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Abstract

In this paper, we propose a new model named DIBERT which stands for Dependency Injected Bidirectional Encoder Rep-
resentations from Transformers. DIBERT is a variation of the BERT and has an additional third objective called Parent
Prediction (PP) apart from Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). PP injects the syntactic
structure of a dependency tree while pre-training the DIBERT which generates syntax-aware generic representations. We use
the WikiText-103 benchmark dataset to pre-train both BERT- Base and DIBERT. After fine-tuning, we observe that DIBERT
performs better than BERT-Base on various downstream tasks including Semantic Similarity, Natural Language Inference and

Sentiment Analysis.
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Abstract—Prior research work shows that including the syn-
tactic structure of a sentence using a dependency parse tree
while training a model improves the performance of a model
on downstream tasks. However, most of the prior research work
makes use of the dependency parse tree of a sentence for learning
task-specific word representations rather than generic represen-
tations. In this paper, we propose a new model named DIBERT
which stands for Dependency Injected Bidirectional Encoder
Representations from Transformers. DIBERT is a variation of
the BERT and has an additional third objective called Parent
Prediction (PP) apart from Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP). PP injects the syntactic
structure of a dependency tree while pre-training the DIBERT
which generates syntax-aware generic representations. We use
the WikiText-103 benchmark dataset to pre-train both BERT-
Base and DIBERT. After fine-tuning, we observe that DIBERT
performs better than BERT-Base on various downstream tasks
including Semantic Similarity, Natural Language Inference and
Sentiment Analysis.

I. INTRODUCTION

Progress in the domain of Natural Language Processing
(NLP) shows that including relational structure or non-linear
structure that makes use of a dependency tree of a sentence
generates better word embeddings which improve model per-
formance. As opposed to Skip-gram and CBOW (Continious
bag-of-word) based embeddings which consider the context of
a word in a sliding window [1], dependency based embeddings
make use of the dependency-tree based context rather than
window-based context due to which a target word can reach
the relevant words which are not accessible in n-gram window-
based context [2], [3]. CBOW and Skip-Gram-based models
are only good for learning short text representations. To
overcome this, Dependency Tree based Convolution Neural
Network (D-TBCNN) utilizes a dependency parse tree of a
sentence by using fixed-depth tree based convolution window
as a feature extractor [4].

Earlier work is based on task-specific dependency-based
word embeddings, which means word embeddings can only
be used for the task for which embeddings are learned.
Most of the state-of-the-art models are based on the attention
mechanism [5], [6] to avoid the long-term dependencies issue.
This research work makes the following contributions:

« Dependency tree based objective function for injecting
syntactic structure
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« Utilizing an attention-based model rather than sequential

recurrence or convolution model

o Learning fixed-length generic word embeddings which

can later be directly fine-tuned

DIBERT model is an extension of the BERT-Base model
with an additional objective function called Parent Prediction
(PP). PP objective predicts the parent of the 4;;, word in
the dependency parse tree which is the main contribution
of this paper. We have shown that adding an additional
linguistic feature such as syntactic structure learns better word
representations by comparing the performance of DIBERT
with the BERT-Base model.

The remaining work is organized as follows: We continue
with a related work section where we discuss relevant ap-
proaches used to include dependency parse tree in the training
of models. Following that, we present our model in detail
along with evaluations. The paper concludes with an outline
of further development.

II. RELATED WORK

Since our main focus is on using dependency tree infor-
mation, we next briefly review the most relevant prior work.
The first work of injecting dependency tree information while
learning context based word embeddings is the modification
of the original Word2Vec [1] in which the model is asked to
predict the surrounding words or nodes in a dependency tree
of a sentence [2], [3].

Subject, Verb and Predicate of a sentence are the primary
structure of a sentence. Dependency Based Siamese LSTM
(DLSTM) for learning sentence-based embeddings which
capture the primary structure of a sentence (Subject, Verb,
Predicate) improves the performance on a downstream task
[7].

While the standard LSTM creates its hidden state using the
input at the current time step and the hidden state of the LSTM
at the previous time step, the Tree-LSTM composes its current
hidden state using the input vector and hidden state(s) of the
child unit according to the tree structure [8].

1-dimensional CNN can capture non-linear features of
the sentence but it fails to capture the inherent structural
features. Tree-Based Convolution Neural Network (TBCNN)
includes a tree-based feature extractor that slides over the
whole tree which improves the performance on classification



and sentiment analysis [4]. To catch long-term dependencies
Ma et al. proposed the dependency-based convolution model
(DCNN) [9]. DCNN can capture the tree-based bi-grams or tri-
grams which are more meaningful than normal n-gram using
convolution on ancestors path and siblings path.

Encoding constituency tree using hierarchical accumulations
in a bottom-up fashion and then using the encoded tree rep-
resentation in transformer architecture improves the machine
learning task performance [10].

Earlier work supports utilizing dependency tree structure
but it is only limited to task-specific word embeddings. This
work proposes a way to learn dependency-based generic
representations. To our knowledge, this paper is the first in
providing evidence on how to successfully inject dependency
tree information in the pre-training of a language model.

III. DIBERT (PROPOSED SOLUTION)

DIBERT is an extension of the BERT-Base model with
an additional pre-training objective called Parent Prediction
(PP). In the PP task, the model is trained to predict the
parent of the word which is extracted from the dependency
tree of a sentence. We pre-train DIBERT on three objectives:
MLM, NSP and PP. MLM objective enables the model to
capture word-level relations and enables a bidirectional flow
of information unlike in GPT-1 [11] and prevents a word to
see itself indirectly like in ELMO [12]. NSP objective gives
the model an understanding of relations between sentences.
Whereas PP allows the model to understand the syntactic
and structural information of a sentence. Adding a piece of
linguistic information in the form of PP objective achieves
higher accuracy on downstream tasks as compared to the
BERT-Base and it is the key contribution of this research.

A. Parent Prediction (PP)

In the PP task, the model is trained to predict the parent of
each word in a sentence. The parent of each word is extracted
from the dependency parse tree of a sentence. We used spaCy
library [13] for annotating data for Parent Prediction task
rather than utilizing commonly used Stanford parser [14]. The
reason for selecting spaCy over Stanford parser and many
other libraries is that it is much faster and accurate [15]. Figure
1 shows the simple flow of annotating a sentence with parent
labels. BERT model has its WordPiece tokenizer to handle out-
of-vocabulary words and it can split a word into multiple in-
vocabulary subwords'. This leads to an inconsistency between
tokenized input and parse tree. One problem with this is that
we can’t parse a sentence after passing it through the tokenizer
because the dependency parser does not work with subword
tokenized words, and small chunks of subword inputs are not
understandable. To solve this, we adopted the idea [16] and
did the following:

o First pass a sentence to the parser and get the parent of
each word in a sentence

! After the word embeddings passes through bert-tokenizer it is divided into
3 subwords: emb, ##bed, ##dings.
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Fig. 1: The input sentence is first passed to the dependency tree
parser. The parser generates a dependency tree that represents
each word as a node and the link between two words is a
labeled edge. It gives PP labels for the input sentence.

o Tokenize both parents and their corresponding words us-
ing BERT tokenizer and treat each subword as a separate
token

o Assign each token the middle position of the tokenized
parent hence generating parent labels for PP objective

The BERT tokenizer takes the input sentence and decides
whether to keep every word as a whole or split it into sub-
words (in case of the out-of-vocabulary word). Figure 2 shows
how an input sentence is first parsed and the parent of each
word is extracted. After this, each word in the input sentence
and each parent word in the parents are tokenized using a
tokenizer and all of the subwords are considered as separate
tokens. In 2 the word Word has a parent embeddings and it
is mapped to the middle position ##bed because it contains
multiple subwords (emb ##bed ##dings). We assign each sub-
word token of a word like em ##bed ##dings the parent of the
word embeddings which in this case is are, according to the
parse tree. Parent mapping is important because every word in
a sentence should have exactly one parent in PP objective. In
pre-training, we only predict the parents for the input tokens
which are not selected as masked tokens because the [MASK]
token is not going to be seen during fine-tuning. Apart from
this, we also ignore [CLS] and [SEP] token positions for the
PP task. The objective can be explained in the following steps:

Xout = dibert(X;,)

where DIBERT can be written as a function dibert and
X, is input to the model and X,,; is token-level output
representation from DIBERT.

P =PP(Xout)

PP = softmax(FFNN(X,yt))

FFNN is a feed-forward neural network that generates logits
values which are passed to the softmax over vocabulary
size because the parent token of each input token is drawn
from the whole vocabulary. P is the predicted probability
distribution. Cross-Entropy (CE) loss is used to determine
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Fig. 2: The input sentence is first passed to the dependency tree parser. The dependency tree parser generates the parent of
each word. After that, both parents and words are tokenized using Bert tokenizer and each subword is represented as a separate
token (Both boxes show the conversion of subwords into separate tokens). For a parent word having multiple subword tokens
e.g. embeddings — > emb ##bed ##dings, only middle subword token is considered like ##bed for the word embeddings.

the disparity between predicted probability distribution P and
actual distribution Q. CE loss is written as follows:

CE =— Z tlog(p;)  for n classes
i=1

where t; is the truth value and p; is the probability of the ith
class.

B. Pre-training

BERT-Base is originally pre-trained on BookCorpus (800M
words) [17] and Wikipedia (25,00M words). To compare
DIBERT with BERT-Base, we instead use the WikiText-103
(100M words with pre-defined train, test and validation splits)
[18] dataset for pre-training both models from scratch because
of the lack of computational resources. In the WikiText-103
dataset, each line represents a paragraph. We select paragraphs
having at least two sentences because we need sentence pairs
for the NSP task. We use a period as a delimiter for simplicity.
This leads to training data of size around 3M sentence pairs.

Based on the size of the data and available GPU power,
we pre-train both models with the batch size of 32 and 512
tokens per sequence (16384 tokens per batch). To check the
effectiveness of the PP objective, BERT-Base is pre-trained
with MLM and NSP objective while DIBERT used MLM,
NSP and PP (additional objective). We pre-train for around
900,000 training steps. Since the dataset is small, 2 heads and
2 hidden layers are used for both DIBERT and BERT-Base.

We use AdamW with a learning rate of 1e-4 and a learning rate
warm-up over the first 90,000 steps. The rest of the parameters
are the same as the BERT-Base. The models are trained on
an Nvidia Tesla V100-SXM2-32 GB GPU. Pre-training is
done separately for both models using the above-mentioned
parameters. The rest of the training parameters are the same
as the configuration’ provided by hugging face library.

C. Fine-tuning

We use both models separately for fine-tuning on multiple
tasks including Classification, Sentiment Analysis and Natural
Language Inference. Most of the hyperparameters are the same
as in pre-training except learning-rate and dropout probability.
During hyperparameter tuning we use grid-search (16 trails)
on the following search space: learning rate: [Se-5, 4e-5, 3e-
5, 2e-5] , dropout: [0.0, 0.1, 0.2, 0.3]. Hyperparameter values
depend on the task and we use the following range of values
for other hyperparameters: Batch size: 64, 128 , Epochs: 5,
10, 15. We set the maximum number of epochs for most of
the tasks to 15 but for some tasks during fine-tuning, we set
to 5 or 10 based on how much time the model is taking to
converge. We use pre-trained BERT-Base and DIBERT as a
backbone for the additional classifier added on top of the pre-
trained models. Similar to the pre-training, fine-tuning is also
done separately for both models.

Zhttps://huggingface.co/transformers/model_doc/bert.html



IV. DATASETS

We fine-tune both models on multiple datasets for classi-
fication, sentiment analysis, semantic similarity and natural
language inference tasks. The IMDB dataset [19] consists of
50k movie reviews from imdb labeled as positive or negative.
We use train, validation and test split of 50%, 25%, 25%.

SciTail dataset [20] is a crowd-sourced entailment dataset
from science and web corpus. This dataset consists of around
27k sentences with two labels entails and neutral. with around
10k entails labels and around 16k neutral labels.

LIAR dataset [21] is a fake-news detection dataset con-
taining around 12.8k news statements. This dataset is very
challenging in terms of labels since it contains six fine-grained
labels for truthfulness: labels: pants-fire, false, barely-true,
half-true, mostly-true and true. The sentences in the dataset
are political speeches and it also contains information about
the speaker, venue, title of the speech and party information,
which we utilize by simple concatenation. DIBERT achieves
better performance than what authors have reported.

The Microsoft Research Paraphrase Corpus (MRPC) [22]
is a part of the General Language Understanding (GLUE)
benchmark which is a group of various natural language
understanding tasks [23]. MRPC dataset is annotated for
detecting whether a sentence pair is semantically equivalent
or not.

Question Natural Language Inference (QNLI) is also a
GLUE benchmark dataset. It consists of question-sentence
pairs and tells whether a question is answerable from the sen-
tence or not. It is derived from Standford Question Answering
Dataset (SQUAD) [24] where question answering task (token
level task) is converted into a sentence-level task. It consists
of around 108k training sentences and 11k validation and test
sentences each.

The Stanford Sentiment Treebank (SST-2) [25] contains
human annotated movie reviews. It uses sentence level labels
which are positive and negative.

V. RESULTS

All models and scripts used are implemented in Python
3.8.3. We did not do a lot of text preprocessing except
punctuation removal using regex because in the original
implementation of the BERT authors directly used corpora
because preprocessing might cause loss of important context
detail. All deep neural networks such as Transformer and
BERT are implemented using Pytorch [26] and hugging face
[27]. We use Optuna [28] for hyperparameter tuning. Scikit-
learn (https://scikit-learn.org/stable/) is used for evaluation
metrics. Furthermore, we use built-in Python libraries such
as matplotlib for visualization and NumPy matrix operations.
The implementation of the DIBERT can be found here?.

In this section, the experimental results are discussed. We
show the learning curves for both DIBERT and BERT-Base
to get an idea about how each model is behaving while
pre-training and fine-tuning. We also did a comparison of

3https://github.com/wahab4114/dibert

both models on downstream tasks by plotting fl scores of
validation sets. Our main evaluation metric is both, accuracy
and weighted F1 score.

A. Pre-training results

Figure 3 shows the pre-training loss curves for BERT-Base
model on WikiText-103 dataset. It is observed that MLM
(Masked Langauge Modeling) objective requires more pre-
training data and converges slower than NSP (Next Sentence
Prediction) objective. The reason for MLM to converge slower
is that doing 15% token masking makes it difficult for the
model to converge. Pre-training using BERT-Base took around
114.5 hours and validation loss for both MLM and NSP
was 3.063 and 0.275 after 900k training steps (10 epochs).
Pre-training loss curves for DIBERT on WikiText-103 dataset

bert-base (training loss)
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Fig. 3: During the pre-training of the BERT model, training
and validation loss is shown for both MLM and NSP objec-
tives.

are shown in figure 4. Pre-training took around 160.7 hours.
After 10 epochs, the validation loss for MLM, NSP and PP
was 3.075, 0.265 and 1.154 respectively. In the figure 5, It
is observed that DIBERT needs more steps to converge as
compared to BERT-Base and it is explainable because the
DIBERT model has an additional objective. Despite taking
more time to converge, DIBERT has outperformed BERT-Base
on various downstream tasks. In both 3 and 4, we observe
that convergence has not happened yet. This would suggest
that training for more epochs could improve the performance
given the time and powerful GPU or it could be because we
did not use a very huge dataset for pre-training.

B. Fine-tuning results

In this section, we first show the comparison of validation
fl-score for both BERT-Base and DIBERT. This comparison
helps in understanding the overall performance of both models.
We do this comparison for every downstream task’s dataset
using both models. The figure 6 shows the weighted-f1 score
for both models over 15 epochs on all datasets. It is seen
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Fig. 4: During the pre-training of the DIBERT model, training
and validation loss are shown for the NSP, MLM and PP
objectives. Here PP is an additional objective to leverage the
performance of DIBERT.

that the highest peaks of the fl score are for the DIBERT
checkpoints®.

This trend is the same for all of the datasets and it is
observed that the DIBERT model has performed (in terms of
accuracy and fl-score) well as compared to BERT-Base. We
also observe that the validation accuracy is fluctuating and the
reason could be that all downstream tasks have less data as
compared to the dataset required for training a deep learning
model.

C. Comparing the performance on downstream tasks

For the evaluation, after training models using the best
hyperparameters, we select the best performing model’s check-
point on the validation set and note both the accuracy and
weighted-fl score on the test set using that checkpoint. We
repeat this step for 5 different random restarts and report
the average accuracy and fl score of the test set. For Glue
Benchmark datasets, true labels of the test set are not pub-
licly available, we submit the results on their server’ to get
scores on test data. Table I shows the result of DIBERT and
BERT-Base after fine-tuning on multiple datasets. It shows
that DIBERT performs better than BERT-Base. The overall
improvement is around 1% and for some tasks, it is more
than that.

We show that the DIBERT model outperforms the BERT-
Base model despite having a slow convergence rate, this can
most likely be due to the additional objective in DIBERT.
This work is also supported by the prior work which shows
that adding the syntactic structure of the sentence improves
the model performance on the downstream task. But in this
work, we extended the idea of injecting syntactic information

4A checkpoint is an intermediate dump of a model’s entire internal state
so that the training can be resumed whenever required.
Shttps:/gluebenchmark.com/

Result

IMDB  Scitail LIAR MRPC QNLI SST-2

acc acc acc acc/fl acc acc
BERT-Base  86.90 80.15 27.71 70.78/80.44  74.48 86.12
DIBERT 87.56 80.98 28.16 71.0/80.44 76.76  86.26

TABLE I: Comparison of the DIBERT with BERT-Base on
downstream tasks. In addition to the accuracy, the weighted
fl-score is used for the tasks having an imbalanced dataset.

of a sentence by pre-training DIBERT with an additional
objective named PP. Till now we have been focusing on more
quantitative analysis of the models but in the next section, we
show a little bit of the qualitative evaluation.

D. Analysis of the predictions

In this section, We do a qualitative analysis of the pre-
dictions obtained by the DIBERT in comparison with BERT-
Base. We show the predictions of DIBERT and BERT-Base on
datasets for which we had an access to the test labels. Some
examples of the prediction on the LIAR dataset are shown in
I. Example 2 shows that even though both BERT and DIBERT
did not predict the actual true label but the prediction of the
DIBERT (’true’) is more close to the actual true label (’mostly-
true’). In example 3, the prediction of DIBERT ('mostly-true’)
is closer to the true label (‘true’) and it is the same for example
4 and 5. For cases when BERT-Base predicts the actual true
label and DIBERT prediction is not correct (see examples 6
and 7), we note that the prediction of the DIBERT is still
close to the true label. We observe these trends by manually
checking the predictions and we report the most occurring
trends.

Given enough amount of resources (GPU & Dataset), we
can definitely show that DIBERT performs way better than the
normal BERT-Base model. Results also show that DIBERT has
the potential to completely outperform the BERT-Base model.

VI. CONCLUSION

We show that adding syntactic information of a sentence
in the form of an objective (Parent Prediction (PP) defined
in the section III-A) by pre-training a language model can
improve the performance of the model on downstream tasks.
It utilizes syntax aware or we can call dependency aware pre-
trained word embeddings for further fine-tuning. We show that
DIBERT III outperforms the BERT model by pre-training both
models on the same data and later compare the performance
by fine-tuning on various NLP tasks. To our knowledge, this
research work is the first in providing evidence on how to
successfully inject dependency tree information in the pre-
training of a model. Pre-training a language model comes
with a cost of resource-intensive computing due to which
we decided to use less amount of the pre-training dataset as
opposed to what the BERT model was actually pre-trained on.
We reported the averaged accuracy/fl-score of both models
on various downstream tasks by performing multiple random
restarts. DIBERT shows the overall improvement of around
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Fig. 6: Learning curves of the validation weighted fl score for both DIBERT and BERT-Base on various downstream tasks.
It shows that the highest weighted-f1 is achieved for DIBERT checkpoints.

1% in the accuracy as compared to the BERT-Base model.
We believe that this improvement can be increased given more
resources.

VII. FUTURE WORK

Increasing the size of pre-training data would lead to more
solid comparison between the DIBERT and BERT-Base. We
would want to extend PP objective by incorporating rela-
tionship labels between nodes in dependency tree rather than
simply utilizing nodes. We would also be interested in investi-
gating the constituency parse tree and trying constituency tree-
based objective rather than dependency tree-based objective. It
could be worthwhile to do the comparison of both approaches.

We

also believe that adding an objective that makes sense

linguistically, could also be studied or researched.
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