019). Yields should,
however, be evaluated cautiously as each platform had slightly different conditions for considering a
whole-cell recording successful and different techniques are expected to have different yields. For example,
“blind” patching has higher yields than two-photon targeted patching (Jouhanneau and Poulet, 2019), as
demonstrated by the fact that Annecchino et al. (2017) had 51.4% success rate when “blind”-patching,
which is far above the reported 22.2% for targeted. Furthermore, one should also bear in mind that awake
mice will always yield lower success rates than anaesthetised.

On the whole, for automated “blind” patch-clamp, around 75% of attempts lead to a seal and around
50% attempts lead to a WCR within 3-4 minutes on average (Annecchino et al., 2017). Dual or triple
concurrent automated blind WCR have also been achieved around 29% of attempts in anesthetized
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animals and 18% of attempts in awake animals within around 10 minutes on average (Kodandaramaiah
et al., 2018).

Automated two-photon targeting achieved seals in about half of the trials and between 20-30% of
those successful seals led to a WCR within a 6-minute average (Annecchino et al., 2017; Suk et al.,
2017). Recordings were comparable in quality and stability in terms of resting membrane potential,
input resistance, holding duration and spike magnitude, to manual in vivo studies (Margrie et al., 2002;
DeWeese, 2007) and “blind” robotic systems (Kodandaramaiah et al., 2012, 2018), across a range of
recording depths. For more information on the state-of-the-art in autonomous patch-clamping, consult
the reviews by Annecchino and Schultz (2018), Suk et al. (2019) and Alegria et al. (2020).

6 Overview

Patch-clamp is among the most effective tools for obtaining high-fidelity electrical recordings of individ-
ual neurons and has enabled the analysis of cell excitability, post and presynaptic responses, neuronal
inter-connectivity and high order behavioural states, among many others. Despite providing high-quality
data, the patch-clamp technique remains limited by the inherent low throughput and labour intensity.
For an experienced experimenter, success rates for “blind” whole-cell in vivo recordings are reported
to fall between 20 - 50% (Margrie et al., 2002). Robotic automation helps mitigating such issues and
offers several benefits including faster skill assimilation for operators new to the technique, standardised
recording quality, and improved throughput. It also opens up the potential to reliably scaling up the
technique to simultaneous patch-clamp recording from multiple cells in vivo, enabling assays of synaptic
coupling and many new research lines in basic and translational neuroscience. Significant strides have been
made towards the automation of both “blind” and two-photon guided approaches as evidenced by the
numerous systems presented. Automated blind systems can achieve success rates comparable to human
experimenters with improved throughput, and have expanded to patch up to three cells simultaneously.
Targeted multi-patching, however, is yet to be realised due to the difficulties associated with controlling
multiple pipettes simultaneously and constraints of two-photon imaging. Automated patch-clamp systems
can be further improved and optimised to realise the full capabilities of the technique.
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Andrásfalvy, B. K., Galiñanes, G. L., Huber, D., Barbic, M., Macklin, J. J., Susumu, K., Delehanty, J. B.,
Huston, A. L., Makara, J. K., and Medintz, I. L. (2014). Quantum dot-based multiphoton fluorescent
pipettes for targeted neuronal electrophysiology. Nature Methods, 11(12):1237–1241.

Annecchino, L. (2016). Development and validation of a robotic two-photon targeted whole-cell recording
system for in vivo electrophysiology. PhD thesis, Imperial College London.

Annecchino, L. A., Morris, A. R., Copeland, C. S., Agabi, O. E., Chadderton, P., and Schultz, S. R.
(2017). Robotic automation of in vivo two-photon targeted whole-cell patch-clamp electrophysiology.
Neuron, 95(5):1048–1055.

Annecchino, L. A. and Schultz, S. R. (2018). Progress in automating patch clamp cellular physiology.
Brain and Neuroscience Advances, 2:2398212818776561.

Cadwell, C. R., Palasantza, A., Jiang, X., Berens, P., Deng, Q., Yilmaz, M., Reimer, J., Shen, S., Bethge,
M., Tolias, K. F., et al. (2016). Electrophysiological, transcriptomic and morphologic profiling of single
neurons using patch-seq. Nature Biotechnology, 34(2):199–203.

Crochet, S. and Petersen, C. C. (2006). Correlating whisker behavior with membrane potential in barrel
cortex of awake mice. Nature Neuroscience, 9(5):608–610.

Desai, N. S., Siegel, J. J., Taylor, W., Chitwood, R. A., and Johnston, D. (2015). Matlab-based automated
patch-clamp system for awake behaving mice. Journal of Neurophysiology, 114(2):1331–1345.

DeWeese, M. R. (2007). Whole-cell recording in vivo. Current Protocols in Neuroscience, 38(1):6–22.
Ghanbari, L., Rynes, M. L., Hu, J., Schulman, D. S., Johnson, G. W., Laroque, M., Shull, G. M., and

Kodandaramaiah, S. B. (2019). Craniobot: A computer numerical controlled robot for cranial micro-
surgeries. Scientific Reports, 9(1):1–12.

Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. (1981). Improved patch-clamp
techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers
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