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Abstract

Spiking Neuron Network (SNN) has shown advantages in processing event-based data for image classification. However, the

classification accuracy of SNNs decreases in noisy environment. The cascade spiking neuron network (cascade-SNN) was

proposed to solve this problem in this letter. We used spiking convolutional spiking neuron network (SCNN) for features

extraction and liquid state machine (LSM) for read out. Compared with early works on ANNs, this network achieved the

state-of-the-art classification accuracy in DVS-CIFAR10 dataset and DVS-Gesture dataset, which are both challenging dataset

because of noisy environment. We conducted ablation experiments to verify the proposed structure is effective and analyzed

the influence of different hyper-parameters.
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Cascade Spiking Neuron Network For Event-based
Image Classification In Noisy Environment

Yuntao Han, Tao Yu, Silu Cheng, and Jiangtao Xu, Member, IEEE

Abstract—Spiking Neuron Network (SNN) has shown advan-
tages in processing event-based data for image classification.
However, the classification accuracy of SNNs decreases in noisy
environment. The cascade spiking neuron network (cascade-SNN)
was proposed in this letter, which was a combination of spiking
convolutional neuron network (SCNN) for features extraction
and liquid state machine (LSM) for read-out. Spatio-temporal
back propagation was used for training this network. Compared
with early works on ANNs, this network achieved the state-of-
the-art classification accuracy 76.70% in DVS-CIFAR10 dataset
and 97.57% in DVS-Gesture dataset, which are both challenging
dataset because of noisy environment. The results showed that
the proposed structure could improve the classification accuracy
of SNN in noisy environments. Ablation experiments were used to
examine the cascade structure, showing that this structure could
achieve higher classification accuracy but have lower convergence
speed. Finally, Hyper-parameter analysis was applied to further
explore the proposed network.

Index Terms—spiking neuron network, liquid state machine,
image classification, neuromorphic data.

I. INTRODUCTION

W ITH the development of the brain-inspired comput-
ing [1], event-based images captured by bio-inspired

cameras [2] appeared. The event-based images store spatio-
temporal information in spikes with address and time label,
thus showing advantages in low time latency and high dynamic
range [3]. Many approaches based on traditional ANNs have
been proposed for processing event-based images, e.g. RNN
[4], DART [5], HATS [6]. Spiking neural network (SNN) is
the third generation of neuron network. It has the ability in
processing event-based images with low power consumption
[7] and high classification accuracy [4].

The basic calculation block in SNNs is a mathematical
model of neurons. Leaky integrate-and-fire (LIF), as a neuron
model [8], achieves a balance between implementation cost
and biological credibility [9], and the hardware circuits for
LIF neuron model has been studied by many works [10]. So
far, LIF is the most frequently used neuron model in SNNs.

The structure of SNNs is usually inspired by the structure
of classical convolutional neuron networks (CNNs). For using
classical CNN structure (e.g. VGG [11], yolo-v3 [12]) in SNN,
many conversion methods have been proposed for converting
CNNs into spiking convolutional neuron networks (SCNNs).
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Compared with the original models, the converted VGG ar-
chitecture [13] [14] and Spiking-YOLO [15] achieved similar
accuracy with low precision loss.

Liquid state machine (LSM) [16] is also a computation
model widely used in SNNs. The structure and function
of LSM are based on the neocortex in the central nervous
system of mammals. LSM is composed of a large number
of LIF neurons with cyclic structure. The existence of cyclic
connections makes the network have the ability of memory,
because the firing state contains information about current and
historical inputs. LSM could contain the temporal information
in both the membrane voltages and output spikes, thus utilizing
temporal information better than other SNNs.

Like traditional ANNs, SNNs are facing the problem of clas-
sification accuracy decreasing [17] in complex noisy scenes.
Many approaches has been proposed to promote the per-
formance of SCNN and LSM like modifying ANNs before
converting to SNN [18], temporal credit assignment policy
[19] and threshold-dependent batch normalization (tdBN) [20].

To address this problem, the cascade spiking neuron net-
work (cascade-SNN) was proposed in this letter. We used
SCNN for features extraction and LSM for read-out. The
structure of the proposed network was based on VGG model.
Because SNNs have time-domain characteristic and the spike
activity is non-differentiable, the effect of traditional back-
propagation (BP) algorithm is limited. Spatio-temporal back-
propagation (STBP) [21] [22] was applied to solving this
problem. As far as we know, this was the first time to train
LSM with STBP.

To evaluate the classification accuracy of the proposed ar-
chitecture, this network was trained in neuromorphic datasets,
which are challenging datasets because of noisy environment.
The results showed that the proposed network achieved state-
of-the-art classification accuracy on these datasets. Abla-
tion experiments were implemented for examining the cas-
cade structure. For further exploring the influence of hyper-
parameters of the proposed network, the relationship between
hyper-parameters and classification accuracy was also ana-
lyzed.

II. MATERIALS AND METHODS

The proposed cascade-SNN was shown in Fig. 1. The event-
based image was storing in form of spikes. This network
accepted input spikes and extracted higher level feathers via
SCNN layer and MaxPool layer. Then the spikes were un-
folded from two-dimensional into one-dimensional in spatial
domain and sent to LSM layer to read out classification results.
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Fig. 1: Network Overview

A. LIF Neuron Model

LIF neuron model [8] is commonly used in SNN consider-
ing the biological credibility and implementation cost [9]. This
model is the combination of leaky current, integrating pre-
synapse spikes and firing spikes. Specifically, it is governed
by: {

τ
du

dt
= −u+ I u < Vth,

fire a spike & u = ureset u ≥ Vth.
(1)

where u is the membrane potential voltage, Vth is the threshold
voltage , ureset is the reset voltage, τdecay is the time constant,
I is the input current.

The potential voltage is determined by pre-synapse spikes
received and decay with time. When the potential voltage
reaches the threshold voltage, the neuron will fire a spike and
its potential voltage will be reset to the ureset.

Considering the implication of the conventional LIF model
for the implementations on mainstream machine learning
frameworks, [22] proposed an iterative LIF model, which
converted differential equations into iterative equations.{

utn+1 = τdecayu
t−1
n+1(1− o

t−1
n+1) + xtn (2)

otn+1 = ε(utn+1 − Vth) (3)

where u was the potential voltage, x was the input spikes,
o was the output spikes, τ was the decay factor, ε was step
function and n stood for the nth neuron and t stood for the
tth timestep.

However, ε(x) is not differentiable. [21] provides four
curves to approximate the derivative of this function denoted
by h(u). The used function in this letter was shown below.


o =

1

1 + e
Vth−u
α

(4)

h(u) =
do

du
=

1

α

e
Vth−u
α

(1 + e
Vth−u
α )2

(5)

This model enables the forward calculation and the gradient
back-propagation to be implemented on both spatial and tem-
poral dimensions, which makes it friendly to general machine-
learning programming frameworks.

conv3x3
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Fig. 2: SCNN and LSM Layer Sturcture

B. Feature Extraction Layer

SCNN was used for features extraction in SNNs. The
structure used in letter was inspired by VGG19 [11], whose
structure was shown in Fig. 1. Nconv stood for the number
of convolutional layer and Ndown stood for the number of
downsampling layer. The feature extraction layer contained
SCNN layer and MaxPool layer, and the scale of this layer
could be modified by the number of extracted channels.

The basic structure of this layer was shown in Fig. 2(a),
which consisted of 3x3 convolution kernel followed by a batch
normalization (BN) layer and LIF neurons. On this basis, we
proposed the basic SCNN block of the feature extraction layer.

C. LSM Read-out Layer

The LSM layer was used to read out the results of the
network. It can contain previous information in this layer with
feedback connections, instead of only forward propagation in
traditional SNN. Fig. 2(b) showed the basic structure of this
layer, which consisted of two fully connected (fc) layers and
LIF neurons.

Equations for describing the LSM is shown below:
du

dt
= −τu+ wfwI + wfbo (6)

o = ε(u− Vth) (7)
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where u was the potential voltage of neurons in LSM layer, I
was the discrete spike signal from the input layer, and o was
the output of this layer. wfw and wfb were weight matrixes,
which should be optimized by the learning algorithm.

However, this differential equation is not software friendly.
The iterative formation was proposed to solve this problem,
and it is convenient for the subsequent processing.

ut = τut−1 � (1− ot−1) +X (8)
X = wfwIt + wfbot−1 (9)
ot = ε(ut − Vth) (10)

where � stands for the element-wise product.
For regulating our network, BN and dropout were applied.

The complete algorithm of LSM was shown below.

Algorithm 1 LSM Layer Processing

Input: input spikes from last layer
x ∈ [Timestep,Batch size,Neuron].

Output: output spikes to next layer
y ∈ [Timestep,Batch size,Neuron].

Parameters:
forward weights wfw ∈ [Neuronx, Neurony],
feedback weights wfb ∈ [Neurony, Neurony].

Initialization:
voltage of neurons U ← 0,
spike of neurons O ← 0.

1: for t in timesteps do
2: X = wfwx[t, :, :] + wfbS
3: U = U +BatchNorm(X)
4: O = if(V ≥ Uthreshold)
5: if training then
6: O = Dropout(O)
7: end if
8: Oreturn[t] = O
9: end for

10: return Oreturn

The Read-out layer contained two LSM layer as shown in
Fig. 1. The first layer had 1,000 neurons and the second layer
had the same number of neurons as the number of classes.

D. STBP for LSM
STBP was a supervised learning algorithm, which was

proposed in [21]. In this letter, we used STBP for training our
network. The STBP training methodology for basic SNNs has
already been proved in the original paper. The mathematical
deduction of STBP for LSM was presented in this section.

The loss function of LSM layer could be written

L =
1

2
‖y − 1

T

T∑
t=1

ot‖2 (11)

where L was loss function, y was the label vector in one-hot
coding, T was the total simulation timesteps, o was the output
spikes of last LSM layer.

We acquired the required derivative ∂L
∂ot and ∂L

∂ut , which
were discussed in two cases:

1) t = T : 
∂L

∂oTi
= − 1

T
(yi −

1

T

T∑
t=1

oti) (12)

∂L

∂uTi
=

∂L

∂oTi

∂oTi
∂uTi

=
∂L

∂oTi
h(uTi ) (13)

where h(x) was the approximate derivative function of ε(x).
2) t < T :

∂L

∂oti
=

N∑
k=1

(
∂L

∂ot+1
k

∂ot+1
k

∂oti
) +

∂L

∂oTi
(14)

∂L

∂uti
=

∂L

∂ut+1
i

∂ut+1
i

∂uti
=

∂L

∂ot+1
i

h(ut+1
i )τ(1− oti) (15)

where

∂ot+1
k

∂oti
=


∂ot+1

i

∂ut+1
i

(−τuTi + wfb,ii), if k = i,

∂ot+1
k

∂ut+1
k

wfb,ki, if k 6= i.
(16)

where wfb,ii and wfb,ki stood for the element of metrix wfb

in position (i, i) and in position (k, i).
Finally, we obtained the derivatives with respect to wfw and

wfb as follows:


∂L

∂wfw
=

T∑
t=1

∂L

∂ut

∂ut

∂wfw
=

T∑
t=1

∂L

∂ut
(It)T (17)

∂L

∂wfb
=

T∑
t=1

∂L

∂ut
(ot)T (18)

III. EXPERIMENT

The experiment was running in SpikingJelly [23], which is
an open-source deep learning framework for SNN based on
pytorch. The learning algorithm was STBP and the optimizer
was SGD with initial learning rate r = 0.1 and momentum
0.9. The learning rate decreased to half every 30 epochs. All
the hyper-parameters used in this experiment were listed in
TABLE I.

A. Experiments on DVS datasets
To evaluate the proposed SNN architecture and the influence

of hyper-parameters, we used the DVS-CIFAR10 dataset [24].
It contains 10,000 event-stream recordings. In this experiment,
the dataset was split into training set with 9000 images and
testing set with 1000 images. The recordings were downsam-
pled from the original 128 × 128 image size to 64 × 64 and
the temporal resolution was reduced by accumulating spikes
within frame data which was integrated from events [25]. With
VGG-19 structure, our methods achieved the best performance
with 76.70% accuracy in 20 timesteps. TABLE II compared
our results with other models.

DVS-Gesture is a collection of moving gestures performed
by 29 different individuals. Each instance in this dataset is
a stream of events with size of 128 × 128. The recordings
were downsampled using the same method in DVS-CIFAR10.
We compared our results with other related works on DVS-
Gesture, as shown in TABLE III.



4

0 20 40 60 80 100 120 140 160 180 200

epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

cascade

only CSNN

only LSM

(a)

-7.2%

-2.3%

-4.2%

-1.4%

-3.3%

-0.2%

-0.6%

-0.1%

-8%

� classification accuracy

-6% -4% -2% 0%

ch
an
n
el

�

ty
p
e

1
0

2
0

0
.5

0
.4

A
B

C
D

(b)

Fig. 3: Hyper-parameter Analysis (a)Ablation Experiment Result (b)Hyper-parameter Analysis

TABLE I: Hyper-parameter

hyper-parameter value
Vth 1
vreset 0
τ 0.7
channel 40
number of convolutional layers 16
dropout rate 0.5
batch size 32

TABLE II: Accuracy Comparisons on DVS-CIFAR1010

Model Methods Accuracy
[6] HATS 52.40%
[18] streaming rollout ANN 66.75%
[5] DART 65.78%
[22] STBP 60.50%
[20] STBP-tdBN 67.80%
our model cascade-SNN 76.70%

TABLE III: Accuracy Comparisons on DVS-Gesture

Model Methods Accuracy
[4] STBP 93.40%
[19] SLAYER 93.64%
[18] streaming rollout ANN 95.68%
[26] BPTT 94.59%
[20] STBP-tdBN 96.87%
our model cascade-SNN 97.57%

B. Ablation Expreiment

To investigate the behavior of cascade-SNN as a proposal
method, we conducted several ablation studies. We simulated
the network which contained only LSM layer and only CSNN
layer on DVS-CIFAR10 dataset and the results were shown in
Fig. 3(a). Compared with the single layer structure, the con-
vergence speed of cascade structure is slow, and more epoch
needs to be trained to obtain stable classification accuracy, but
accuracy is higher than that of single layer structure.

C. Hyper-parameters analysis

Like traditional ANNs, the performance of SNNs is influ-
enced by the hyper-parameters of the network like scale, decay
factor and depth. For finding the relationship between each

hyper-parameters and classification accuracy, we simulated the
proposed network on DVS-CIFAR10 dataset. The accuracy
descending with the different hyper-parameter was shown in
Fig. 3(b). Except for the analyzed hyper-parameter, all hyper-
parameters remained the same as shown in Table I.

1) scale of feature extraction layer: The number of channel
represents the number of features extracted by the network.
With the increase of the number of channels, the classification
accuracy can be improved to a certain extent.

2) decay factor of neuron model: The parameter τ affects
the influence of the previous time information on the cur-
rent network output. As τ approaches 1, the attenuation of
membrane potential in neuron model slows down, which is
more conducive to the accumulation of membrane potential
and the release of pulses. It could be seen that the classification
accuracy increases with the increase of τ . This shows that SNN
has the advantage of memory ability for time-domain signals
in spatio-temporal signal processing compared with traditional
neural networks.

3) depth of feature extraction layer: To measure the im-
provement brought by the increased depth of SCNN, the
structure of the proposed neuron network was switched to
different configuration of VGG. We chose configuration A,
B, C, D with number of convolutional layers 8, 10, 13,
13. Compared to other configurations, configuration C has
a unique convolutional layer whose kernel size is 1. Except
configuration C, the classification accuracy increased with the
increase of the number of convolutional layers. The network
can extract higher-level features from input spikes with the
structure going deeper.

IV. CONCLUSION

In this letter we proposed the cascade-SNN architecture
which is a combination of SCNN for features extraction
and LSM for read-out classification results. The experiment
showed that it could achieve SOTA accuracy on complex
noisy datasets. Ablation experiments were implemented to
examine the cascade structure. We also examined different
hyper-parameters of the proposed network. The influences of
hyper-parameters in classification accuracy was analyzed.
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