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Abstract

This paper presents a new approach to solve unsupervised video object segmentation˜(UVOS) problem (called TMNet). The

UVOS is still a challenging problem as prior methods suffer from issues like generalization errors to segment multiple objects

in unseen test videos (category agnostic), over reliance on inaccurate optic flow, and problem towards capturing fine details at

object boundaries. These issues make the UVOS, particularly in presence of multiple objects, an ill-defined problem. Our focus

is to constrain the problem and improve the segmentation results by inclusion of multiple available cues such as appearance,

motion, image edge, flow edge and tracking information through neural attention. To solve the challenging category agnostic

multiple object UVOS, our model is designed to predict neighbourhood affinities for being part of the same object and cluster

those to obtain accurate segmentation. To achieve multi cue based neural attention, we designed a Temporal Motion Attention

module, as part of our segmentation framework, to learn the spatio-temporal features. To refine and improve the accuracy

of object segmentation boundaries, an edge refinement module (using image and optic flow edges) and a geometry based loss

function are incorporated. The overall framework is capable of segmenting and finding accurate objects’ boundaries without any

heuristic post processing. This enables the method to be used for unseen videos. Experimental results on challenging DAVIS16

and multi object DAVIS17 datasets shows that our proposed TMNet performs favourably compared to the state-of-the-art

methods without post processing.
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Unsupervised video object segmentation: An affinity
and edge learning approach.

Sundaram Muthu1, Ruwan Tennakoon2, Reza Hoseinnezhad1, Alireza Bab-Hadiashar1

Abstract—This paper presents a new approach to solve un-
supervised video object segmentation (UVOS) problem (called
TMNet). The UVOS is still a challenging problem as prior
methods suffer from issues like generalization errors to segment
multiple objects in unseen test videos (category agnostic), over
reliance on inaccurate optic flow, and problem towards cap-
turing fine details at object boundaries. These issues make the
UVOS, particularly in presence of multiple objects, an ill-defined
problem. Our focus is to constrain the problem and improve
the segmentation results by inclusion of multiple available cues
such as appearance, motion, image edge, flow edge and tracking
information through neural attention. To solve the challenging
category agnostic multiple object UVOS, our model is designed to
predict neighbourhood affinities for being part of the same object
and cluster those to obtain accurate segmentation. To achieve
multi cue based neural attention, we designed a Temporal Motion
Attention module, as part of our segmentation framework, to
learn the spatio-temporal features. To refine and improve the
accuracy of object segmentation boundaries, an edge refinement
module (using image and optic flow edges) and a geometry based
loss function are incorporated. The overall framework is capable
of segmenting and finding accurate objects’ boundaries without
any heuristic post processing. This enables the method to be used
for unseen videos. Experimental results on challenging DAVIS16
and multi object DAVIS17 datasets shows that our proposed
TMNet performs favourably compared to the state-of-the-art
methods without post processing.

Index Terms—Video object segmentation, Neural Attention,
Edge refinement, Affinity learning, Multi-cue segmentation, Cor-
relation clustering.

I. INTRODUCTION

Video object segmentation (VOS) is one of the important
tasks in computer vision. It involves pixel level Segmentation
of independent moving objects across frames in a given
video sequence. Solving the VOS problem is essential for the
development of video analysis and scene understanding tools.
Applications of VOS include video editing [1], autonomous
driving [2], robotics, surveillance and tracking [3].

Traditionally, VOS (or motion segmentation as it was called)
was solved via fitting geometric models to matched key-points
in adjacent frames [4]. More recently, deep learning based
methods have become prominent. Existing deep learning based
VOS methods can be classified as semi-supervised, interactive
and unsupervised methods based on the amount of human
involvement in the segmentation process. The semi-supervised

[1] School of Engineering, RMIT University, Victoria, Australia.
[2] School of Science, RMIT University, Victoria, Australia.
This work has been submitted to the IEEE for possible publication.
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methods (SVOS) require annotations of objects of interest in
the first frame. The interactive methods requires user inter-
actions like scribbles, to guide and correct the segmentation.
Recently introduced unsupervised VOS methods (UVOS) are
expected to identify all moving objects in the scene, with
no prior information about the number of objects or manual
annotation of the first frame.

Unsupervised video object segmentation is challenging
since the segments or the number of segments is unknown
at start. Other challenges include dynamically varying number
of objects, camouflaged object motions, occlusions, articulated
non-rigid object motions, background motion, etc.

Prior works follow three main strategies to solve the UVOS
problem. The first strategy is based on using motion and
appearance features together for video object segmentation.
The second strategy is to use semantic segmentation of objects
in a video frame, followed by tracking of the detected objects
using temporal information in subsequent video frames. The
third strategy relies on neural attention leveraging temporal
information from optic flow to focus on obtaining better
features to represent moving objects.

Motion and appearance feature based methods [6]–[9]
generally rely on a two stream architecture. i.e. processing
image (appearance features), and optic flow (motion features)
independently. The two stream architecture works well only if
the data correspondences provided by optic flow are accurate.
However, optic flow estimates are often inaccurate around:
object boundaries [10], non-textured regions, and fast-moving
objects [11]. In such cases, motion features would not be
reliable to complement the appearance features for accurate
segmentation. This leads to an over reliance of these methods
towards the appearance features of the objects.

Object detection and tracking methods [12]–[14] use state-
of-the-art object detection methods like Mask-RCNN [15]
to detect foreground objects and track all detected objects
using tracking algorithms. Tracking has its own challenges:
it often suffers from drift, and it relies heavily on object re-
identification to track missed or re-appearing objects. These
methods usually suffer from generalization errors, when ap-
plied to larger test videos containing objects that do not appear
in the training data.

To overcome these challenges, Motion-Attentive Transition
Network (MATNet) [5] introduced a neural attention mecha-
nism similar to how humans perform motion segmentation. A
motion-attentive module uses optic flow to focus on moving
objects and to obtain better features. Even though this method
overcomes the problems associated with the first two strategies
for performing UVOS, they still have several drawbacks.
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(a)

(c)

(b)

Fig. 1: Qualitative comparisons for UVOS on the DAVIS17 dataset. a) Our method is capable of identifying multiple moving
objects due to affinity learning (pigs sequence), b) Our temporal motion attention module improves segmentation results of
articulated objects (camels sequence) c) Our edge refinement module refines object boundaries (blackswan sequence). The
columns from left to right are the input frame, the optical flow, the segmentation ground-truth, the results of MATNet [5],

and TMNet, respectively.

1) This approach mainly focus on foreground/background
segmentation, not useful for practical real world applications
that has multiple moving objects. 2) Neural attention is based
on optic flow information between two consecutive frames that
is ambiguous, leading to a bias towards semantic object classes
due to the lack of temporal tracking information. 3) The
method does not capture fine details of objects, leading to
poor object boundaries.

To solve the UVOS problem, we propose a new method that
uses temporal neural attention and edge refinement modules
to predict segmentation affinities, that are later clustered to
obtain the required segmentation. This approach overcomes
the issues mentioned above. For example, Fig 1 compares
the segmentation results of our method with the segmentation
results of MATNet [5]. The method is capable of detecting
multiple-objects (Fig 1a), articulate objects (Fig 1b) with
accurate object boundaries (Fig 1c).

To address issue 1 (detecting multiple-objects), we propose
to predict affinities instead of predicting segmentation masks
directly. The predicted affinities represent the relationship be-
tween neighbouring pixels. The neighbouring pixel can either
belong to the same object (pixels lie inside an object) or belong
to different objects (pixels straddle object boundaries). This
relationship motivates the need for predicting the probability
that neighbouring pixels belong to the same object.

To address issues 2 and 3, we designed temporal motion
attention and edge refinement modules. Humans are attracted
first to anything that moves before learning to map objects to
semantic object classes [16]. Inspired by this fact, the temporal
motion attention module performs temporal neural attention
to focus on the moving objects. This enables us to deal with
highly complex object motions, and to resolve the issue of
dynamic appearance changes of objects as shown in Fig 1.
Edge refinement module uses the combination of image and
flow edges to refine the edges of the segmentation, correcting

errors occurring due to inaccurate motion information at
object boundaries. Addition of this boundary information also
captures fine details of objects.

The main contributions of this paper include:
• The introduction of temporal motion attention module,

where tracking information is used as an attention mech-
anism to focus on segmenting moving objects.

• Predicting affinities instead of predicting the fore-
ground/background segmentation masks directly to over-
come the problem of segmenting multiple moving ob-
jects.

• Presenting a UVOS framework with results comparable
to the state-of-the-art for UVOS task on single object
DAVIS16 and multi-object DAVIS17 datasets.

This paper is organized as follows: Section II introduces the
related work. Section III describes the network architecture of
our TMNet deep learning model, implementation details and
the loss function used. Ablation studies on DAVIS16 dataset
is presented in Section IV, which show the performance
improvement due to the use of temporal neural attention and
edge refinement modules. Experimental results on DAVIS17
dataset show the effectiveness of the method to perform mul-
tiple object UVOS by predicting affinities instead of directly
predicting a foreground/background segmentation. Section V
concludes the paper and discusses future work.

II. RELATED WORKS

A. VOS Definition

According to Gestalt ”common fate” principle [17], VOS
is the grouping of pixels with the same motion. According
to [18], VOS is defined as segmenting all objects that move rel-
ative to the background. Since the same motion grouping is not
the same as same object grouping, ambiguities arise for some
scenarios. For example, intermittent object motions (objects
static for few frames in sequence), articulated objects (only
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part of the object moves), similarly moving objects (different
objects with same motion), etc. are analysed in [19] to propose
an acceptable definition to resolve the ambiguities.

The following summarizes the definitions commonly
used [19]: a) Entire object must be segmented even if only
part of the object moves. b) Static objects must not be
segmented even if they have moved before or could move
later (to maintain causality). c) Similarly moving objects must
be segmented separately only if they are not connected in
3D. Also, VOS differs from tracking by assigning precise
masks to the tracked individual objects. Based on the amount
of human involvement, VOS is classified as semi-supervised,
interactive and unsupervised methods. Unlike semi-supervised
methods that require first frame ground-truth of objects to be
segmented, unsupervised or zero shot VOS methods should
identify all moving object(s) without any prior information.
Our method also solves the challenging UVOS problem that
requires the model to have generalizing capability.

B. UVOS based on multiple cues

Appearance based methods fail to segment texture-less
objects. They also segment static background objects as they
lack the motion information. Flow-based techniques using
optic flow based on brightness constancy assumption generally
leads to over-segmentation of non-rigid objects, and often fail
when there are occlusions, camouflaged objects, or degenerate
motions. To resolve these issues, two stream architecture
based methods [20]–[22] were introduced that combine both
image-based appearance features and optic flow-based motion
features. The inaccuracy of optic flow at object boundaries
further leads to poor segmentation. Methods such as ARP [23]
and [24] refine optic flow-based motion boundaries using edge
cues to obtain better performance at object boundaries. Joint
estimation of optic flow and UVOS [9], [25] has also shown
to be somewhat effective in overcoming the problem of over-
segmentation.

Advances in deep learning for object recognition [15], [26]
have enabled the use of temporal information to track object
proposals and generate consistent segmentation for the entire
video [12], [14], [27]. Zhao et al. [28] perform UVOS for mul-
tiple objects by detecting and tracking objects using human-
centric re-identification. UnOVOST [12] generate tracklets
for object proposal masks and merge long-term consistent
tracklets to perform segmentation. Object based detection
methods use Siamese Re-ID networks for association. This
leads to failure for fast moving objects, occlusions, and non-
rigid motions. In contrast to above methods, our approach
effectively combines all the cues discussed above in our
TMNet framework to produce category agnostic multi-object
UVOS. Most methods discussed also perform only binary
foreground background segmentation, thereby limiting their
applications scenes with only one moving object. In contrast,
we perform multi-object UVOS by predicting affinities instead
of predicting the segmentation directly. These are explained in
section III.

C. Clustering methods

Clustering is an important part of bottom-up UVOS meth-
ods. Bottom-up based methods obtain low level point trajec-
tories from appearance and motion information, and merge
them to form high level object segmentation [29]. In [30],
key-segments are identified with persistent appearance and
motion cues. The key segments are later clustered to obtain
the foreground object segmentation. Recently, STEm-Seg [31]
extend the clustering across both spatial and temporal domains
to model videos to segment and track all moving objects.
These methods have the advantage of generating category-
independent object segmentation. But segmenting multiple
moving objects remains a challenge if the number of clusters
are not known a priori and keep changing dynamically in
a video sequence. To overcome this problem, Keuper at al.
[32] formulated trajectory clustering problem as a correlation
clustering problem. Correlation clustering or minimum cost
multicuts finds the optimal number of segments automati-
cally [33]. Keuper et al. [34] used heuristic algorithms to solve
the correlation clustering efficiently. Different from the meth-
ods discussed above, our method leverages the benefits of both
correlation clustering and advances in deep neural networks in
a single TMNet framework that improves the generalization
capability without suffering from over-segmentation problems
faced by the bottom-up methods. The overall framework is
explained in section III.

D. Attention in neural networks

Inspired by human perception, attention mechanism is re-
cently used in deep neural networks to improve the perfor-
mance of various applications like Attention guided object
segmentation [35], Dynamic visual attention prediction [5],
Visual question answering [36], etc. Attention helps the net-
work to form effective feature representations from the data.
The effectiveness is achieved by focusing on only the relevant
informative regions of interest (avoiding unnecessary informa-
tion). Neural attention has also been used for improving the
performance of the UVOS problem [5], [37]–[39].

In-order to avoid the use of computationally expensive
optic flow for UVOS, AGNN [37] first used an attention
mechanism to capture the higher order relationships in a
message passing graph neural network framework. Differently,
COSNet [38] solved UVOS using co-attention between frames
in a video sequence by a Siamese neural network to learn the
global context. MATNet [5] introduced a motion attentive two
stream interleaved encoder to learn powerful spatio-temporal
features for UVOS by an attention mechanism using optic
flow to focus on only the moving objects. FEM-Net [39]
extended MATNet [5] by additionally using the optic flow
edge information in a Flow edge connect module that helps
in segmenting the foreground salient objects, and their bound-
aries accurately. Our method also extends the motion based
attention mechanism proposed by MATNet [5] to learn pow-
erful spatio-temporal features by additionally incorporating
temporal context from several frames in the video into the
attention mechanism, which helps to resolve ambiguities in
optic flow information of complex dynamic scenes in two
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Fig. 2: Overview of the network architecture of our TMNet method. The temoral attention encoder uses both image and optic
flow to generate robust features. The affinity learning decoder produces a neighbourhood affinity matrix. The edge refinement
stage uses both image and flow edges to refine the boundaries of the affinity matrix. The affinity is later clustered to obtain

the required segmentation.

consecutive frames. Different from the previous methods, our
method also predicts affinities instead of predicting the output
segmentation directly. This enables our method to be used for
category agnostic multiple object segmentation.

III. PROPOSED METHOD

A. Problem Statement

Given a video sequence I = {I1, I2, · · · , It−1, IT } ∈
RW×H×3×T , and the forward optic flow OF =
{OF1, OF2, · · · , OFt−1} ∈ RW×H×2×T , the objective
of VOS is to generate multi-object segmentation S =
{S1, S2 · · · , St−1, St}. Here, each video frame, It, denotes an
RGB image with width W and height H . The segmentation
at each time frame, St, consists of a set of binary object
segmentation masks {M1,M2, · · · ,Mk} ∈ RW×H . k denotes
the number of independent moving objects and this value can
vary dynamically in the video sequence due to new objects
entering the scene or objects leaving the scene.

B. Network Architecture

We propose an end-to-end deep neural network TMNet for
category agnostic multiple object UVOS, to predict affinities
by learning powerful spatio-temporal features through neural
attention. Our TMNet framework consists of three main stages:
1) Temporal motion attentive encoder, 2) Affinity learning
decoder, and 3) Edge refinement network. The framework of
the proposed TMNet framework is illustrated in Fig 2.

1) Temporal motion attentive encoder: This encoder uses
a motion attentive two stream interleaved architecture to learn
robust feature representations for moving object(s). We can
achieve a degree of robustness due to the use of our Temporal
motion attention (TMA block) described in section III-D that
uses a neural attention mechanism to focus on only the moving
object(s).

For the appearance stream, we use the image It ∈ RW×H×3

and for the motion stream, we use the optic flows calculated
between the current frame t and δ previous frames OF =
{OFt−1, · · · , OFt−δ} ∈ RW×H×2×δ . The optic flows are
converted to RGB domain before passing through the convolu-
tional layers (ÔF ∈ RW×H×3×δ). The encoder processes the
multi-cue information from the inputs and produces a robust
feature representation Ft ∈ RW×H×C :

Ft = ENCODER(It, {OFt−1, · · · , OFt−δ}). (1)

Different from the previous neural attention based inter-
leaved encoders for UVOS [5], our method uses additional
temporal information from the previous δ frames. This addi-
tional information helps the network to detect objects tem-
porarily stopping for a few frames. It also improves the detec-
tion capability of non-rigid objects with articulated motions.

Firstly, we use the initial 5 convolutional blocks of the stan-
dard ResNet backbone to extract appearance feature Fa from
the image It, and temporal features Fm = {Fm1, · · · , Fmδ}
from the optic flows ÔF at various residual stages with
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different spatial resolutions (1/2th, 1/4th, 1/8th, 1/16th) of the
original image size.

Next, we use the temporal features Fm to update the
appearance features Fa at all intermediate stages, and obtain
the enhanced appearance features F̂a. This enhancement is
performed using the TMA block for each stage i ∈ {2, 3, 4, 5}
as follows:

F̂a
i

= TMA(Fa
i, {Fm1, · · · , Fmδ}i). (2)

The enhanced appearance features F̂a and the motion features
Fm are concatenated to form the combined features. The
combined features of all four residual stages are scaled to
the size of the image, and combined to obtain the final robust
feature representation Ft. Finally, the features Ft are fed to
the affinity learning decoder stage.

2) Affinity learning decoder: The affinity learning decoder
is designed to use the temporal motion attentive features Ft ∈
RW×H×C , and the predict affinities At ∈ RW×H×4:

At = DECODER(Ft). (3)

The segmentation affinity is defined for every pixel u ∈ It, and
one of its neighbouring pixels v ∈ N(u). The affinity describes
the probability that the selected pixel, and its neighbour
belongs to the same motion. The value varies from 0 to 1.
The affinity is 1 if the label of the pixel and its neighbour
matches (high affinity for edges between pixels within the
same segmentation). The affinity is 0 if the labels do not
match (low affinity for edges between pixels that belong to
different segments). This representation has the advantages of
permutation invariance and fixed size, making it easy to use for
training purposes. Here we face the trade-off between accuracy
and memory/time. Increasing the neighbourhood size will give
us more accurate results at the expense of the large memory
footprint of segmentation affinity leading to more prediction
time. Hence we restrict our model to predict affinities for only
the four immediate neighbouring pixels.

We utilize the well-known cosine similarity function to
learn affinities from temporal motion attentive features. Cosine
similarity is calculated between the spatio-temporal features
Ft of the image It, and warped features F shifted

t of the same
image. We use the simple cosine similarity function instead
of learning from a cost volume constructed from the features
(since constructing the full cost volume makes model large
in-terms of memory).

3) Edge refinement network: The edge refinement network
is designed to refine the object boundaries by updating the
predicted affinities At obtained from the decoder. The edge
maps Ie ∈ RW×H of the image It, and the edge maps OFe ∈
RW×H of the optic flow OFt−1 are both used to update the
predicted affinities At ∈ RW×H×4:

Â = REFINE(At, Ie, OFe). (4)

The edge refinement block is described in detail in sec-
tion III-E. The refined edges are finally clustered to obtain
the required segmentation as described in III-C

C. Predicted Affinity to video object segmentation
Our network is not limited the specific set of object classes

present in the training class since we predict affinities. But in-
order to obtain the required segmentation S from the affinity
Â predicted by our TMNet model, we need to perform a
clustering step. Unlike other clustering methods, correlation
clustering finds the optimal number of clusters automatically.
So we apply correlation clustering on a pixel grid graph that
uses the predicted affinities.

Firstly, we create a pixel grid graph G = (V,E,W ) for the
image It from predicted affinities Â as follows:
• Nodes V : Set of N = W ×H vertices for every pixel in

the image It. W and H denote the width and height of
the image It.

• Edges E: Set of edges euv ∈ RN×4 connect four
neighbouring nodes v (left, right, top and bottom nodes)
of every node u that form the pixel grid.

• Weights W : The affinities Â ∈ RN×4 predicted by our
model are used as weights wuv for every edge defined in
the graph. It is the cost associated with assigning the two
nodes u and v of the edge euv to distinct components.

Next, the segmentation is performed by solving the op-
timization problem defined on the pixel grid graph created
using the predicted affinities as edge weights. The correlation
clustering or the graph multicut optimization problem is solved
using the method described in [34]. The output is a unique
decomposition of the graph G, which assigns 0/1 labels to all
the edges. Edges labelled 1 straddle distinct clusters.

Finally, once edges straddling distinct clusters are identified,
the clusters can be separated to obtain the output segmen-
tation St as the set of binary object segmentation masks
{M1,M2, · · · ,Mk} ∈ RW×H . Our method automatically
assigns the optimal number of independently moving objects
k which can vary dynamically in the video sequence.

D. TMA block
The Temporal Motion Attention (TMA block) uses the

temporal features Fmi ∈ RW×H×Cm to update the appearance
feature Fa ∈ RW×H×Ca at all intermediate stages. The
output of the block is the enhanced appearance features
F̂a ∈ RW×H×Ca .

We develop a temporal aggregation block within our TMA
block to extend the Motion Attentive Transition block de-
veloped by MATNet [5] in-order to accommodate the tem-
poral information from previous δ frames. Firstly, there is
a soft attention that weights each of feature maps (F =
Fa, {Fm1, · · · , Fmδ}) at every pixel location. This is per-
formed by a 1x1 conv function that learns the probability
that a particular region of the feature map is important. The
probability is then normalized using a softmax function to
obtain the normalized importance weights I ∈ RW×H . The
feature maps in F are all converted separately to obtain the
spatial attentive features Z by using a channel-wise Hadamard
product:

Zca = SOFTMAX(Wa(Fa))� F ca . (5)

Next, we find the correlation between the spatial attentive
appearance features Za, and each of the spatial attentive
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Fig. 3: Computational graph of our TMA block.

motion features Zmi. This correlation Si, or the non-linear
affinity, is learnt to find the relationship between the two
feature spaces. The affinity is high (both appearance and
temporal motion features are similar) for regions of the image
where moving object(s) are present:

Si = ZTmi(Wi)Za Si ∈ RWH×WH

= ZTmi(PiQ
T )Za Pi, Q ∈ RC×C

d

= (PTi Zmi)
T

(QTZa) i ∈ {1, · · · , δ},
(6)

where Pi and Q are trainable weights learnt during training
to compress the size of the model and avoid the overfitting
problem. Q matrix which is learnt to compress the appearance
features, are shared in the calculation of all Si.

In the third step, we normalize the affinity matrix Si along
the row dimension to ensure that the sum of the contributions
of all channels is 1. Finally we aggregate the normalized
affinities Sri for all delta optic flows to obtain the temporal
motion attention factor S.

Sri = SOFTMAX(Si)
S = AGGREGATION(Sr1 , · · · , Srδ ).

(7)

The aggregation function can be implemented by simple
maximum, minumum, average or median values. Experiments
in section IV indicate that the average performs better than
other functions.

Finally, the enhanced appearance features F̂a ∈ RW×H×Ca

are obtained from the temporal motion attention factor S by

F̂a = Fa × S. (8)

E. Edge Refinement module

Fig (4) shows the motivation for using both the image edge
Ie, and the flow edge OFe information jointly in the edge
refinement module of our TMNet model. First row shows
failure of using optic flow edges OFe to detect the swan (inac-
curate boundaries, background noise due to moving water). As
our proposed method uses additional image edge cues, it can
overcome this issue and segment the swan correctly. Second
row shows failure of using image edges Ie to segment the
moving car (due to the object having no texture). Again, our

proposed method has been able to detect the car correctly using
the flow edge information. The above two cases highlight the
fact that both image and flow edges act as complementary
information aiding the segmentation together to refine the
boundaries. Third row also shows the improvement due to the
complementary information even though both flow and image
edges are accurate.

After predicting the affinities At ∈ RW×H×4, we concate-
nate it with the edge maps Ie ∈ RW×H of the image It, and
the edge maps OFe ∈ RW×H of the optic flow OFt−1 to
form the input Ri ∈ RW×H×6 to the convolutional modules
(Ri = CONCAT(At, Ie, OFe)). We capture the fine details of
the boundaries by using the edge features in three consecutinve
conv blocks. The last convolutional stage reduces the feature
dimension from six back to four. The output refined affinity
Â at the end of the block is clustered to obtain the required
boundary aware segmentation.

F. Loss Function

Since our network predicts affinities instead of the segmen-
tation directly, we use a loss function based on the predicted
affinities. For the training, we formulate our loss between the
predicted affinities and the ground-truth affinity (instead of the
usually used binary cross entropy loss between the predicted
and the ground-truth segmentation).

Firstly, in-order to define a loss term, we need to convert the
labelled ground-truth segmentation to ground-truth affinities.
The ground-truth affinity is 1 if the label of the pixel in the
image, and its neighbour are the same. Consider an image
It ∈ RW×H×3, and its segmentation ground-truth Lt ∈
RW×H . The ground-truth affinity matrix A ∈ RW×H×M is
then defined for each pixel u ∈ It and one if its neighbouring
pixels v ∈ N(u), as follows:

Auv =

{
1, if L(u) = L(v),

0. otherwise,
(9)

where, W & H are the width and height of the image, M is
the number of pixels v in the neighbourhood of a pixel u.

For the loss function, we use the mean square error (MSE)
function between the ground-truth affinities A defined previ-
ously, and the affinities Â predicted by our TMNet model
given by:

L(A, Â) = 1
αe

∑
u∈I

∑
v∈N(u)

(1−Auv)× Le(Auv − Âuv)

+ 1
αne

∑
u∈I

∑
v∈N(u)

Auv × Lne(Auv − Âuv, w).

(10)
We split the loss into two parts to overcome the imbalance

problem in the ground-truth affinity as number of 0’s (edges -
labels of the compared pixels do not match each other) �
number of 1’s (non-edges - labels of the compared pixels
match each other) in A. The first term is the normal mean
square error loss for 0’s (edges). The second term is the
weighted mean square error loss for 1’s (non-edges). The
equations for those losses are as follows:

Le(x) = x2 (11)
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(a)

(c)

(b)

Fig. 4: Usage of both image and flow edges together in our edge refinement module. a) Flow edges not reliable in comparison
to image edges (blackswan sequence), b) Image edges not reliable in comparison to flow edges (drift-straight sequence)

c) Both image and flow edges complement each other (cows sequence). The columns from left to right are the input frame,
ground-truth edge annotation, image edge, flow edge, and the results of our TMNet edge refinement module, respectively.

Lne(x,w) = w ∗ x2. (12)

The weights w ∈ RW×H are the edge weights generated
using the normalized gradient magnitude of the image. We
incorporate the use of geometry to control the importance
of non-edge pixels during training. This loss penalizes edges
in an image, that are non-edges in A (penalize static object
boundaries that do not appear in the motion boundaries).

Normalization terms αe and αne count the number of the
edges and weighted sum of the non-edges in A, respectively.

αe =
∑
u∈I

∑
v∈N(u)

(1−Auv) and

αne =
∑
u∈I

∑
v∈N(u)

Auv ×Wu.
(13)

G. Implementation Details

Our TMNet model is end-to-end trainable to predict affini-
ties that are clustered to obtain the required segmentation.

Training: For pre-processing, the images are scaled to
384x512x3. We also augment training data to prevent over-
fitting. We use the open-source Flownet2 [41] for optic flow
estimation. We also use RCF [42] for obtaining image and flow
edge maps. For fair comparison, we adopt the same method for
generating optic flow and edge maps in all of our experiments.
We train the model only on the 30 training set video sequences
of the DAVIS17 dataset [43] without the use of any additional
training data. The model is trained from the scratch using the
loss term and affinity ground-truth as explained in eqn (10)
in a supervised manner using random initial weights. We train
the network with a batch size of 2. We follow a learning rate of
10−4 for pre-training, and 10−5 for fine-tuning as the training
schedule using the ADAM optimizer. The number of previous
frames for extracting the temporal attention δ is chosen to be 3.
The number of neighbours M for every pixel used to calculate
the affinity is chosen to be the 4 immediate neighbours. We
choose the values to be as low as possible since increasing
both δ and M , results in increased accuracy in the output

segmentation at the cost of increased model capacity and run-
time.

Testing: For testing, we apply our trained TMNet model to
the unseen videos. We use the current image and the optic flow
of the previous δ frames to produce the output segmentation.
It is to be noted that for obtaining the segmentation of the first
δ frames, we craete copies of the initial optic flow.

Run-time: We implement our TMNet method in Pytorch
on a NVidida TitanX GPU with 12GB memory for both
training and testing. For our trained TMNet model, pre-
processing steps like optic flow estimation takes around 0.07
s/frame, prediction of segmentation affinity takes 0.28 s/frame
. Additionally, the clustering and tracking takes 2.17 s/frame.
Our method has timing comparable to other UVOS methods
but is also capable of performing category agnostic multi-
object segmentation (segmentation of objects not seen by the
training data).

IV. EXPERIMENTAL RESULTS

We investigate the performance of our method on standard
benchmarks for UVOS: DAVIS16 [40], and multiple object
DAVIS17 [43] datasets. We compare with the state-of-the-art
methods, and also perform ablation studies to understand the
main advantages of specific components of our TMNet model.

A. Dataset and Evaluation metrics

We report results on two widely used benchmarks: sin-
gle object DAVIS16 dataset [40] and multi-object DAVIS17
dataset [43]. The datasets contain many challenging video se-
quences with multiple objects, occlusion, fast moving objects,
background clutter, articulated motion, etc.

DAVIS16 [40] contains 50 HD video sequences, 3455
manual instance segmentation ground-truths. DAVIS17 [43]
is a more challenging benchmark extending DAVIS16 [40]
to multiple moving objects, and contains 120 HD video
sequences (60 for train, 30 for val, 30 for test-dev) and
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Variant J&F↑ ∆J&F J mean↑ ∆J mean J recall↑ ∆J recall F mean↑ ∆F mean F recall↑ ∆F recall

w/o Temporal 0.758 -5.01 0.774 -3.61 0.923 -2.73 0.742 -6.54 0.844 -4.52
attention module

w/o Edge 0.779 -2.38 0.792 -1.36 0.948 -0.01 0.766 -3.52 0.880 -0.45
refinement module

Full TMNet model 0.798 0.803 0.949 0.794 0.884

TABLE I: Ablation study: Key component analysis of proposed TMNet on DAVIS16 dataset [40].

10K manual instance segmentation ground-truths. The task is
more challenging due to the inclusion of multiple objects that
additionally create occlusions, background clutter, etc.

We use the following performance measures described in
DAVIS challenge [43] to evaluate the performance of our
method:
• Region similarity metric (J) : Intersection over union

between predicted and ground-truth segmentations.
• Contour accuracy metric (F ) : Boundary accuracy of

predicted boundaries against the ground-truth.
• Overall global metric (J&F ) : Average of Jmean metric

and Fmean.
• Temporal decay metric (T ) : Measure of consistancy in

labelling accross the video sequence.
The mean of a metric is the average error measured across
all objects in all video sequences. The recall is the fraction
of sequences scoring higher than a threshold of 0.5.

B. Ablation Study

To examine the effectiveness of the temporal neural atten-
tion and edge refinement components of our TMNet model
individually, we performed an ablation study of our model on
the DAVIS16 dataset [40].

The decrease in performance due to the removal of specific
key components of our method is calculated as:

∆m =

(
1− mpartial

mpartial

)
× 100% (14)

where m represents the metric for which the decrease in
performance is calculated (J&F , Jmean, Jrecall, Fmean or
F recall). ∆m represents the performance loss, mpartial and
mfull represent the metric values without and with the specific
component of our model whose efficiency is studied. Table I
shows the results of our key component analysis.

The first row in Table I shows the loss in performance of our
model without the temporal attention module, compared to the
full model performance described in the third row. There is a
significant improvement of 5.01% in global J&F metric due
to the inclusion of the temporal attention module. This shows
that the addition of tracking information helps the networks
performance by resolving ambiguities in appearance of objects
for challenging scenarios (unseen objects, dynamically varying
number of objects, occlusions, non-rigid motions, and noisy
background).

Similarly, the second row in Table I shows the loss in
performance of our model without the edge refinement mod-
ule. There is a 2.38% improvement due to the inclusion of
the edge refinement module. It is also seen that edge refine
module improves the boundary metric Fmean by a large

margin (3.52%). This performance gain is attributed to the
edge refinement module as it improves the segmentation at
object boundaries.

C. Evaluation Results

1) DAVIS16: We evaluated our method for UVOS on the
single object DAVIS16 dataset [40]. Table II demonstrates
that our method performs favourably compared to the state-
of-the-art methods. Our method outperforms the state-of-the-
art methods in one metric (Jrecall), and the second best
performance in both boundary metrics (Fmean and F recall)
as highlighted in Table II. The overall performance indicates
the robustness of the appearance features, and is attributed
to the temporal attention module. The increased performance
in the boundary metrics compared to the other methods is
attributed to the use of edge refinement module that refines
object boundaries.

Figure 5 shows qualitative results of our method. The
results for the sequence ’camel’ shows the capability of
our model to work on non-rigid articulated motions. In se-
quence ’blackswan’, our method robustly segments the object
amongst the noisy background. Apart from the quantitative
results, our method also has another advantage. Different
from most of the existing methods which perform binary
foreground/background segmentation, our method is able to
perform segmentation and tracking for multiple moving ob-
jects as explained in the next section.

160 34 47

0 773819

Fig. 5: Qualitative results of our method for UVOS on the
single object DAVIS16 dataset. From top to bottom:

blackswan sequence input and visual segmentation results,
camel sequence input and visual segmentation results.

2) DAVIS17: To show that our method performs accurate
segmentation for sequences with multiple moving objects, we
applied our method to DAVIS17 dataset [43] and compared
our results with existing methods. The performance of the
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Method J&F(Mean)↑ J(mean)↑ J(recall)↑ F(mean)↑ F(recall)↑
SFL [32] 67.0 67.4 81.4 66.7 77.1
LMP [22] 67.9 70.0 85.0 65.9 79.2
FSEG [44] 68 70.7 83.0 65.3 73.8
LVO [22] 73.9 75.9 89.1 72.1 83.4
ARP [23] 73.4 76.2 91.1 70.6 83.5
PDB [27] 75.8 77.2 90.1 74.5 84.4
MATNet [5] 76.4 78.0 92.1 74.8 87.5
AGS [35] 78.5 79.7 91.1 77.4 85.8
COSNet [38] 78.8 80.2 91.9 77.4 87.4
AGNN [37] 79.9 80.7 94.0 79.1 90.5
AnDiff [45] 81.1 81.7 90.9 80.5 85.1
FEMNet [39] 78.4 79.9 93.9 76.9 88.3
Ours 79.8 80.3 94.9 79.4 88.4

TABLE II: Comparison with the state-of-the-art methods for unsupervised video object segmentation on DAVIS-16
dataset [40].

Method J&F(Mean)↑ J(mean)↑ F(mean)↑ F(decay)↓ Heuristic Post-processing
RVOS [21] 0.412 0.368 0.457 1.70 No
STEm-Seg [31] 0.647 0.615 0.678 1.20 No
MATNet [5] 0.586 0.567 0.604 1.80 Yes
UnOVOST [12] 0.679 0.664 0.693 0.01 Yes
Ours 0.461 0.427 0.496 0.03 No

TABLE III: Comparison with the state-of-the-art methods for unsupervised video object segmentation on multiple object
DAVIS-17 dataset [43]. Our method, despite not using any post-processing, produces relatively accurate segmentation results.

proposed method is compared with several related state-of-
the-art approaches (we have selected the top methods that do
not use additional training data) including: (1) RVOS [21],
(2) STEM-seg [31], (3) MATnet [5], (4) UnOVOST [12].
Table III compares the methods using the performance metrics
described in the previous section.

The best results are obtained by UnOVOST [12]. This
method is computationally expensive as it uses Mask-
RCNN [15] for object proposal generation. It also has many
heuristic post-processing steps requiring hyper-parameters tun-
ing of multiple parameters (hyper-parameters are required
for converting instance object mask proposals to short term
tracklets, and merging short term tracklets to long term object
trajectories), therefore limiting its use to specific datasets. Sim-
ilarly MATnet [5] uses a CRF based dataset specific heuristic
post-processing to convert the foreground/background saliency
maps, to multi-object segmentation.

In contrast, our method uses no such post-processing, and
shows comparable accuracy to other similar methods that
perform multi-object segmentation directly without the re-
quirement of any heuristic post-processing operations. Our
method also has other advantages compared to the other
methods. Unlike object detection and tracking methods [12],
[21], [31], which require prior knowledge of known objects
(object proposals from pre-trained Imagenet models) to solve
UVOS accurately, our method does not depend on any prior
knowledge of the segmented objects (as we only use affinities
to perform UVOS). Hence our model is capable of generaliz-
ing well to unseen object classes.

Fig 6 shows qualitative results for performing UVOS on
multi-object sequences of DAVIS17 dataset [43]. The sequence
’pigs’ demonstrates that the model can handle multiple moving
objects under challenging scenarios like occlusions and similar
objects. Sequence ’dogs-jump’ also shows the ability to handle
category agnostic fast moving objects with similar appearance.

0 20

36 60

52 77

13 25

Fig. 6: Qualitative results of our method for UVOS on
multiple object sequences from the DAVIS17 dataset. From
top to bottom: pigs sequence input and visual segmentation
results, dogs-jump sequence input and visual segmentation

results.

V. CONCLUSIONS

In this paper, we propose a new method (TMNet) to
solve UVOS. Our model combines appearance, motion and
edge cues. The motion cues from consecutive frames of
video sequences help to find temporal connections, guide our
model to learn powerful object representations, as they resolve
ambiguities in appearance features through neural attention
towards the moving object(s). The edge cues help to refine the
errors at object boundaries where motion cues are inaccurate.
Different from previous neural attention UVOS methods, our
method predicts affinities instead of predicting binary seg-
mentation masks, making the method capable of handling
multiple moving objects in one forward pass. The model
is efficiently optimized by a loss function on the predicted
affinities using geometric constraints. Our experiments on two
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popular benchmarks,i.e., DAVIS16 and DAVIS17 demonstrate
that TMNet is capable of effectively handling unseen object
categories, multiple moving objects, occlusions, articulated ob-
ject motions, and cluttered background. Extensive experiments
on the datasets also show that the improvement in performance
is due to the addition of the temporal neural attention and edge
refinement modules.

Our method fails when objects in the video temporarily stop
for multiple frames. This failure occurs since we process only
selected number of frames at a time. So, we plan to extend
the work further by storing important features of objects seen
in a memory. This will allow the model to merge the tracklets
accurately once the objects are re-identified later. Another area
for improvement is to make use of the 3D scene flow available
to incorporate the additional depth change information(not
available in 2D optic flow) to aid the segmentation.
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