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Abstract

The advanced metering infrastructure (AMI) is a compulsory component of the future smart grid; it not only provides near

real-time two-way communication between the consumers and the utility but also gives an opportunity to third parties to

provide relevant value-added services to the consumers to improve the user satisfaction. However, existing services require the

consumers share their private energy data with other parties, which has potential privacy risks. To better balance the excellent

quality of the services and privacy guarantee, a novel differential private federated learning-based third-party service platform is

proposed. Instead of sending the original energy data to the cloud server, the central server in the proposed scheme only collects

the model parameters, which are trained locally inside the consumers’ houses. Then the collected parameters are aggregated

differential privately to eliminate the identity of individuals, and the aggregated parameters are used to update the central

model and improve the model performance. Furthermore, a novel attention-based bidirectional long short-term memory neural

network model is adopted to make predictions. In the case study, a residential short term load forecasting task is implemented

to evaluate the performance of the proposed model; from the simulation results, the conclusion is made that the proposed model

can achieve similar accuracy as the typical centralized model and better control the privacy loss flexibly at the same time.
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Abstract— The advanced metering infrastructure (AMI) is a 

compulsory component of the future smart grid; it not only 

provides near real-time two-way communication between the 

consumers and the utility but also gives an opportunity to third 

parties to provide relevant value-added services to the consumers 

to improve the user satisfaction. However, existing services require 

the consumers share their private energy data with other parties, 

which has potential privacy risks. To better balance the excellent 

quality of the services and  privacy guarantee, a novel differential 

private federated learning-based third-party service platform is 

proposed. Instead of sending the original energy data to the cloud 

server, the central server in the proposed scheme only collects the 

model parameters, which are trained locally inside the consumers’ 

houses. Then the collected parameters are aggregated differential 

privately to eliminate the identity of individuals, and the 

aggregated parameters are used to update the central model and 

improve the model performance. Furthermore, a novel attention-

based bidirectional long short-term memory neural network 

model is adopted to make predictions. In the case study, a 

residential short term load forecasting task is implemented to 

evaluate the performance of the proposed model; from the 

simulation results, the conclusion is made that the proposed model 

can achieve similar accuracy as the typical centralized model and 

better control the privacy loss flexibly at the same time. 

 
Index Terms—Federated learning, differential privacy, 

advanced metering infrastructure, attention based deep learning, 

edge computing, Internet of Things (IoT) 

 

I. INTRODUCTION 

HE large-scale smart meter roll-out plans and the fast 

development of advanced metering infrastructure (AMI) 

pave the way for the next generation smart grid. As the essential 

component in the smart grid that is installed at end-users, the 

smart meter continuously monitors and reports the individual 

power consumption data in near real-time. The high-resolution 

power consumption data provided by the smart meter benefits 

both the consumers, the power system operators, as well as third 

parties [1].Third parties have a keen interest in this personal data 

since it has excellent commercial value [2]. A variety of third-

party services (TPSs) is available to the consumers, including 
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demand response, non-intrusive load monitoring (NILM), 

energy awareness, load forecasting, etc. As for traditional TPS 

in AMI, the power consumption data collected by the smart 

meters is uploaded to a centralized server. The server can use 

the data to train machine learning/ deep learning models, and 

then the trained model can make predictions. However, these 

centralized TPSs and the data collected by the smart meter are 

subject to severe privacy concerns. Firstly, most TPSs require 

consumers to send detailed power consumption profiles of the 

house or specific appliances with timestamps. Attacks such as 

NILM attacks [3] can extract detailed behaviour patterns of the 

consumers by disaggregating the power consumption into 

detailed appliance usages. Secondly, referring to data privacy 

legislation such as the European Commission’s General Data 

Protection Regulation (GDPR) [4], data collected by the smart 

meter belongs to the personal data, the collection or storage of 

such information is strictly limited by the data minimization 

principle and the consent principle [5]. Moreover, the European 

Commission also suggested the TPSs should have separate 

communication channels where the type of data to be collected 

and stored should be specified [6].   

However, little attention has been paid to privacy issues on 

TPSs; moreover, these services are one of the main motivations 

for energy suppliers or third parties to get involved in the roll-

out plans. Although a few privacy-preserving techniques , such 

as rechargeable battery [7], noise-adding method [8], data 

anonymization method [9], provide a strong privacy guarantee 

to the consumers, few words emphasise how the TPSs are 

conducted under these proposed frameworks. In [10], M. 

Asghar et al. provides several suggestions and outlooks for the 

future privacy-preserving TPSs; these suggestions can be 

concluded as follows: (1) implement TPSs on the customers’ 

private computing platforms (such as mobile phones, personal 

computers). (2) develop new privacy-preserving distributed 

machine learning algorithms to provide better privacy 

guarantees to the consumers. Differential private federated 

learning (FL) is a suitable technique that can satisfy all 

suggestions proposed in [10]; this decentralized machine 

learning scheme enables clients to train local models without 
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sharing the private data with the server. Moreover, differential 

privacy (DP) provides a stronger privacy guarantee when the 

cloud server collects model parameters from the clients [11].   

To the best of the author's knowledge, little work focuses on 

PPDL-based TPSs before. The most relevant works are the 

applications of federated learning in power system discipline. 

Federated learning has been adopted to solve problems such as 

solar irradiation forecasting [12], electricity consumer 

characteristics identification [13], energy management [14]. In 

[12], a federated BayesLSTM-based probabilistic solar 

irradiation forecasting is introduced, distributed PV stations 

from different locations collaborate to make accurate irradiation 

forecasting. This work also combined the conventional LSTM 

model with the variational Bayesian inference to provide 

uncertainty estimation with quantified confidence. Y. Wang et 

al. [13] proposed an FL-based electricity consumer 

characteristics identification framework; the FL framework 

enables retailers who are not willing to share their smart meter 

data work together to train model to identify sociodemographic 

characteristics (e.g., employment status, retirement status, 

number of residents). However, these applications are limited 

on the interactions between retailers/ PV stations and the server; 

little work emphasizes the customer-level application.  

As for consumer-level FL application, based on the DP-SGD 

algorithm, X. Zhang et al. designed a demand-side management 

framework. The consumers will upload their private electricity 

data to the cloud server while a random Gaussian noise is added 

to protect the dataset, then the model trained by the server is 

sent to IoT devices where the consumers can send a query and 

obtain feedback. The limitation of this work is the consumers 

need to send the private data to the server, while the malicious 

servers still can infer data. Moreover, as the model is only 

trained by the server, the model cannot be personalized to 

different consumers. S. Lee et al. introduced a federated 

reinforcement learning-based house-level energy management 

system [14]. The FL-based system can train a reinforcement 

model that can better manage the distributed generation, energy 

storage system and appliance usages inside smart homes. 

Moreover, privacy-preserving appliance load scheduling 

methods are proposed based on differential privacy [15] and 

MPC [16], respectively.  

Based on the knowledge gaps discussed above, the 

significant novelties can be summarized as follows. 

(1) A privacy-preserving AMI TPS platform based on 

differential private federated learning (DPFL) scheme is 

proposed. The platform can provide multiple services to 

consumers without sharing their personal data (e.g., load 

demand data) to cloud server and other parties. 

(2) An attention bidirectional long short-term memory (ATT-

BLSTM) algorithm, which is one of the newest RNN 

model, is utilized as the local/central model to train the data 

and make predictions. 

(3) K-means clustering is used to cluster the clients into the 

normal clients and the malicious clients by using the local 

model weights only.  

II. THE PRELIMINARIES 

A. Privacy and Data Ethics Requirement  

From the privacy and data ethics aspect, the proposed system 

should guarantee data privacy at first; this means that both the 

cloud server as well as any other parties cannot observe and 

learn any information from the clients’ data [18]. More 

specifically, the privacy definition of federated learning can be 

classified into global privacy and local privacy. Global privacy 

relies on a trusted server and ensures the model updates are 

private to other third parties [19], while local privacy assumes 

the server is also untrusted and the updates are private to the 

server as well. Taking global differential privacy and local 

differential privacy as an example, in global differential 

privacy, the data aggregator in the cloud server is trustworthy 

and can access the actual raw data, and the data aggregator is 

responsible for adding noise into the output of the database. In 

contrast, local differential privacy requires individuals to add 

random noise to their own database before sending it to the 

server. In this way, even the server or aggregation cannot access 

the actual database.  

B. Adversary Model 

In this paper, the central server is trustworthy, and the 

behavior of the server is honest. There are two adversarial 

models are taken into consideration in this research, which is a 

malicious client and an external adversary. The external 

adversary can use membership inference attacks [20] and model 

inversion attacks [21] to infer private information from the 

system. For model inversion attacks, once the adversary has 

already obtained a part of the personal data that belongs to the 

training data, the adversary can further infer more private data 

by only observing the inputs and outputs of a machine learning 

model. When it comes to membership inference attacks, the 

adversary can determine whether a given individual’s data is 

inside the training data even without any previous private 

information. As for the malicious client, these clients may send 

bad and low-quality model updates to the global model. As a 

result, the accuracy of the global model is influenced, and even 

worse, the overall system may collapse. In the proposed system, 

the system should defend the attacks from both malicious 

servers as well as malicious clients.  

III. METHODOLOGY 

In this section, the methodologies to construct the privacy-

preserving third-party service scheme are introduced. The 

methodologies adopted in this paper include attention-based 

recurrent neural networks and differential private federated 

learning.   

A. Attention-Based Bidirectional Long Short-Term Memory 

Recurrent Neural Network 

The main disadvantage of the conventional LSTM model is 

it can only utilize information from the past. To overcome the 

drawback, a bidirectional LSTM (BLSTM) is proposed by 

Schuster & Paliwal in 1997 [24]. In a BLSTM structure, given 

a minibatch input 𝑿𝑡 ∈ ℜ
𝑛×𝑑  (𝑛 is the number of examples, and 

𝑑 is the sequence size of each example), the forward hidden 
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state 𝒉𝑡⃗⃗⃗⃗ ∈ ℜ
𝑛×ℎ and backward hidden state 𝒉𝑡⃖⃗⃗⃗⃗ ∈ ℜ

𝑛×ℎ (ℎ 

denotes the number of hidden units) at time step 𝑡 can be 

expressed as (7) and (8): 

𝒉𝑡⃗⃗⃗⃗ = 𝜙(𝑿𝑡𝑾𝑥ℎ

(𝑓)
+ 𝒉⃗⃗ 𝑡−1𝑾ℎℎ

(𝑓)
+ 𝒃ℎ

(𝑓)
)      (1) 

𝒉𝑡⃖⃗⃗⃗⃗ = 𝜙(𝑿𝑡𝑾𝑥ℎ
(𝑏)
+ 𝒉⃗⃗⃖𝑡−1𝑾ℎℎ

(𝑏)
+ 𝒃ℎ

(𝑏)
)      (2) 

where 𝑾𝑥ℎ

(𝑓)
,𝑾𝑥ℎ

(𝑏)
∈ ℜ𝑑×ℎ, 𝑾ℎℎ

(𝑓)
,𝑾ℎℎ

(𝑏)
∈ ℜℎ×ℎ represent 

weights of the model, and 𝒃ℎ
(𝑓)

, 𝒃ℎ
(𝑏)
∈ ℜ1×ℎ are the biases of 

the model. Then by integrating the forward and backward 

hidden state, the hidden state is obtained as 𝒉𝑡 ∈ ℜ
𝑛×2ℎ. 

Finally, 𝐻𝑡 is fed to the output layer to compute the output 𝑶t ∈
ℜ𝑛×𝑞 (𝑞 is the number of outputs): 

𝒉t = [𝒉𝑡⃗⃗⃗⃗ ; 𝒉𝑡⃖⃗⃗⃗⃗]
𝑇
            (3) 

𝑶t = 𝒉𝑡𝑾ℎ𝑞 + 𝒃𝑞           (4) 

where 𝑊ℎ𝑞 ∈ ℜ
2ℎ×𝑞 is the weight, and 𝑏𝑞 ∈ ℜ

1×𝑞 is the bias of 

the output layer. The attention mechanism is a probability 

weighting mechanism that was first proposed in 2014 [25]. 

Attention-based BLSTM architecture improves its accuracy by 

assigning the probability weights to each previous hidden state 

to find the most informative for the output at the current time 
step [26] (Fig. 1). Hence, the utilization of the attention 

mechanism can improve the output of the BLSTM and better 

solve the long-term memory problem [26]. Denoting the current 

hidden state as 𝒉𝑡, and the previous hidden state as 𝒉𝑖 (1 ≤ 𝑖 <
𝑡). Referring to the definition in [25], a context vector 𝑐𝑡  is 

computed, which is the weighted sum of all hidden states: 

𝒄𝒕 = ∑ 𝛼𝑡,𝑖
𝑡−1
𝑖=1 𝒉𝒊           (5) 

where 𝛼𝑡,𝑖 is the weight for the hidden state 𝒉𝒊 at timestep 𝑡. An 

attention matrix 𝛼𝑡,𝑖 is obtained by adopting softmax function, 

as shown in (11) and (12): 

𝜶𝒕 = [𝛼𝑡,1, 𝛼𝑡,2, … , 𝛼𝑡,(𝑡−1)]       (6) 

𝛼𝑡,𝑖 =
exp (𝑒𝑡,𝑖)

∑ exp (𝑒𝑡,𝑘)
𝑇
𝑘=1

           (7) 

In the above equations, 𝑒𝑡,𝑖 represents the score (or energy) 

of a feedforward neural network (denoted as function 𝑎), the 

purpose of  𝑒𝑡,𝑖 is to capture the influence of previous hidden 

state 𝒉𝑖 to the current hidden state 𝒉𝑡. Three 𝑎 functions are 

introduced in [27], which are location-based attention function 

(location), general attention function (general), and 

concatenation-based attention function (concat) [25]. Detailed 

functions are illustrated below: 

𝑒𝑡,𝑖 = 𝑎(𝑒𝑡,𝑘) = {

𝑾𝑒
⊤𝒉𝑖 + 𝑏𝑒 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛

𝒉𝑡
⊤𝑾𝑒𝒉𝑖 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 

𝒗𝑒
⊤ tanh(𝑾𝑒[𝒉𝑡; 𝒉𝑖]) 𝐶𝑜𝑛𝑐𝑎𝑡

   (8) 

where 𝒗𝑒
  is the parameter to be learned by the neural network. 

Referring to the experiment implemented by [28], attention-

based BLSTM achieves excellent performance in processing 

power consumption data as its characteristic in allocating the 

importance to the overall power consumption data points that 

corresponding to the state changes of appliances. As a result, 

the model can better extract relevant features from the collected 

data. 

Forward 
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Fig. 1. Structure of attention based bidirectional LSTM. 

B. Differential Privacy 

Proposed by C. Dwork in 2006, differential privacy is a 

technology to protect an individual’s identification information 

by adding random noise over the original aggregated data; 

every individual has little effect on the result [29, 30]. In this 

case, the adversary cannot distinguish the change of the 

aggregated data with/without one individual data. There are 

several noise addition mechanisms available in the literature 

[31], including the Laplace mechanism, Exponential 

mechanism, and Gaussian mechanism. The privacy level, 𝜀 , is 

guaranteed via the above noise addition mechanism, and the 

lower 𝜀 , the higher the privacy level can be achieved.  

Definition 1. ℜ is a random function that transforms input 𝛽 to 

a random output  ℜ(𝛽).   
Definition 2. 𝑑(𝛽, 𝛽′), which is the distance between two 

neighbouring datasets, represents the minimum number of 

individual samples required to shift dataset 𝛽 to 𝛽′. 
Definition 3. For a random function 𝑓, the global sensitivity, 

𝑆𝑓, is the maximum difference between the outputs of two 

neighbouring datasets 𝛽 and 𝛽′. 𝑆𝑓 also determines the overall 

noise to be added into the DP mechanism.   

𝛥𝑓 = max
𝑑(𝛽,𝛽′)=1

‖𝑓(𝛽) −𝑓(𝛽′)‖      (9) 

Definition 4. The Gaussian privacy mechanism denoted ℜ, is 

defined as f plus noise term  𝒩.  

ℜ(𝛽) ≜ 𝑓(𝛽) +𝒩(0, 𝛥𝑓2𝜎2)      (10) 

where 𝒩 is the Gaussian distribution with mean 0 and standard 

deviation 𝑆𝑓
2𝜎2.  And the scale 𝜎 is computed as 

𝜎 = √2ln (
1.25

𝛿
)Δ2/𝜀         (11) 

Definition 5. A randomized function ℜ satisfies (𝜀, 𝛿) privacy 

ℙℝ for any two neighboring datasets 𝛽 and 𝛽′: 
ℙℝ[ℜ(𝛽) ∈ 𝜀] ≤ 𝑒𝜀ℙℝ[ℜ(𝛽

′) ∈ 𝜀] + 𝛿    (12) 

where 𝜀 denotes all possible outcomes in range ℜ, and 𝛿 is the 

possibility that the differential privacy is broken, in this paper, 

we select 10−5 as 𝛿. 

The overall privacy cost throughout the whole learning 

process is computed by following composition theorem: 

Theorem 1. (Composition Theorem) If f is (𝜀1, δ1)-differential 

privacy and g is (𝜀1, δ2)-differential privacy, then 

𝑓(𝐷), 𝑔(𝐷) is (𝜀1 + 𝜀2, 𝛿1 + 𝛿2)-Differential Privacy (13) 

with the composition theorem, the overall privacy cost is 

calculated by accumulating the privacy cost at each training 

step. Hence, the overall privacy cost after 𝑇 steps is: 
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𝜀𝑡𝑜𝑡𝑎𝑙 = 𝑇𝜀; 𝛿𝑡𝑜𝑡𝑎𝑙 = 𝑇𝛿        (14) 

As a deep neural network may contain a large number of 

training steps, the privacy cost generated by the naïve 

composition is too significant, and overall privacy cannot be 

guaranteed. Hence, a moments accountant theorem is proposed 

by M. Abadi et al. [32] to minimize the value of 𝜀𝑡𝑜𝑡𝑎𝑙 , 𝛿𝑡𝑜𝑡𝑎𝑙, 

the moments accountant method offers much tighter bounds by 

random down-sampling and tracking a bound on the moments  

of  the  privacy  loss  random  variable.  

Theorem 2. (Moments Accountant) The overall learning 

process with 𝑇 learning steps provides a (𝑞𝜀√𝑇, δ)-differential 

privacy guarantee with a moments accountant, where 𝑞 is the 

fraction of data. 

Proof of Theorem 2. A detailed proof is given in [32]. □ 

C. Federated learning with differential privacy  

An FL model contains 𝐾 ∈ 𝒩∗clients indexed by 𝑘 and one 

cloud server denoted as 𝑆. The target of the FL algorithm is to 

minimize a local objective function that can be expressed as: 

𝑚𝑖𝑛
𝑤∈ℝ𝑑

 
1

𝑚
∑  𝑚
𝑖=1 𝑓𝑖(𝑤)          (15) 

For client 𝑘 ∈ 𝐾, a local model will be trained with their 

private data on an edge device (such as smartphone or laptop),  

∀𝑘, 𝑤𝑡+1
𝑘 ← 𝑤𝑡 − 𝜂∇ℒ(𝑤𝑡)       (16) 

The parameters of the local model 𝑤𝑡+1
𝑘  for a client are then 

sent to 𝑆, and the parameters of all local models are aggregated, 

and a data-weighted average over all parameters is performed 

to update the global model 𝑤𝑡+1: 

𝑤𝑡+1 ← ∑  𝐾
𝑘=1

𝑛𝑘

𝑛
𝑤𝑡+1
𝑘          (17) 

where 𝑛𝑘 is the number of samples of client 𝑘, and 𝑛 is the 

number of samples of all clients. Then the new global model is 

broadcasted to clients, and clients will retrain the local model 

with their data. The above steps will be repeated until 

convergence. 

Although federated learning models avoid sharing private 

data with a cloud server or third parties, privacy is still a 

significant concern. By continuously sharing parameters of 

local models, the adversary can still infer some sensitive 

information from the parameters [33]. Differential private 

federated learning provides a strong privacy guarantee and 

reduces the communication cost simultaneously [34]. Hence, in 

this work, a DPFL algorithm is adopted to provide a stronger 

privacy guarantee to the system. The DPFL adopted in this 

paper is based on the randomized Gaussian mechanism, which 

was introduced in [35]. Denote the global model at timestep 𝑡 
as 𝑤𝑡 , then the model is optimized locally by the local model of 

client 𝑘, we denote the optimized model as 𝑤𝑘 . The mismatch 

between 𝑤𝑡  and 𝑤𝑘  is the client 𝑘’s update and can be expressed 

as: 

△𝑤 
 𝑘 = 𝑤𝑘 − 𝑤𝑡           (18) 

To reduce the sensitivity of  △𝑤 
 𝑘 with a considerable value, a 

scaling function is applied to △𝑤 
 𝑘 to ensure the second norm 

‖△𝑤 
 𝑘‖2 is limited by sensitivity 𝑆. Hence, the scaled version 

of the updates is obtained as: 

△ 𝑤̅ 
𝑘 =△𝑤 

𝑘/𝑚𝑎𝑥(1,
𝜁𝑘

𝑆
)       (19) 

where  𝜁𝑘 = ‖△𝑤 
 𝑘‖2, 𝑆 is the median of norms of clients’ 

update and can be expressed as: 

 𝑆 = 𝑚𝑒𝑑𝑖𝑎𝑛{𝜁𝑘}          (20) 

By adding random Gaussian noise scaled to 𝑆, 𝒩(0, 𝑆2 ⋅ 𝜎2) 
into the sum of all scaled updates from 𝐾 clients  ∑  𝐾

𝑘=1 △ 𝑤̅ 
𝑘, 

the Gaussian mechanism approximating the sum of updates is 

obtained. The new global model 𝑤𝑡+1 is computed by adding 

the original global model with averaged approximation: 

𝑤𝑡+1 ← 𝑤𝑡 +
1

𝐾
(∑  𝐾

𝑘=1 △ 𝑤̅ 
𝑘 +𝒩(0, 𝑆2 ⋅ 𝜎2))   (21) 

IV. SYSTEM MODEL 

In this section, a privacy-preserving third-party service 

framework in AMI based on differential private federated 

learning is introduced. To simplify the system, we adopt the 

following assumptions for the rest of the paper: (1) The 

sampling frequency, computation ability, types of data of all 

smart meters are the same; (2) latency and the communication 

delay is neglected; (3) All clients will upload the parameters at 

the same pace. 

A. System Overall 

The overall system is demonstrated in the flowchart shown 

in Fig. 2. The clients in this framework are the consumers who 

install smart meters at home; they use IoT devices such as 

smartphones, personal computers to train local models and 

communicate with the cloud server. The proposed framework 

contains six procedures that can be concluded as follows: 

• Procedure 1. Global model initialization. In the beginning, 

the global model at the TP cloud server is initialized by 

allocating random values to its parameters. Then the model 

parameters are downloaded by clients and are broadcasted 

to local models.  

• Procedure 2. Local model training. After receiving the 

parameters from the cloud server, the local model is 

updated in the IoT device; then, the IoT device will train 

the new model with private data locally.  

• Procedure 3. Local model parameters upload. After the 

training process, the parameters of all local models are 

uploaded to the cloud server. 

• Procedure 4. Aggregation with differential privacy. An 

aggregator is responsible for the secure aggregation once it 

received a response from the required number of clients. It 

aggregates the data with a random mechanism to maintain 

client-level differential privacy. After the aggregation of 

each round, the collected local model parameters are 

discarded.  

• Procedure 5. Global model update. The global model is 

updated with the output of the aggregator.  

• Procedure 6. Model broadcast. Parameters of the new 

global model are broadcasted to all local models which run 

at IoT devices. 

B. Core Deep Neural Network Model 

As shown in Fig. 3, the structure of the  local and central 

model consists of seven layers: 

• The input layer: The power consumption data collected by 

the smart meter is fed into the model. 
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• Two BLSTM layers: BLSTM is adopted to extract high-level 

representation from the input data. Although more BLSTM 

layers enable the model to better extract nonlinear features 

from the input sequences, too many BLSTM layers will 

cause overfitting problems and the training time is also 

highly extended. Considering the above issues, two BLSTM 

layers are easier to implement with high efficiency. 

• An attention layer: As introduced in Section 3.1, the 

attention layer utilizes the attention mechanism to rank the 

importance of the previous hidden states and selects the most 

informative hidden state to predict the output values. 

• A concatenated layer: As the optional layer, the function of 

the concatenated layer is to load data from external databases 

that are related to the evaluation of desired TPS. The external 

databases could be the meteorological database, the calendar 

database, the electricity market database, etc.  

• A fully connected layer: The fully connected layer links the 

recurrent layers with the output layer. The purpose of the 

layer is to fully extract the nonlinear correlation between all 

input variables and outputs. 

• The output layer: As for classification tasks, the probability 

of each category is generated as the output; as for regression 

tasks (such as load forecasting or NILM), the prediction 

value at the current timestep is generated by the output layer. 

Optional layer  
Fig. 3. Structure of local neural network model. 

C. Cloud server 

The central cloud server is responsible for malicious data 
detection, secure aggregation and central model update. 

Detailed  description is presented as follows.  

1) Malicious client detection  

Malicious clients sent bad and low-quality updates to the 

cloud server that cloud fail the FL system, the distributions of 

the parameters from these malicious models are distinctive 

from the data of regular clients. The cloud server should detect 

these malicious clients efferently to prevent the system 

collapse. The clustering mechanism outputs two clusters, which 

are the normal client group and the malicious clients group.  

2) Secure aggregation with differential privacy 

In each communication round, once the server receives the 

uploaded local models from all clients, it will implement a 

secure aggregation with differential privacy. As introduced in 

Section 3.4, random Gaussian noise is added to the sum of the 

clipped updates. Then the aggregated updates are utilized to 

update the global model on the server. See Algorithm 1.   

V. RESULT AND DISCUSSION 

In this section, the accuracy and efficiency of the proposed 

DPFL Attention-BLSTM TPS framework are validated by 

using the scheme for a typical TPS residential STLF task. Both 

the proposed scheme and the traditional centralized framework 

are tested with real-world datasets. Moreover, the impacts of 

exogenous meteorological and calendar features are also 

investigated. Finally, the privacy performance, as well as the 

communication cost, is studied as well.  

A. Data description  

In this paper, a real-world dataset provided by Pecan Street 

Dataport [36] is used to evaluate the forecasting performance. 

The dataset contains over 1200 houses and is collected in 

Austin, Texas, the United States (N 30° 15', W 97° 43') between 

1st January 2018 and 31st December 2018. Both household and 

appliance power consumption in each house is recorded with 

the sampling frequency of 1 min and 15 min, respectively. In 

this paper, 15 min interval smart meter data from 50 houses are 

selected as the simulation dataset. The dataset is split into 

training data (1st January 2018 to 30th September 2018) and 

testing data (1st October 2018 to 31st December 2018). And the 

training data is split into 36-week data, one-week data is 

adopted for each communication round; when the 

communication round reaches 36, it will start dragging data 

from the first week again at the next communication round until 

it reaches the threshold of δ.  

B. Implementation  

1) Simulation environment  

The case study is implemented on a workstation with a Core 

i7-7700HQ CPU, NVIDIA GTX 1060 GPU (8 cores), and 

8GB RAM. The DPFL ATT-BLSTM is operated on Python 3.6 

with Pytorch [37], and the privacy loss is computed via the 

Tensorflow-Privacy library [38].  

2) Evaluation metrics 

The performance of the scheme is evaluated with 

Normalized Mean Absolute Error (nMAE), Mean Absolute 

Percentage Error (MAPE), Root Mean Square Error (RMSE). 

The smaller value of MAE, MAPE, RMSE, the better 

performance the model provides.   
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Fig. 2. Overall differential private federated third-party service scheme. 
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𝑛𝑀𝐴𝐸 =
∑  𝑁
𝑖=1 |𝑦𝑖−𝑦̂𝑖|

𝑁𝑃𝑚𝑎𝑥
             (22) 

𝑀𝐴𝑃𝐸 =
∑  𝑁
𝑖=1 |(𝑦𝑖−𝑦̂𝑖)/𝑦𝑖|

𝑁
× 100%      (23) 

n𝑅𝑀𝑆𝐸 = √(∑  𝑁
𝑖=1 [𝑦𝑖−𝑦̂𝑖]

2)

𝑁
         (24) 

3) Benchmark model 

To better demonstrate the accuracy and robustness of the 

proposed method, several benchmark models are designed. 

Firstly, the proposed model is compared with three different 

service frameworks, such as centralized framework, localized 

framework, as well as FL framework without adding noise 

during the aggregation process: 

(1) Conventional centralized ATT-BLSTM model (denote as 

Centralized model).  

(2) FL ATT-BLSTM model without DP (denote as FL model).  

(3) Localized ATT-BLSTM model (denote as Localized 

model). In the Localized model, the smart meter can only 

train the DNN model with minimal data (we assume the 

smart meter can only store the data in the last week due to 
data regulation in this paper).  

Then three benchmark models under the DPFL framework 

but utilizing different DNN algorithms (MLP, LSTM, BLSTM) 

are selected. By comparing the proposed model with the models 

listed below, the efficiency of ATT-BLSTM can be validated. 

(4) DPFL model utilizes LSTM as a training algorithm (denote 

as DPFL-LSTM model). 

(5) DPFL model utilizes BLSTM as a training algorithm 

(denote as DPFL-BLSTM model). 

(6) DPFL model utilizes MLP as a training algorithm (denote 

as DPFL-MLP model). 

4) Hyperparameters configuration 

The hyperparameters of the pre-training model and the 

proposed DPFL Attention-BLSTM TPS model are summarized 

in Table 1. The pre-training model is a shallow MLP with only 

one dense layer. The number of the layer contains 16 cells, and 

the activation function of the dense layer is the Rectified Linear 

Unit (ReLU), which enables the model to learn nonlinear 

correlations better. The optimizer is SGD with the learning rate 

1 × 10−3. 
As shown in Fig. 3 and Table I, the DPFL ATT-BLSTM 

model contains two BLSTM layers, with 128 and 256 cells, 

respectively. Followed by an attention layer with size 28 and 

one dense layer with 128 cells. The activation function of 

hidden layers is ReLU, and the optimizer is Adam with the 

learning rate 1 × 10−4. As the STLF task is a regression task, 

the size of the output layer is one. Moreover, dropout and L2 

regularization are used to avoid overfitting problems. 0.3 and 

0.2 are selected as the dropout rates of the BLSTM layer and 

 

Algorithm 1: Differential Private Federated Learning-based Third-Party Service. Clients number 𝐾 indexed by 𝑘; communication round 𝑡; the maximum communication round 

𝑇; the maximum pre-train communication round 𝑇𝑝;  𝐵 is the mini-batch size; 𝑞 is the fraction of clients; 𝜀 is the target differential privacy; 𝜎 is the Gaussian Mechanism parameter; 

𝛿 represents the probability that 𝜀-DP is broken, and 𝑄 is the threshold for 𝛿. 

1: Procedure Pretraining (𝐾, 𝑤𝑡) 
2:       for client 𝑘 in 𝐾 do 

3:               𝑤  
 𝑘 ←  𝐿𝑜𝑐𝑎𝑙(𝑘)                                                                                     ⊳ Pretraining the local models to obtain the weights 

4:       𝐶 ← K-MeansClustering(2,△ 𝑤)                                                                  ⊳ Cluster clients into normal/abnormal clusters 

5:       return 𝐶1 , 𝐶2 , 𝐾, 𝐾̂                                                                                            ⊳ return the normal clients cluster and client number 𝐶1 and 𝐾,    

                                                                                                                                       and abnormal clients cluster and client number 𝐶2 and 𝐾̂ 

6: Procedure DPFL(𝐾,𝑤𝑡) 
7:       initialize the global model 𝑤0                                                                         ⊳ initialize weights of the global model on the server 

8:       initialize Accountant (𝜀, 𝐾)                                                                             ⊳ initialize the privacy accountant on the server 

9:       while 𝑟 < 𝑅 do 

10:               𝛿 ← Accountant (𝜀, 𝑞)                                                                          ⊳ accumulate the privacy loss  

11:               if 𝛿 > 𝑄 then return 𝑤𝑡                                                                         ⊳ return the model when the privacy threshold reached  

12:               for client 𝑘 in 𝑞𝐾 do 

13:                      △𝑤 𝑡+1
 𝑘 , 𝜁𝑘 ← ClientUpdate(𝑘, 𝑤𝑡)                                               ⊳ the client k’s update and norm update on local model  

14:                𝑆 = 𝑚𝑒𝑑𝑖𝑎𝑛{𝜁𝑘}                                                                                 ⊳ compute the median of norms of clients’ update as sensitivity 

15:                𝑤𝑡+1 ← 𝑤𝑡 +
1

𝑚
(∑  𝐾

𝑘=1 △𝑤𝑡+1
𝑘 /𝑚𝑎𝑥 (1,

𝜁𝑘

𝑆
) +𝒩(0, 𝑆2 ⋅ 𝜎2))        ⊳ update the global model by adding averaged approximation 

16:       return 𝑤𝑡+1 

17: Procedure ClientUpdate(𝑘, 𝑤𝑡)                                                                        ⊳ perform on client 𝑘  

18:      𝑤 ← 𝑤𝑡  
19:      while 𝑟 < 𝑟𝑚𝑎𝑥 do 

20:            for 𝑏 ∈ B do  

21:                     𝑤 ← 𝑤− 𝜂∇ℒ(𝑤𝑡)                                                                         ⊳ mini-batch gradient descent 

22:             △𝑤 𝑡+1
  = 𝑤𝑘 −𝑤𝑡                                                                                ⊳ client 𝑘’s local model update 

23:             𝜁 = ‖△ 𝑤 𝑡+1
  ‖2                                                                                     ⊳ second norm update 

24:      return △𝑤 𝑡+1
  , 𝜁  

25: Procedure  K-MeansClustering (𝑋,△ 𝑤) 

26:      random place centroids 𝐶1 , 𝐶2 across △𝑤 

27:      repeat 

28:             for 𝑖 in 𝐾 do 

29:                    𝛾𝑖𝑗 = {1 if 𝑗 = argmin𝑗  ∥∥△ 𝑤𝑖 − 𝐶𝑗∥∥
2

0 otherwise 
                                           ⊳ find the nearest cluster 𝑗 for model 𝑖 

30:             for 𝑗 in 2 do 

31:                    𝑛𝑗 = ∑  𝐾
𝑖=1 𝛾𝑖𝑗                                                                                  ⊳ assign the data points to clusters 

32:                    𝐶𝑗 =
1

𝑛𝑗
∑  𝐾
𝑖=1 𝛾𝑖𝑗 △𝑤𝑖                                                                       ⊳ assign the average of points to cluster 𝑗 

33:      until Convergence  

34:      return 𝐶1 , 𝐶2                                                                                                   ⊳ assign the regular clients to 𝐶1 and the malicious clients to 𝐶2 

35: Procedure Accountant (𝜀, 𝑞) 

36:      𝛿 = 2𝑞𝛿√𝑡                                                                                                    ⊳ moments accountant 

37:      return 𝛿 
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the dense layer, respectively. And 1 × 10−3 is selected as the 

weight decay value.  
TABLE I 

HYPERPARAMETER CONFIGURATION 
Pre-training model 

Hyperparameter Value/range 

Layers 1 Fully connected layer with 16 cells 

Batch size 32 

Activation function ReLU 

Epochs 3 
Optimizer SGD 

Learning rate 1e-3 

Dropout rate 0.3 

Differential privacy federated learning model 

Hyperparameter Value/range  

Lookback 4 

Optimizer Adam 

Loss MSE 

Activation function ReLU 
Layers 2 BLSTM layers with 128 and 256 cells, respectively;  1  

Epochs for each client in every 

communication round 

5 

Privacy budget 𝜀 1, 2, 4, 6, 8, 10, 12 

𝛿 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8 

The GM parameter σ 1.12 

Number of batches per client B 128 

Dropout rate  0.5 
Weight decay  1e-3 

Attention size 28 

Learning rate  1e-4 

Total clients 5, 10, 50 
Percentage of clients selected each 

round 𝑞 

30% 

 
Fig. 4. Structure of local neural network model. 

C. Clustering the consumers and detecting the malicious 

clients 

Before we are implementing the DPFL algorithm, a pre-

training process is evaluated to filter out the malicious clients 

based on the similarity of the weights. In this case study, 50 

regular consumers (ID number between 0 and 49) and 10 

abnormal consumers (ID number from 50 to 59) are included. 

The malicious clients will upload fake weights to the central 

server; the generated fake weights follow the Gaussian 

Distribution. The purpose of introducing the shallow neural 

network is to reduce the communication and computation cost 

during the pre-training process. Moreover, the simple network 

has limited learning ability that can reduce the sensitivity of the 

shared weights. As shown in Fig. 4, the central server applies 

the K-means clustering algorithm to the collected weights, and 

the algorithm detects all the malicious clients and classifies 

these models into the same group. Meanwhile, the rest of the 

clients is clustered into another group. The Euclidean Distance 

of the regular consumers is below 7, which is considerably 

small compared to the distance between the malicious clients 

and the normal clients.  

D. Comparison of the Proposed Model with Centralized and 

Localized Models 

After filtering out the malicious clients, the federated model 

is operating among all regular clients. In the first case study, the 

proposed DPFL scheme is compared with the conventional 

Centralized scheme, Localized scheme, as well as the normal 

FL scheme. To control the variable, all schemes utilize ATT-

BLSTM as the DNN algorithm. The forecasting results are 

concluded in Table II. Fig. 5 plots the predicting load curves by 

the four schemes as well as the ground truth curve (solid blue 

line) in three consumers’ houses. Considering the accuracy of 

the forecasting, the centralized scheme has the best 

performance, as the centralized scheme can access all 

consumers’ data without any constraints. Accessing a more 

significant amount of the data will help the central model better 

learn the characteristics of the loads among all houses and avoid 

the overfitting problems, which will decrease the accuracy 

significantly. However, the centralized scheme suffers from 

significant privacy risks as all consumers must send their 

personal demand data continuously. The regular FL scheme 

almost achieves equal accuracy as the centralized scheme, 

especially when client number 𝐾 increases. From Table II, 

when 𝐾 = 50, nRMSE of the values forecasted by the FL 

scheme reaches 6.67%, which is only 2.33% less than the 

Centralized scheme. This simulation result confirms that the FL 

can achieve very similar forecasting performance as the 

Centralized scheme without sharing the real-measured data to 

the cloud server at all. In other words, the FL scheme can satisfy 

the functionality requirement without scarifying individuals’ 

privacy. 

In the Localized scheme, it disconnects communication with 

the cloud server, and all computation processes are completed 

within the smart meter and personal devices. As defined in 

Section V.B., the smart meter can only preserve the last one-

week demand data for privacy concerns, so the Localized 

scheme has minimal data to train the local model. From the 

predicted curve shown in Fig. 5, the Localized scheme failed to 

predict the demand load in most situations. Also, the high 

nRMSE and nMAE errors presented in Table II convinced the 

conclusion that the Localized scheme does not reach a balance 

between privacy and accuracy.  

The DPFL scheme, which is the privacy-enhanced version 

of the normal FL scheme, can make a prediction with 

performance merely worse than the two schemes mentioned 

above. This is due to the privacy constraints set by DP. The 

privacy level of the DPFL scheme can be adjusted flexibly by 

setting the two DP parameters, the privacy budget ε and the 

probability of information being leaked δ. Typically, smaller ε 

means a smaller distance between the two neighbouring 

databases when sending a query. Hence the adversary has 

difficulty in distinguishing these two databases by observing 

the query output. Hence, a smaller ε provides better privacy but 

less accuracy at the same time. From the results shown in Table 

II, when ε=8 and δ=10−5, the performance of the DPFL scheme 

is 3.75% and 12.31% worse than the FL scheme from the 

perspective of nRMSE and MAPE. Although the accuracy of 

the DPFL scheme stays below non-differentially private 

schemes, it is significantly better than the Localized scheme 

that only trains the model with its own data.  
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Fig. 5. Short-term load forecasting results of three houses predicted by 

proposed differential private federated learning scheme and three conventional 

schemes (ε=8, δ=10−5). 
TABLE II 

LOAD FORECASTING PERFORMANCES OF THE PROPOSED MODELS AND 

BENCHMARK MODELS 

Model 𝜺 K 
MAPE 

(%) 

nMAE 

(%) 

nRMSE 

(%) 
C.R. CC CPC 

DPFL-

MLP 

 

1 

5 221.40 32.99 35.25 1 1 0.71 

10 99.60 26.52 28.97 1 3 0.69 

50 76.51 16.51 20.38 1 15 0.73 

4 

5 78.67 25.16 26.16 6 6 13.50 

10 70.82 9.06 11.59 3 9 10.93 

50 70.41 7.68 10.99 3 45 41.33 

8 

5 162.87 20.32 21.64 36 25 80.72 

10 69.58 8.08 10.85 15 45 88.04 

50 63.68 8.32 10.50 18 221 332.70 

DPFL-
LSTM 

 

1 

5 257.20 29.51 31.87 1 1 1.45 

10 146.04 15.08 19.39 1 3 1.56 

50 75.12 10.63 13.06 1 15 1.47 

4 

5 94.83 14.14 17.41 6 6 30.17 

10 71.55 7.40 10.65 3 9 24.06 

50 71.43 11.61 13.30 3 45 94.08 

8 

5 73.88 15.65 21.91 36 35 307.18 

10 68.31 7.57 10.97 15 45 345.70 

50 62.43 7.24 9.94 18 221 1422.23 

DPFL-

BLSTM 

 

1 

5 176.51 21.41 24.60 1 1 2.10 

10 152.10 12.13 17.11 1 3 2.26 

50 102.31 11.54 16.72 1 15 2.26 

4 

5 79.17 15.46 16.49 6 6 45.89 

10 72.92 14.64 15.67 3 9 35.63 

50 70.98 9.72 12.13 3 45 150.98 

8 

5 69.67 17.21 18.73 36 35 693.44 

10 65.95 10.01 11.68 15 45 718.48 

50 61.37 6.16 9.30 18 221 3159.73 

DPFL 

ATT-

BLSTM  

1 

5 323.89 16.27 20.44 1 1 3.29 

10 400.23 19.89 23.09 1 3 3.29 

50 376.45 29.65 41.20 1 15 4.98 

4 

5 51.21 20.73 21.44 7 6 95.39 

10 40.38 7.13 10.53 3 6 42.81 

50 36.35 5.68 8.07 3 45 172.61 

8 

5 29.06 4.49 8.04 36 35 307.22 

10 24.67 4.36 7.52 15 45 339.93 

50 14.44 4.32 6.92 18 221 1526.36 

FL ATT-

BLSTM 
── 

5 19.62 4.19 7.45 50 50 441.57 

10 17.20 3.76 6.70 50 147 1151.88 

50 12.59 3.70 6.67 50 735 4631.15 

Centralised 

ATT-

BLSTM 
── ── 10.34 2.87 4.34 ── ── 434.83 

Localised 

ATT-
BLSTM 

── ── 68.73 10.01 10.69 ── ── 29.21 

E. Comparison of the Proposed Model with Other Algorithms  

In the first case study, the proposed DPFL ATT-BLSTM 

model is compared with DPFL models that utilize different 

DNN algorithms (benchmark models (4)-(5)). The forecasting 

results of all models are shown in Table II, nMAE, nRMSE, and 

MAPE are used to measure the accuracy of the prediction 

results, and the communication cost, as well as computation 

cost, are recorded. The privacy budget 𝜀 range from 1 to 8, and 

the client number 𝐾 ranges from 5 to 50. To visualize the 

performance of the proposed scheme and benchmark models, 

30-minute forecasting results of random three houses are 

presented in Fig. 6 (under the condition ε=8, δ=10−5). In each 

communication round, only 30% of clients (e.g., 15 clients 

when 𝐾 = 50) are selected to participate in the training process. 

Unlike feeder-level load forecasting, which has a regular peak 

load every day, household-level load forecasting is more 

challenging as the load profile in different days vary a lot. From 

the figure, DPFL-ATT-BLSTM performs best among all 

algorithms, and it is observed that the load curve predicted by 

the proposed DPFL-ATT-BLSTM model (solid red curve) 

tracks the ground truth load curve (solid blue curve) in most 

cases, both the peak part and the off-peak part are predicted with 

high accuracy. Considering the evaluation metrics, the 

proposed model has the lowest MAPE, nRMSE, and nMAE 

values in the same comparison group. Referring to the results 

shown in Table II, when ε=8 and δ=10−5, the nRMSE and 

nMAE value of the proposed model reduces 31.95% and 

11.22% compared to the DPFL-BLSTM.   

Meanwhile, DPFL-MLP (light green solid curve) has the 

worst performance in most cases. Without the memory cell, it 

has very limited predictability in forecasting time-series data. 

From Fig. 6, DPFL-MLP neither track the peak load nor the off-

peak load. However, there is also an advantage of this method: 

the computation cost is the least among all algorithms. In the 

situation when the computation ability of the edge devices is 

limited, this method could be the priority choice. DPFL-LSTM 

(solid orange curve) and DPFL-BLSTM (solid pink curve) 

models have similar prediction performances, while the DPFL-

BLSTM model is slightly better. When ε=8 and δ=10−5, the 

nRMSE values of DPFL-LSTM and DPFL-BLSTM are 9.94% 

and 10.17%, respectively.   

These results demonstrate that the ATT-BLSTM is more 

efficient in process time-series data, especially the data is 

nonstationary and nonlinear. The reasons for the ATT-

BLSTM’s superior predicting performance can be summarized 

as follows: (1) The bidirectional structure enables the model to 

extract features from both forward and backward directions; (2) 

The attention mechanism helps the model find the most 

essential hidden state to the current output.  
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Fig. 6. Short-term load forecasting results of three houses predicted by four 

differential private federated learning models (ε=8, δ=10−5). 

F. Influence of client number 𝐾 

Another vital parameter that influences the performance of 

the proposed DPFL scheme is the client number 𝐾. Table II 

presents the model performance for 𝐾 ∈ {5, 10, 50}. We also 

record the privacy metrics, CRs, CC, and CPC for each case. 

Referring to [57], The choice of DP parameter 𝛿 is influenced 

by 𝐾 and should obeys the following constrain: 

𝛿 ≪
1

𝐾
            (25) 

This condition is to avoid protecting the majority of 

consumers’ privacy by revealing a few consumers’ [57]. 

According to this requirement, we set the threshold of 𝛿, 𝑄 as 

1 × 10−5. From the Table II, it is found that under the DPFL 

scheme, more clients achieve higher model accuracy: When 

𝐾 = 5, the prediction error is considerable high, and when 𝐾 

increases to 50, the accuracy of the model almost reaches the 

same accuracy as non-DP schemes. This is because during the 
secure aggregation process, more clients will reduce the 

standard deviation of the additive noise. Based on the above 

simulation results, the conclusion is made that under the same 

privacy budget, more clients can efficiently reduce the accuracy 

cost. 

G. Influence of privacy budget 𝜀  

In the DPFL scheme, the most important parameters to make 

the trade-off between privacy and accuracy are the two DP 

parameters 𝜀 and 𝛿. Recall Algorithm 1, during the secure 

aggregation process in each communication round, given 𝜀 and 

GM parameter σ; the central server accountant evaluates δ [20]. 

The central server will continue the communication rounds 

until δ reaches the threshold 𝑄, then the whole training process 

will be stopped, and the server sends the well-trained model to 

all clients. As defined in Section V, 𝑄 is selected as 1 × 10−5. 

In this case study, the influence of different values of 𝜀 (7 values 

are chosen ranging from 1 to 12) on the model performance is 

investigated. From Fig. 7 (b), the DPFL-ATT-BLSTM scheme 

with small 𝜀 (1, 2, 4) reaches the threshold 𝑄 quickly within just 

a few communication rounds. However, the model accuracy is 

undesirable as nRMSE maintains a high level, even higher than 

the Localized scheme, the benchmark model with the worst 

performance. At this privacy level, although the privacy of the 

consumers is protected perfect, the functionality is sacrificed 

ultimately. In contrast, when 𝜀 is large enough (such as 10 or 

12 in our case), it takes more communication rounds until σ 

reaches the threshold. More communication rounds allow the 

central model gets fully trained with frequent updates of its 

model parameters. Consequently, the model accuracy increases 

as 𝜀 become larger (As shown in Fig. 7 (a)). However,  large 𝜀 
allows less similarity of the outputs from different clients, and 

the adversary can distinguish different clients more effortless, 

and the model provides less privacy consequently. Hence, when 

𝜀 between 6 and 8, the proposed scheme can efficiently make 

accurate load forecasting and provide a good level of privacy 

protection at the same time.  

 
(a) 

δ=10-5 

 
(b) 

Fig. 7. (a) model performance of the differential private federated learning 

scheme with different levels of privacy budget; (b) accumulation of total δ 

with increasing communication rounds under different privacy budgets. 

VI. CONCLUSION  

In this paper, we design a novel privacy-preserving TPS 

platform by considering both privacy, security, and data ethics 

requirements. The platform is constructed based on the DPFL 

framework and utilizes state-of-the-art ATT-BLSTM as the 

training algorithm to train the local model and the central 

model. Instead of sending all private data to the cloud server, 

the consumers under the scheme will train the local model with 

their personal devices and only shared the model parameters to 

the central server. From security concerns, the proposed model 

introduced a pretraining process with K-Means clustering to 

filter out the malicious clients. To better protect privacy, the 

central server will add random Gaussian noise during the 

aggregation process to hide the clients’ identities during the 

training. Therefore, the proposed scheme maintains client-level 

DP with low computation and communication costs. In the case 

study of household-level STLF, we evaluate the proposed 

scheme with benchmark models (Centralized model, Localized 

model, FL model, DPFL-LSTM model, DPFL-BLSTM model, 

DPFL-MLP model). After simulation, the following 

conclusions are made: 

(1) Although the proposed DPFL-ATT-BLSTM scheme 

cannot achieve equal model accuracy as non-DP schemes 

(such as Centralized scheme and FL scheme), it can also 

track the ground truth load curve precisely. Most 

importantly, the proposed scheme overperforms much 

better than the Localized model, while the latter achieves 

complete privacy protection but minimal local data for 

model training. 

(2) With the attention mechanism that can find the most 

critical hidden state to the current output, the ATT-BLSTM 

algorithm has superior performance in processing time-

series load data rather than other benchmark algorithms. 

The privacy budget ε, which influence the model 

performance, are also thoroughly investigated. From the 

simulation result, it is found that although smaller ε provide a 
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stronger privacy guarantee but sacrifices the model accuracy as 

the price; bigger ε provides better model performance but 

insufficient privacy protection. To make a trade-off between 

accuracy and privacy, an ε with a value between 6 and 8 is the 

best choice. 
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