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Abstract

Convolutional Neural Networks have been considered the go-to option for object recognition in computer vision for the last

couple of years. However, their invariance to object’s translations is still deemed as a weak point and remains limited to small

translations only via their max-pooling layers. One bio-inspired approach considers the What/Where pathway separation in

Mammals to overcome this limitation. This approach works as a nature-inspired attention mechanism, another classical approach

of which is Spatial Transformers. These allow an adaptive endto-end learning of different classes of spatial transformations

throughout training. In this work, we overview Spatial Transformers as an attention-only mechanism and compare them with

the What/Where model. We show that the use of attention restricted or “Foveated” Spatial Transformer Networks, coupled

alongside a curriculum learning training scheme and an efficient log-polar visual space entry, provides better performance when

compared to the What/Where model, all this without the need for any extra supervision whatsoever.
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Convolutional Neural Networks have been considered the go-
to option for object recognition in computer vision for the last
couple of years. However, their invariance to object’s translations
is still deemed as a weak point and remains limited to small
translations only via their max-pooling layers. One bio-inspired
approach considers the What/Where pathway separation in
Mammals to overcome this limitation. This approach works as a
nature-inspired attention mechanism, another classical approach
of which is Spatial Transformers. These allow an adaptive end-
to-end learning of different classes of spatial transformations
throughout training. In this work, we overview Spatial Trans-
formers as an attention-only mechanism and compare them with
the What/Where model. We show that the use of attention-
restricted or “Foveated” Spatial Transformer Networks, coupled
alongside a curriculum learning training scheme and an efficient
log-polar visual space entry, provides better performance when
compared to the What/Where model, all this without the need
for any extra supervision whatsoever.

Index Terms—visual system and development, biologically
inspired feature extraction, spatial transformers, What/Where
bio-inspired vision model, visual attention, curriculum learning.

I. INTRODUCTION

Since the emergence of AlexNet; the winner of the 2012
ILSVRC image classification competition [1], computer vi-
sion has been dominated by the use of deep convolutional
neural networks (DCNNs) [2] to capture the semantic content
of images. Today, some classifiers are even able to sur-
pass human level performance on some visual categorization
challenges [3]. From object recognition [4], [5] and natural
language processing tasks [6], [7], to lymph node metastasis
detection [8] and diagnostic radiology in patient care [9], there
is no questioning the breadth of their applications throughout
various fields. Thanks to the massive sharing of weights in
convolutional layers inside their architecture, DCNNs keep the
number of parameters to be learned relatively small, which
facilitates the abstraction of complex feature spaces. Although
DCNNs provide an exceptionally powerful set of architectures
for computer vision, they still lack one very important property
of a visual processing system, spatial invariance, that is, the
ability to separate the object’s pose and position from its
identity, i.e., its texture and shape. In practice, small invariance
to features in the visual space can be achieved by local max-
pooling layers embedded within the architecture, but it remains
limited in scope due to the small spatial support (e.g., 2 × 2
pixels) leaving DCNNs invariant to large transformations in
input data [10]. To deal with this constraint, on one hand,

Spatial Transformers Networks (STN) were introduced [11], a
fully differentiable module that can be inserted inside a DCNN
at any depth giving it the ability to learn how to actively
manipulate and transform input feature maps spatially without
any extra supervision (e.g. pose annotation) added to the pro-
cess, allowing the network to only select relevant regions of the
image (attention mechanism). Learning is also performed in
an end-to-end fashion with standard backpropagation without
modifying the optimization hyper-parameters. State-of-the-art
results were achieved on several benchmarks giving DCNNs
invariance to several classes of spatial transformations, most
notably affine transformations, i.e., scaling, rotation, transla-
tion, shear, and reflection. On the other hand, and for the
same reason that the Neocognitron [12]; the predecessor of
modern DCNNs, was inspired by the discovery of simple and
complex cells in the primary visual cortex in mammals [13],
the need for architectures that are inspired from biological
underlying principles is growing [14]. Indeed, the human
visual processing system is still considered unrivalled when
it comes to speed of detection and computational efficiency.
In this paper, we focus on the fact that object recognition
is done at ease using high-speed eye movements [15]. One
recent paradigm for a biologically-inspired computer vision
application of that principle is the artificial What/Where
model [16]. This model mimics the anatomical separation
of the corticocortical pathways processing visual information
that is found in mammals. In that model, the ventral and
dorsolateral pathways are responsible for object vision and
spatial localization, respectively [17]. Captured within an
active inference framework [18]–[20], this model works in a
sequential way. A first and key aspect of this artificial visual
processing setup is the compression of the visual data through
a center-surround log-polar grid representation; as is the case
of the foveated vision in mammals [21]. This foveated visual
input is processed through the “Where” module to determine
the optimal viewpoint upon which the agent shall fixate its
center of gaze. After moving the eye toward this new position,
the “What” module will oversee classifying a small region
around the center (the “fovea”) to detect the object contained
within it. Thanks to the log-polar compression placed at the
entry level of this architecture, complexity (processing time) is
sub-linear with regards to the number of pixels, as opposed to
classical computer vision where it is still considered linear
in the number of pixels. This provides a decrease of the
computational load on the network while, at the same time, im-



plementing a biologically-inspired attention-driven mechanism
for computer vision to help solve the visual search task. This
bio-inspired “dual pathway” is consistent with more recent
trends in visual processing, that is the routing of the visual data
through linear (affine) transformations layers through Spatial
Transformer Networks (STN). In particular, the possibility to
backpropagate the gradients through the visual transformations
layers may allow to overtake the less data-efficient actor-critic
principles used in the original model, where each pathway was
separately trained. In this work, we thus explore and bench-
mark the visual spatial transformer paradigm against the latter
bio-inspired attentional What/Where model. We demonstrate
in a step-by-step fashion that the full What/Where processing
pipeline, including the log-polar foveal magnification, saccade
selection and foveal processing, can be trained in an end-to-
end fashion, i.e., without supervision of the spatial transfor-
mation. The task at hand is a simple environment where the
agent must localize and identify a random handwritten digit
inside a big cluttered noisy image.

II. MATERIALS AND METHODS

The visual search task is exactly similar to that de-
scribed in the experimental setup for the original What/Where
model [16]: A random handwritten digit will be placed inside
a screen with added clutter and noise, and the agent’s mission
will be to classify the digit; as in determining its label.
However, the digit will be placed in a random position and
the difficulty of the task will be modified according to two
parameters, the eccentricity; the digit’s distance from the cen-
ter point of the image, and the contrast, or the digit’s visibility
relative to the background. The larger the eccentricity and the
lower the contrast, the harder the task. Training datasets are
prepared, and networks are implemented in Python, using the
high-performance deep learning framework “PyTorch” [22].
All networks are trained on a GTX 1660 Ti GPU, and results
are visualized and organized within Jupyter Notebooks [23]
using Python’s scientific plotting libraries NumPy [24] and
Matplotlib [25]. The source code is available at https://github.
com/dabane-ghassan/int-lab-book

A. Datasets

The MNIST database [5] is used for this task. It consists
of a set of 70000 grayscale images of handwritten digits of
size 28×28 split between 60000 training examples and 10000
validation examples. For the purpose of this application, three
variants are prepared, the 28×28 Noisy dataset, where images
keep their original size and are mixed with synthetic textures
of random noise in the background [16], [26] (see Fig. 1a for
some examples), the second one; the 128×128 Noisy dataset,
where MNIST images are embedded randomly inside a larger
128 × 128 image that contains a circular mask (of radius
64) of random textures (Fig. 1b), and finally, the compressed
128× 128 noisy dataset, in which we use two banks of filters
disposed on a log-polar grid to linearly transform the original
feature map of size 128∗128 = 16384 into a compressed form.

(a)

(b)

(c)

Fig. 1. The datasets that were used for the visual search task. (a) The 28×28
pixel Noisy Shifted MNIST dataset. (b) the 128× 128 pixels Noisy Shifted
MNIST dataset. (c) Visualizing the Polar-Logarithmic (POLO) version of the
128× 128 Noisy dataset by using the pseudo-inverse transform, images are
compressed up to 95%

The first bank has 768 predisposed filters and the second one
has 2560, this provides a compression rate of approximately
95% (1−768/16384) and 85% (1−2560/16384), respectively.
It is also worth mentioning that the original What/Where
model has a compression rate of about 83% [16], which can be
helpful to test and benchmark Spatial Transformers on roughly
the same compression rate and also on a higher one. In order
to visualize the compressed version of the dataset, it remains
possible to represent it in the visual space using the pseudo-
inverse of the transform (Fig. 1c). The digit’s eccentricity can
vary between 0 and 40 pixels in all the datasets, forcing the
digit to fit entirely inside the circular mask in the case of the
128 × 128 image and sometimes making the task impossible
in the case of a 28 × 28 image. The digit’s contrast varies
randomly in a uniform fashion between 70% and 30%.

B. Networks

To natively compare the performance of the What/Where
model with a Spatial Transformer Network (STN), i.e., a
Spatial Transformer augmented DCNN classifier, four different
STN architectures are created. The first one; The STN 28x28,
serves only as a comparison with the What module of the
What/Where Network to test the robustness of a Spatial
Transformer on a small generic dataset from the original task

https://github.com/dabane-ghassan/int-lab-book
https://github.com/dabane-ghassan/int-lab-book


(e.g., by classifying only a 28 × 28 pixels image), the other
three compare to the full What/Where architecture and each
one of them presents an important feature, one vanilla STN
is parametrized to detect all types of affine transformations;
scaling, rotation, and translation, the STN 128x128. The
second one; The ATN (Attention-only spatial Transformer
Network), is restricted only for attention, i.e., scaling and
translation, and will introduce a downsampling mechanism
of the image by passing from 128 × 128 pixels to 28 × 28
pixels in the grid sampler inside its transformer module. This
combination of a visual shift followed by a downsampling
contains bothe the principles of a gaze shift and the selection
of the selection of the foveal part of the visual field for
further processing. Finally, the last network; The POLO ATN
(POlar-LOgarithmic Attention-only spatial Transformer
Network), is similar to the previous one, axcept that it is set
to detect only translations (fixed attention), and uses as input
the coefficients of the Log-Polar transformation of the original
image. This latter network will be tested on the different
Log-Polar compression configurations, the POLO ATN 85
and the POLO ATN 95 for a compression rate of 85%
and 95%, respectively, this high compression rate gives the
possibility to use only a fully-connected network inside the
localization module within the spatial transformer. In order to
check whether the visual processing architecture plays a role in
performance, one last variant is created with a normal DCNN
as a localization network; convPOLO ATN 85. Furthermore,
and in order to provide a robust comparison, all networks
use the “LeNet” architecture [5] as a backbone classifier
for digit recognition, the exact same one used for the What
network [16]. This architecture has two 5 × 5 convolutional
layers (stride 1, no padding) interleaved with 2 × 2 max-
pooling layers, followed by two fully connected layers that
lead to a 10-way classifier. In all of our four spatial transformer
architectures, the first convolutional layer has 20 filters and the
second one has 50 filters, except the STN 128x128 where it
has 100 filters in its second convolutional layer; this choice
was made because this network is the only architecture that
operates on a full 128 × 128 image for classification. A
curriculum learning training scheme [27] is used to train the
networks, meaning that at the beginning of training, only
small eccentricities with a fixed high contrast are used, then
incrementally making the task harder throughout epochs. It
is worth mentioning that all networks place a 2 × 2 max-
pooling layer subsequent to every convolutional layer and use
rectified linear (ReLU) non-linearities. For more information
concerning the four architectures and their training, see Table
I.

III. RESULTS

A. Spatial Transformer Network Vs. The Generic “What”
pathway

After training, the STN 28x28 was able to achieve a central
accuracy of 88% and a general accuracy of 43% on this
dataset, compared to 84% and 34% from the Generic “What”

TABLE I
DIFFERENT NETWORK ARCHITECTURES AND PARAMETERS

(a)

(b)

Fig. 2. The STN 28x28 Network. (a) Accuracy map comparison between the
STN 28x28 (left) and the original generic What network (right), classification
accuracy is represented on the vertical axis and calculated for a grid of shift
values of size 55 × 55. (b) Examples of spatially transformed input feature
maps with the network, when the input image (from the 28×28 Noisy dataset)
is presented, the spatial transformer module will warp it, and then it will feed
it to the classification part of the network.

Pathway [16], the central accuracy is defined as the perfor-
mance of the network when the digit’s eccentricity is set to 0,
the general accuracy is when the digit’s shift can vary up to
15 pixels. Overall, this suggests that we have an improvement
in the accuracy of the classifier. Next, digit’s coordinates are
fixed according to a grid of 55 × 55 pixels (for a 28 × 28



Fig. 3. Benchmark comparison between the three Spatial Transformer architectures (STN 128x128, ATN and POLO ATN) and the What/Where model on
the 128×128 Noisy MNIST dataset, classification accuracy as a function of the digit’s eccentricity and contrast, the baseline performance is the What/Where
0 saccades which corresponds to a normal LeNet classifier that was trained and tested on the dataset without any architectural modification, three variants of
the POLO ATN were tested with different compression levels (95% or 85%) and with different localization network architectures (fully-connected only or
convolutional).

pixels image) and the accuracy value that corresponds to every
possible position on this grid is measured, defining an accuracy
map, like described for the What pathway [16]. This accuracy
map is calculated for the STN 28x28 and is represented on
Fig. 2a, next to the What network’s accuracy map. Upon
first glance, we can distinguish that the accuracy map of the
new STN 28x28 has a different shape, with higher accuracies
(>0.8) occupying a bigger region on the grid when compared
to the What network, then accuracy decreases sharply for a
few pixels getting to the baseline (0.1), in contrast with the
What network where accuracy decreases more slowly. Lastly,
and for both networks, the baseline is reached starting from an
eccentricity of 15 pixels, this is considered normal knowing
that the digit will be entirely fitted outside the image in this
case, and thus out of reach for classification.

Finally, and to see how the transformer operates on input
images, some examples of feature vectors are transformed
with the Spatial Transformer module of the STN 28x28 and
represented next to their original counterparts (see Fig. 2b), we
can see that the Spatial Transformer is going to crop relevant
parts of the image and center them, this happens before feeding
the feature vector to the classification network.

B. Spatial Transformer Networks Vs. The What/Where
model

The three architectures; STN 128x128, ATN and
POLO ATN, were benchmarked on eccentricities ranging
from 0 to 40, on each of the three different following
contrasts; 0.7, 0.5 and 0.3. Classification accuracies are
represented alongside the performance of the What/Where
model on the same dataset parameters (see Fig. 3). Generally
speaking, we can observe that the STN 128x128 and the
ATN architectures have higher overall accuracies on all
eccentricities and contrasts compared to the What/Where
model (with 1 saccade). Next, and for these two networks,
small to no difference in performance is observed between
contrasts 0.7 and 0.5, followed by a decrease for a contrast
of 0.3. Another important feature that can be observed from
these two architectures is that eccentricity does not affect the
classification rate, i.e., no matter how far the digit is, the
network will be able to classify it, which is not the case for
the remaining architectures that use Log-Polar compressed
coordinates (the What/Where model and POLO ATNs).
Jumping on to the POLO ATN architecture, It is worth



Fig. 4. Examples of some of the spatial transformations that were learned,
The 128×128 dataset images before and after passing the Spatial Transformer
architecture. (a) Transformations applied by the STN 128x128 network,
the digit shift’s is set to 40 pixels and the contrast is set to 70%. (b)
Transformations applied by the ATN network, dataset configuration is at its
hardest, digit’s shift is set to the maximum amount allowed which is 40 pixels
and the digit’s contrast is set to 30%. (c) Transformations applied by the
convPOLO ATN network, digit’s shift and contrast vary randomly between
0− 40 pixels and 30− 70%, respectively.

noting that all the 3 networks manifest in particular the
same tendency as the What/Where model while operating
on larger and larger eccentricities; the classification accuracy
tends to decrease the more the digit is far away from the
center. Furthermore, we can see observe that POLO ATNs
that use a fully-connected only localization network, e.g.,
POLO ATN 95 and POLO ATN 85, match the What/Where
Network’s performance when the digit is close to the center,
but underperforming it with higher eccentricities, all contrasts
alike. Finally, the convPOLO ATN 85 that uses a DCNN
for its localization module, outperforms the What/Where
model for contrasts 0.7 and 0.5, providing a remarkable
stable performance up to an eccentricity of 22 pixels despite
the Log-Polar compression rate. In order to investigate
the attentional mechanism and the inner workings of each

of the three proposed architectures, dataset images with
different varying eccentricity values (a maximum of 40
pixels) and different varying contrasts were transformed
using the trained spatial transformer module. First, and in
the case of STN 128x128, we can observe that the Spatial
Transformer is going to center the digit by creating another
warped 128 × 128 pixels version of the original feature map
(see Fig. 4a), even when the eccentricity is at its maximum
and the task becomes harder, it is capable of centering the
region of interest. Second, for the ATN, we can see that the
transformer is capable of attending to the digit and centering
it on the small 28 × 28 grid that will be fed later to the
classification network (see Fig. 4b), in the same manner as the
STN 128x128, and even when the contrast is fixed to 0.3 and
the digit is barely visible, the ATN network will be able to
localize the digit inside the 128× 128 screen. Finally, and to
test the POLO ATN architecture, the conv POLO ATN 85
was tested on the hardest setup for this particular dataset,
a totally random image, taken between 0 − 40 pixels and
30 − 70% for the eccentricity and the contrast, respectively.
For the majority of cases that were taken, the network
was able to bound the digit inside its sampler, centering it
perfectly in some cases and close calling its position for the
remaining, and sometimes totally missing it out (see Fig. 4c).

IV. DISCUSSION

When comparing the vanilla “What” Network to the
STN 28x28; both using a LeNet architecture for classification,
we have demonstrated the effectiveness of using a Spatial
Transformer module on the classification rate for this dataset,
a significant improvement is obtained in the accuracy map
giving the classifier robust spatial invariance to affine trans-
formations in feature maps, which explains higher accuracies
over translated digits. Although placing this module at the
beginning of the “What” network for future applications
should yield its benefits in performance, it should be noted
that it accumulates a certain computational complexity on
the architecture overall (by adding more layers). However,
this problem can be solved by sharing parameters between
the classification network and the module itself [11]. Next,
and although STN 128x128 and ATN perform exceptionally
well on this dataset and outperform their counterpart; the
What/Where model, they are more computationally costly as
they process the full 128× 128 image instead of the log-polar
compressed version. It should be emphasized that although
the ATN architecture limits the number of transformations
to attention only and introduces a downsampling mechanism,
the difference of performance with the STN 128x128 is
considered minimal, meaning that this architecture should be
privileged when thinking in terms of localizing the object in
visual space with foveated vision like in mammals. Regarding
the POLO ATN architecture, the loss of information in the
peripheral zone for log-polar coordinates explains the decrease
in performance with the eccentricity, this is similar to the
What/Where model and to all architectures that use Log-
Polar entry coordinates. Furthermore, a small difference in



Fig. 5. The computational graph of a Foveated Spatial Transformer, the image will first be compressed to its Log-Polar counterpart using a bank of filters,
the compressed feature vector will then be passed to the localization network that will take charge of determining the translation over the two axes, after this,
the fixed attention matrix will be built and will be used by the downsampled grid generator to hightlight the region of interest with its coordinates, i.e., the
digit. Finally, the downsampled and attention-restricted feature vector will be passed to the classification network.

performance was observed when the Log-Polar compression
rate was lowered from 95% to 85%, but the major improve-
ment in accuracy came from changing the architecture of the
localization network. When using a DCNN classifier inside
the Spatial Transformer, the POLO ATN architecture was
able to surpass the What/Where model and to gain a stable
performance for lower to mid eccentricities, even when the
loss of information in the Log-Polar visual space is considered,
all this inaugurates the POLO ATN as a viable candidate for
a “Where” network that localizes objects in this particular
visual search setup. Finally, the difference between the two
paradigms should be considered, on one hand, the What/Where
model uses an actor/critic framework to determine a focal
accuracy-seeking policy while training the agent, and works
on the dataset in a sequential manner, i.e., scanning the visual
environment, followed by the best action (a saccade) that
maximizes its information gain. On the other hand, Spatial
Transformer Network follows the classical Deep Learning
paradigm, totally differentiable, they learn end-to-end how to
map each input to its appropriate linear spatial transformation

in an unsupervised manner and solely based on a classification
criterion during training, this does indeed make learning the
task at hand easier but adds more hyper-parameters to be
controlled to the learning process.

Taking into account the architecture of POLO ATN, the
notion of “Foveated” Spatial Transformers comes to light (see
Fig. 5); wholly based on specially modified attention-only
spatial transformers [11], they integrate the biological realism
and the computational efficiency of a Log-Polar based artificial
vision system like the recent What/Where Model [16], [18],
alongside the easiness of learning of spatial transformers of
different translations in objects inside images, all this happens
during classification without any annotation added to the
training procedure.

V. PERSPECTIVES

Very recent advancements in the field have shown that
DCNNs are not necessarily important for optimizing image
classification tasks; the new Vision Transformer architec-
ture [28] as well as MLP-mixer [29], use the natural language
processing’s self-attention mechanism [30] or yet an only



multi-layer perceptron architecture [31], respectively. State-
of-the-art results are achieved without using any convolutional
layers whatsoever. For further exploration of a universal robust
visual attention mechanism, we find that it is worth exploring
the potential of a Vision Transformer/MLP-Mixer architecture
alongside Spatial Transformers for further future applications.
Furthermore, the proposed architecture is only capable of do-
ing one translational movement per object inside an image; one
biological saccade, we argue that extending its capability to
multiple saccades may yield an improvement in performance
and a more biologically-realistic system. Finally, extending the
visual search task to more elaborate setups that can handle
natural images like VGG-19 [4] remains a necessity for real
world applications, and can measure the effectiveness of using
“Foveated Spatial Transformers” on large-scale images.
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