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Abstract

People with severe physical impairment such as amyotrophic lateral sclerosis (ALS) in a completely locked-in state (CLIS) suffer

from inability to express their thoughts to others. To solve this problem, many brain-computer interface (BCI) systems have

been developed, but they have not proven sufficient for CLIS. In this paper, we propose a word communication system: a BCI

with partner assist, in which partners play an active role in helping patients express a word. We report here that five ALS

patients in late stages (one in CLIS and four almost in CLIS) succeeded in expressing their own words (in Japanese) in response

to wh-questions that could not be answered “yes/no.” Each subject sequentially selected vowels (maximum three) contained in

the word that he or she wanted to express, by using a “yes/no” communication aid based on near-infrared spectroscopy. Then,

a partner entered the selected vowels into a dictionary with vowel entries, which returned candidate words having those vowels.

When there were no appropriate words, the partner changed one vowel and searched again or started over from the beginning.

When an appropriate word was selected, it was confirmed by the subject via “yes/no” answers. Two subjects confirmed the

selected word six times out of eight (credibility of 91.0% by a statistical measure); two subjects, including the one in CLIS, did

so five times out of eight (74.6%); and one subject did so three times out of four (81.3%). We have thus taken the first step

toward a practical word communication system for such patients.
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Supplementary Material  

In this supplementary section, we show data that are not presented in the manuscript and help readers follow our experiments. 

 

 S1. The Results of the Word-Expression Experiments 

We show the results of subject B – subject E in this section (The results of subject A are shown in Fig. 4). 

 

                   Subject B                                              Subject C 

                                                            

 

 

 

 

 

 

                   Subject D                                              Subject E 

Fig. S1. Feature vectors. The pink regions represent “yes” and the light purple regions represent “no.” In the figures of word 

confirmation, the red circles represent “yes” answers to the affirmative question, while the blue diamonds represent “no” answers 

to the negative question. Thus, the red circles in the “yes” region and the blue diamonds in the “no” region are regarded as 

affirmative. 

 

 

Table S1.1. 

 “Yes/no” answers and corresponding vowels in the vowel acquisition, and the vectors regarded as affirmative answers in the word 
confirmation. The numbers represent the vector number in Fig. S1. 

Subject “Yes/no” answers and vowels Affirmative vectors 

B | “1-yes,” “2-no,” “3-no” (U) | “4-yes,” “5-yes” (A) | “6-no,” “7-yes”, “8-no” (O or NN) | 1, 2, 3 

C | “1-no,” “2-yes,” (E) | “3-yes,” “4-no,” “5-yes,” (I) | “6-yes,” “7-yes” (A) | 1, 3, 6, 7, 8 

D | “1-no,” “2-no,” (O) | “3-no,” “4-no,” (O)* | “5-yes,” “6-no,” “7-no” (U) | 2, 4, 5, 6, 7, 8 

E | “1-yes,” “2-yes,” (A) | “3-yes,” “4-no,” “5-yes,” (I) | “6-yes,” “7-yes” (A) | 1, 3, 6, 7, 8 

* In the acquisition of ‘O’ as the second vowel, corresponding sequence of “yes/no” is {“no,” “yes,” “no”} according to Fig. 2. 

However, the sequence is simplified to {“no,” “no”} when the partners are convinced that an expressed word contains at least two 

vowels. In that case, (End) is excluded from the second position. This situation is the same as that of the acquisition of ‘O’ at the 

first position. 
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Table S1.2.  

Parameters in the word confirmation. 

Subject Parameters (SVM training data, side of forehead, feature set, time window) 

B original, right, 1, 0 – 16 s for the heart rate and 3 – 19 s for the blood volume 

C addition, left, 2, 4 – 19 s 

D original, left, 2, 7 – 22 s 

E original, right, 2, 3 -21 s 
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S2. Parameter Selection (training data for the SVM, channel and feature set) 

                                   channel: probe positions on the right or left forehead 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*: If there are multiple selected channels and feature sets, reduce them each to one by applying the following criteria 
successively: (a) the balance of “yes/no” answers to the test data, (b) the “yes/no” separation of the training data, and (c) 
the geometric margin. 

 
Fig. S2. Flowchart of parameter test in II. Methods, D. Experiments. 
 

  

Start 

Train the SVM and set 
a threshold (Th) 

Check the accuracies of feature sets which the algorithm chose 

as optimal, and select the channel and feature set giving higher 

accuracy (or both channels if their accuracies are the same). 

Accuracy rate 
 ≥ Th? 

   Check 
 other feature sets. 

Accuracy rate ≥ Th? 

Select feature set(s) giving 

the highest accuracy 

Plural sets selected? 

 Select one feature set* 

Adopt the channel and feature set 

End 

Y 

N 

N 

Y 

N 

Add the parameter test data to the 
training data and retrain the SVM. 
Set a threshold (Th). 

First run here? 

N 

Y 

Y 

1 
2 

End 

Value of Th 

 PE 2 Word expression 

Box 1 75% 66.7 

Box 2 75 75 
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S2.1 Results of Parameter Test in PE 2 

Table S2.1. 
Parameter selection in PE 2. Numerical values represent the classification accuracy of parameter test. 

       : Adopted forehead side and feature set.        : Feature set chosen as optimal by the optimization algorithm.  
 Red boldface: accuracy≥ Th in the case of “Original.”  Black boldface: accuracy ≥ Th in the case of “Addition.” 

Subject Day Training 
Data 

Left 
Feature set 1 

Left 
Feature2 

Left 
Feature3 

Right 
Feature1 

Right 
Feature2 

Right 
Feature3 

A 1st day Original 62.5 25.0 37.5 62.5 62.5 75.0 

2nd day Original 62.5 100 62.5 62.5 50.0 50.0 

3rd day Original 50.0 62.5 50.0 50.0 75.0 50.0 

4th day Original 50.0 37.5 25 50 62.5 37.5 

Addition 87.5 62.5 75.0 100 100 62.5 

B 1st day Original 25.0 50.0 50.0 50.0 50.0 50.0 

 Addition 75.0 87.5 100.0 87.5 87.5 87.5 

2nd day Original 50.0 62.5 37.5 50.0 62.5 50.0 

 Addition 75.0 75.0 87.5 75.0 75.0 87.5 

3rd day Original 62.5 75.0 62.5 75.0 50.0 75.0 

4th day Original 50.0 62.5 62.5 50.0 87.5 62.5 

C 1st day Original 50.0 37.5 50.0 37.5 25.0 50.0 

 Addition 87.5 87.5 87.5 75.0 62.5 100 

2nd day Original 50.0 37.5 50.0 25.0 37.5 62.5 

 Addition 75.0 75.0 75.0 87.5 75.0 87.5 

3rd day Original 37.5 50.0 62.5 25.0 62.5 50.0 

 Addition 87.5 87.5 87.5 87.5 75 62.5 

4th day Original 25.0 37.5 25.0 50.0 25.0 25.0 

 Addition 75.0 62.5 75.0 87.5 50.0 87.5 

D 1st day Original 37.5 50.0 62.5 75.0 62.5 25.0 

 2nd day Original 75.0 25.0 37.5 75.0 62.5 37.5 

 3rd day Original 66.7 50.0 83.3 83.3 83.3 66.7 

 4th day Original 66.7 50.0 50.0 33.3 50.0 33.3 

  Addition 83.3 83.3 50.0 83.3 83.3 50.0 

E 1st day Original 75.0 25.0 100 75.0 50.0 25.0 

 2nd day Original 50.0 50.0 50.0 66.7 66.7 50.0 

  Addition 66.7 50 100 83.3 100 83.3 

 3rd day Original 50.0 33.3 33.3 50.0 50.0 50.0 

  Addition 50 66.7 50 66.7 50 100 

 4th day Original 0 16.7 66.7 33.3 33.3 66.7 

  Addition 50.0 33.3 66.7 50.0 83.3 66.7 
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Table S2.2.  

Reduction of channels (side of forehead) and feature sets each to one when multiple of them were selected. 

Subject Day Training 

 Data 

Accuracy Forehead side and feature set 

 (Y/N balance*, Y/N Separation of training data, Geometric margin) 

Selection 

B 1st Addition 87.5% L, FS2 (2, 85.7%, 0.0198)  

  R, FS2 (2, 85.7%, 0.0322) √ 

 2nd Addition 75 L, FS1 (0) √ 

  R, FS1 (2)  

 3rd Original 75 L, FS2 (2, 83.3%, -)  

  R, FS1 (2, 100%, 0.0550)  

  R, FS3 (2, 100%, 0.0594) √ 

D 4th Addition 83.3 L, FS1 (1, 83.3%, 0.0200)  

  R, FS1 (1, 83.3%, 0.0318) √ 

*: Y/N balance = | number of correct “Yes” – number of correct “No“|; 0 is the best, 1 is the second best, 2 is the third best.  
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S2.2 Results of Parameter Test in Word-expression Experiments 

 
Table S2.3.  

Parameter selection. Numerical values represent the classification accuracy of parameter test. 

Subject Session 

(Day) 

Training 
Data 

Left 
Feature1 

Left 
Feature2 

Left 
Feature3 

Right 
Feature1 

Right 
Feature2 

Right 
Feature3 

A Word Expression 

(3rd day) 

Original 50.0 50.0 100 25.0 50.0 25.0 

Confirmation 

(4th day) 

Original 33.3 66.7 50.0 50.0 50.0 66.7 

B Word Expression 

(1st day) 

Original 25.0 50.0 75.0 25.0 25.0 75.0 

Confirmation 

(3rd day) 

Original 75.0 25.0 75.0 100 0 75.0 

C Word Expression 

(3rd day) 

Original 83.3 50.0 50.0 33.3 66.7 66.7 

Confirmation 

(4th day) 

Original 50.0 50.0 33.3 50.0 50.0 33.3 

Addition 50.0 83.3 66.7 33.3 50.0 50.0 

D Word Expression 

(2nd day) 

Original 50.0 50.0 50.0 50.0 66.7 † 50.0 

Addition 66.7 50.0 83.3 66.7 66.7 83.3 

Confirmation 

(3rd day) 

Original 50.0 83.3 66.7 †† 50.0 33.3 50.0 

E Word Expression 

(3rd day) 

Original 50.0 33.3 66.7 50.0 66.7 50.0 

Confirmation 

(4th day) 
Original 75.0 50.0 75.0 75.0 100 75.0 

The value of Th in Fig. S2: 66.7% in Box 1 and 75.0% in Box 2. 
†: The other accuracies were all as low as 50.0%, which seemed that the original SVM training data were not good. Therefore, we 

added the parameter test data to it and retrained the SVM. This is equivalent to setting Th in Box 1 to 75%. 
††: The value of Th in Box 1 was left at the previous day’s value of 75%, and this case was not selected. 
Red boldface: accuracy≥ Th in the case of “Original.”  Black boldface: accuracy ≥ Th in the case of “Addition.” 
 
 

Table S2.4. Reduction of channels (side of forehead) and feature sets each to one when multiple of them were selected. 

Subject Day Training 

 Data 

Accuracy Forehead and feature set 

 (Y/N Balance, Y/N Separation of training data, Geometric margin) 

Selection 

A 4th Original 66.7%  L, FS2 (2)  

   R, FS3 (0) √ 

B 1st Original 75            L, FS3 (1, 100%, 0.0678)  

             R, FS3 (1, 100%, 0.0723) √ 

D 2nd Addition 83.3         L, FS3 (1, 75.0%)  

          R, FS3 (1, 91.7%) √ 
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S3. Example of an Expressed Word obtained through the Special Dictionary with Vowel 

Entries  

 

 

 

 

Fig. S3. Candidate words obtained by inputting three vowels “E,” “A,” and “A.”  The partner consulted the dictionary by entering 

the three vowels, and the dictionary returned candidate words. Among all candidate words, only “Killifish” was an animal. 

 1st Vowel 
“E” 

2nd Vowel 
“A” 

3rd Vowel 
“A” 

Killifish 
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Abstract— People with severe physical impairment such as 

amyotrophic lateral sclerosis (ALS) in a completely locked-in 

state (CLIS) suffer from inability to express their thoughts to 

others. To solve this problem, many brain-computer interface 

(BCI) systems have been developed, but they have not proven 

sufficient for CLIS. In this paper, we propose a word 

communication system: a BCI with partner assist, in which 

partners play an active role in helping patients express a word. 

We report here that five ALS patients in late stages (one in CLIS 

and four almost in CLIS) succeeded in expressing their own 

words (in Japanese) in response to wh-questions that could not be 

answered “yes/no.” Each subject sequentially selected vowels 

(maximum three) contained in the word that he or she wanted to 

express, by using a “yes/no” communication aid based on near-

infrared spectroscopy. Then, a partner entered the selected 

vowels into a dictionary with vowel entries, which returned 

candidate words having those vowels. When there were no 

appropriate words, the partner changed one vowel and searched 

again or started over from the beginning. When an appropriate 

word was selected, it was confirmed by the subject via “yes/no” 

answers. Two subjects confirmed the selected word six times out 

of eight (credibility of 91.0% by a statistical measure); two 

subjects, including the one in CLIS, did so five times out of eight 

(74.6%); and one subject did so three times out of four (81.3%). 

We have thus taken the first step toward a practical word 

communication system for such patients. 

 
Index Terms— Amyotrophic lateral sclerosis (ALS), brain-

computer interfaces (BCI), partner assist, communication aids, 

completely locked-in state (CLIS), human computer interaction 

(HCI), near infrared spectroscopy (NIRS), word expression. 

 

I. INTRODUCTION 

OMMUNICATION is essential for anyone to fully live life. 

However, the communication abilities of people with 

amyotrophic lateral sclerosis (ALS) are severely restricted. 

ALS is a progressive motor neuron disease: people with ALS 

gradually lose voluntary control of their muscles and transit to 

a locked-in state (LIS) in which they are almost completely 

paralyzed, with residual control over a few muscles such as the 

eye muscles, which are usually the last ones an ALS patient 

 
This work was supported in part by the New Energy and Industrial 

Technology Development Organization (NEDO, fund number 28F002), 
which is an independent administrative institution. 

K. Ozawa and M. Naito are with Research Institute of Industrial 

Technology, Toyo University, Kawagoe, 350-8585 Japan (e-mail: 

ozawa@m.ieice.org).  

can control voluntarily [1], [2], [3]. Such patients have great 

difficulty in communication. The extreme case of LIS is the 

completely locked-in state (CLIS), in which all motor control 

(including control of the eye muscles) is lost [1], [2]. Patients 

in CLIS lose any usual, muscle-based means of 

communication. For these people, a brain-computer interface 

(BCI) can provide muscle-independent communication. 

Although the ultimate success of BCIs will depend on the 

development of systems that are useful to people with severe 

disabilities [4], no report has been published on CLIS patients 

successfully communicating beyond binary “yes/no”-type 

responses. 

Patients in CLIS or on the verge of CLIS cannot even 

express “yes/no” responses by ordinary means. Moreover, 

from the viewpoint of communication, such people’s answers 

should not be limited to “yes/no.” Accordingly, research has 

been conducted to enable spelling of words by using various 

types of electroencephalography- (EEG-) based BCIs [5], [6],  

[7]. In 1999, using slow cortical potentials, Birbaumer et al. 

obtained full written messages from two ALS patients in LIS 

[8]. Many EEG-based BCIs use event-related potentials such 

as P300 with visual stimuli. It is usually impossible, however, 

for patients in CLIS or on the verge of CLIS to see a letter 

matrix because of their drooping eyelids and loss of gaze 

fixation. Therefore, spelling systems using auditory stimuli [9], 

[10], [11] and tactile stimuli [12], [13] have been proposed. 

There are also studies on selecting Japanese kana characters, 

which we also address in the present study [14], [15]. 

Functional near-infrared spectroscopy (fNIRS) is another 

relatively new modality for BCI applications. An fNIRS-based 

BCI was first proposed by Coyle et al. [16], and its feasibility 

was tested by Sitaram et al. [17]. Since then, many studies on 

fNIRS-based BCIs have been published, as described in the 

reviews by Naseer and Hong [18] and Hong et al. [19]. 

The majority of these works reported results for healthy 

people or patients who had ALS but were not in late stages; in 

contrast, few studies have reported results for patients in CLIS 

or on the verge of CLIS. While the essential difficulty of 

N. Tanaka is with Department of Biomedical Engineering, Toyo 

University, and also with Research Institute of Industrial Technology, Toyo 
University, Kawagoe, 350-8585 Japan. 

S. Wada is with Double Research and Development Co., Ltd., Zama, 
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communication with patients in CLIS has been discussed [20], 

[21], [22], [23], ALS patients in CLIS still have high cognitive 

functions, as shown by Fuchino et al. by using fNIRS [24]. 

Accordingly, the challenge is to improve the quality of life of 

patients in CLIS or on the verge of CLIS by ensuring that they 

can benefit from BCIs. Naito et al. [25] reported that 40% of 

CLIS-ALS patients (7 out of 17) could give “yes/no” responses 

with an average accuracy of 80% by changing their brain 

activity while using an fNIRS-based BCI. Jackson et al. [26] 

performed a year-long field study in the home environment 

with 26 locked-in ALS patients by using almost the same BCI 

system used by Naito et al. and confirmed the approach’s long-

term effectiveness. Gallegos-Ayala et al. [27] reported on one 

CLIS-ALS patient who used an fNIRS-based BCI over a long 

term. The patient answered “yes/no” questions over many 

sessions with an average accuracy of 70%, which is 

significantly above the chance level. Using a vibro-tactile P300 

BCI, Guger et al. [28] reported that two CLIS-ALS patients 

(out of three) answered “yes/no” questions with accuracies of 

90% and 70%, respectively. Okahara et al. [29] succeeded in 

obtaining binary responses above the chance level from a 

CLIS-ALS patient by using steady-state visually evoked 

potentials of the scalp EEG. Han et al. [30] used features 

calculated from EEG data via Riemannian geometry and 

achieved a classification accuracy of 87.5% when a CLIS-ALS 

patient performed mental tasks. Borgheai et al. [31] proposed 

a visuo-mental paradigm for fNIRS-based BCIs. They showed 

that the hemodynamic response due to the task was enhanced 

in the patients, including an ALS patient who lost eye 

movement, and obtained high classification accuracy above 

the chance level within short times. Hosni et al. [32] pointed 

out the importance of optimizing parameters such as the 

features extracted from the hemodynamic waveforms obtained 

by fNIRS and the time window for each individual patient. 

Tonin et al. [33] reported that ALS patients in transition from 

LIS to CLIS could form complete sentences and communicate 

independently and freely by using an auditory 

electrooculogram-based BCI speller system equipped with a 

word predictor. One patient, however, could not use the system 

in a follow-up one year later because of the complete loss of 

oculomotor control.  

 For ALS patients in CLIS or on the verge of CLIS, all 

studies except one [33] have reported binary communication 

like “yes/no” responses to simple questions; there is no report 

of CLIS patients spelling beyond “yes/no” answers. One 

reason is that the burden of selecting letters is very heavy for 

severely locked-in patients. For example, they are expected to 

perform too many steps to correctly choose the row and 

column (for the consonant and vowel, respectively, in 

Japanese) in a letter matrix, which tends to result in choosing 

wrong letters and having to correct misspellings. 

Therefore, we propose a practical online Japanese word 

communication system for home use that consists of a “yes/no” 

communication aid using near-infrared light and a special 

dictionary with vowel entries. The system only requires a 

patient to choose three vowels and then answer “yes/no” to 

candidate words including those vowels. To share the burden 

of spelling words, partner assist is essential for this system. 

Specifically, the system requires partners such as family 

members, caregivers, and friends to select an appropriate word 

in the dictionary, to change one vowel when an appropriate 

word is not found, and to start over from choosing three vowels 

when the patient denies an appropriate word. In the ideal form 

of communication, patients in severe LIS would form full 

sentences freely by themselves, independently of partners in 

their homes. However, because that approach is difficult and 

the issue is urgent, a communication system in which partners 

and patients cooperate could be a feasible approach to enhance 

their daily communication before reaching the final goal. In 

such a system, the process of communication becomes a kind 

of conversation between patients and partners, which is 

expected to strengthen the ties between them. 

In this paper, we report experimental results of using this 

system with four ALS patients almost in CLIS (equivalent to a 

minimal communication state defined as “severely reduced 

speed and delay in initiation of voluntary functions” [34]) and 

one patient in CLIS. By cooperating with their partners, the 

subjects successfully expressed words in response to wh-

questions such as “What is your favorite animal?” The system 

is also applicable to alphabetic languages. A preliminary 

version of this article was published in arXiv [35]. 

  

II. METHODS 

A. Subjects 

Five ALS patients were recruited as listed in Table I. Subject 

D was female and the others were male. The mean age was 

59.8 years old (SD of 19.6 years old). Subject C was in CLIS 

and the others were almost in CLIS. The patients that were 
almost in CLIS had extreme difficulty in communication 

relying on any voluntary muscle control, and they were unable 

to have reliable communication with other people. Throughout 

the experiments, subject C showed no voluntary muscle 

control, including eye movement, and was diagnosed with 

CLIS by an experienced neurologist shortly after the 

experiments. At the age shown listed in column (d), the 

patients lost any means of reliable communication; until then, 

they had relied on the functions listed in parentheses. 

 

                                            TABLE I 
 SUBJECTS 

Subject Age Stage at 

Experiments (a) (b) (c) (d) 

A 71 54 55 68 (blink) almost in CLIS 

B 51 35 37 48 (third finger & eye) almost in CLIS 

C 30 17 18 27 (mouth corner) CLIS 

D* 67 62 64 66 (blink) almost in CLIS 

E 78 70 71 77 (mouth corner) almost in CLIS 

(a): Age at the time of the word expression experiments in this report. 

(b): Age of diagnosis with ALS. 

(c): Age of being put on an artificial respirator and becoming unable to   

speak. 

(d): Age when answering “yes/no” became difficult. The patients had 

relied on the body functions listed in parentheses until then. 

*: Female (others: male). 
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The study was approved by the Toyo University Ethical 

Review Board for Medical and Health Research Involving 

Human Subjects and the Institutional Review Board of the 

Public Health Research Foundation. Informed consent was 

obtained from the legal representatives in the subjects’ families 

beforehand. Written, informed consent was also obtained from 

the patients' legal guardians for the publication of any 

potentially identifiable images or data included in this article. 

B.   Word Communication  

1)  Outline of Proposed System 

The Japanese kana syllabary consists of five vowels, A, I, U, 

E, and O; 14 consonants, K, S, T, N, H, M, Y, R, W, B, D, G, 

P, and Z; and a special letter “NN” that occurs without a vowel. 

Every Japanese kana character other than a vowel or NN 

consists of a consonant and a vowel. If a patient tries 

expressing a word consisting of three Japanese characters 

without any cooperation, for example, he or she will need to 

get a correct “yes/no” classification as many as 25.5 times (8.5 

times for each character: 3 plus 5.5 times in the 5 x 10 matrix 

of the Japanese kana syllabary), which will make it virtually 

impossible to reach the true word. 

Fig. 1 shows the framework of the proposed word 

communication system. It consists of a “yes/no” 

communication aid, a dictionary with vowel entries, a patient, 

and a partner. The communication aid is “Shin Kokoro Gatari” 

(“New Heart Teller,” a product of Double Research and 

Development Co., Ltd, 2016). We prepared a new dictionary 

that returns words containing input vowels. The dictionary 

receives three vowels as input and returns the words containing 

them in the given order. For example, if a sequence “E, I, A” 

is input, then the dictionary returns 125 words, such as eiga 

(movie) and heiwa (peace). It has about 10,000 words, 

according to the fact that Japanese adults usually use 10,000 

words in daily life [36].  

Using the communication aid, a partner asks a patient to 

give the first three vowels (via the scheme described below) 

contained in the word that the patient wants to express. Then, 

the partner consults the dictionary by entering the three vowels 

and obtaining candidate words. When the partner cannot obtain 

appropriate candidate words, he or she either asks again for 

three vowels or replaces one vowel and again searches for 

candidate words. Once the candidate words are obtained, the 

partner confirms them according to whether the subject gives  

  

 

affirmative   answers.    When   the   subject   does   not    give 

affirmative answers to any candidate words, the partner either 

stops or searches again for candidate words; on the other hand, 

when the subject gives affirmative answers to a candidate word, 

it is taken as the word expressed by the subject.  

The scheme for determining a vowel works as follows. We 

use the dichotomic table shown in Fig.  2 (a). The patient is 

asked whether the vowel is in the left group and answers “yes” 

or “no” in a sequential way. For example, if the patient wants 

to select I, then he or she answers “yes” to the first question, 

“Does your word contain A, I or U?” (i.e., the group {A│ I, 

U} is selected from {A, I, U║E, O}). Then, the patient selects 

“no” (indicating the group {I | U}), and then “yes” (indicating 

{I}). Fig. 2 (b) summarizes the correspondence of the vowels 

to sequences of “yes/no” answers. 

2)  Confirmation of Expressed Words 

To confirm that the finally selected word is the correct one, 

the partner uses the communication aid to ask the patient eight 

times whether the word is correct. For one word, a pair of 

questions is asked four times. The pair consists of an 

affirmative form, “Is it correct that your word is ‘X’?”, and a 

negative form, “Is it correct that your word is not ‘X’?” When 

a patient answers “no” to the negative-form question, the 

patient's intention is regarded as affirmative. 

For word confirmation, because the true word is unknown, 

we use Bayesian statistics. As we have no prior information on 

whether the selected word is correct or incorrect beforehand, 

we set the uniform prior probability density. Furthermore, 

because the communication aid’s output is binary (i.e., 

affirmative or negative), we set, for a posterior probability 

density, the binominal likelihood with the affirmative rate, θ, 

and the negative rate, 1 − θ. The posterior affirmative 

probability, P, is given by integrating the posterior probability 

density over the range 0.5 < θ ≤ 1. When seven answers are 

affirmative out of eight, the value of P is 0.980, and the partner 

regards the word as 98.0% credible. Similarly, when six 

answers are affirmative, the word is regarded as 91.0% 

Fig. 1.  Word communication system with partner assist. The partner plays 
three active roles: asking the patient for three vowels, selecting an 

appropriate word among the words that have those vowels and are returned 

by the dictionary, and checking several times whether the word is correct. 

The partner accepts the word if the patient confirms it enough times. 

Fig. 2.   Vowel table. (a) Vowel division lines. The lines divide the vowels 
into groups. The double line divides the vowels into {A, I, U}, {E, O, 

(End)}. The thick single lines divide the groups into {A}, {I, U} and {E, 

O}, {(End)}. Finally, the thin lines separate {I}, {U} and {E}, {O}. (b) 
Correspondence between vowels and sequences of “yes/no” answers. In 

the first vowel acquisition, because (End) can be excluded as the first 

choice, we assign “no, no” to O and “no, yes” to E. In the second or third 
vowel acquisition, when a patient answers “no, yes, no,” it is assigned to 

the letter NN as well as O. 
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credible. In these cases, the partner accepts the word as the 

correct one. When five answers are affirmative, however, the 

value of P is 0.746 (74.6% credible). In that case, the Bayes 

factor BF helps with the decision: it is a measure indicating 

whether one hypothesis is more probable than another. In the 

present study, BF is the ratio of the posterior affirmative 

probability to the negative probability, i.e., BF = P / (1 –P). 

For P = 0.746, BF = 2.94, which is almost equal to the 

boundary value of 3 that separates the ratings “Not worth more 

than a bare mention” and “Positive” [37]. In that case, the 

partner is free to decide acceptance. 

C.   Yes/No Communication Aid  

1) Measurement  

A patient is asked a question and changes his or her brain 

activity depending on whether the answer is “yes” or “no.” The 

changes in activity are measured with near-infrared light as 

changes in the prefrontal blood volume. The present 

communication aid has two channels with one wavelength: it 

has two probes, one on the left forehead and one on the right 

forehead, and each probe has a light source (LED, 840-nm 

wavelength) and a Si PIN photodetector located 30 mm from 

the light source. The sampling frequency is 10 Hz. The change 

in the light intensity is converted to the change in the optical 

density ∆OD(t). Although the ∆OD(t) obtained at one 

wavelength contains contributions from both oxy- and deoxy-

hemoglobin, the oxy-hemoglobin contribution dominates at 

840-nm. 

 Each measurement consists of three periods of 12 seconds 

each: resting, answering, and resting again. The “yes/no” data 

is obtained by asking the subjects to either make their brain 

active or rest during the answering period. In the experiments 

reported here, the “yes” task was mental arithmetic or fast 

mental singing, and the “no” task was slow mental humming 

or imagining a landscape, which was the same task as in the 

resting periods.  

2)  Method of Yes/No Classification 

The method of “yes/no” classification here is an extension 

of that described by Naito et al [25]. There are two major 

differences: one is that we use the variation in heart rate in 

addition to the hemoglobin concentration change in the 

cerebral cortex, and the other is the use of a support vector 

machine (L1 SVM with a Gaussian kernel) as the classifier. 

Although the heart rate and the cerebral blood volume vary in 

a similar manner, they can carry different information [38]. In 

the SVM, we set the cost parameter C to 1,000 and the kernel’s 

variance σ2 to 30. 

The variation in blood volume accompanied by brain 

activity, hb(t), and the heart rate, hr(t), are obtained from ∆OD 

(t): hb(t) is extracted by applying a low-pass filter with a cut-

off frequency of 0.1 Hz to ∆OD(t) [25], while hr(t) is obtained 

as follows. First, the pulse wave, whose frequency is typically 

1 Hz, is extracted by using a band-pass filter to extract 

components in the range of fp ± 0.3 Hz, where fp is the peak 

frequency searched in the range above 0.5 Hz. Second, the 

Hilbert transform [39] is applied to the pulse wave to obtain 

the unwrapped phase, ∅pw(t), from which the instantaneous 

heart rate hr(t) is calculated as hr(t) = (d∅pw(t) / dt) / 2π × 60 

bpm. Finally, hr(t) is smoothed by the low-pass filter. 

Waveform artifacts due to the Hilbert transform are removed 

at each end. 

For the features characterizing the variations of hb(t) and 

hr(t), we use the amplitude and the degree of oscillation of 

hb(t) and hr(t) in a time window. We calculate these quantities 

by using an analytic signal derived from each wave of hb(t) 

and hr(t) in the time window [25]. The amplitude is the 

maximum instantaneous amplitude of the analytic signal, 

while the degree of oscillation is expressed by the rotation 

number [40], which we define in the present context as the 

increment in the unwrapped instantaneous phase in the time 

window divided by 2π. The amplitudes are rescaled so that 

their range has the same order of magnitude as that of the 

rotation numbers. The details are described in the Appendix. 

The feature vectors input to the SVM are two-dimensional. 

We use three sets of features, from which the optimal one is to 

be selected: feature set 1 consists of the rotation numbers of 

hb(t) and hr(t), set 2 consists of the amplitude and rotation 

number of hb(t), and set 3 consists of the amplitude and 

rotation number of hr(t). 

The accuracy of a classifier depends on the time window 

[25], [31], [41], [42], [43], [44], [45]. Because there are inter-

individual variabilities in hemodynamic responses [46], we 

automatically optimize the time window [25], as well as the 

features [32] for an individual patient, in the process of training 

the SVM. The optimization procedure is described in the 

Appendix. In this way, feature set and time window are 

optimized for both the right and left forehead of each subject. 

D.   Experiments  

1) Preliminary Experiments Using Labeled Questions  

Before the word expression experiments, we performed two 

preliminary experiments, denoted hereafter as PE 1 and PE 2, 

for the purposes of training the subjects and partners and 

evaluating the performance of the proposed system. We used 

“yes/no” labeled questions whose answers were known. All 

experiments were done at the subjects’ own homes. To avoid 

tiring the subjects, we limited the number of questions to as 

few as possible. 

In PE 1, we evaluated to what extent the communication aid 

was effective for the recruited subjects. They received four 

days of training, once a week from April 7, 2018 to August 16, 

2018. On each day, the SVM was trained with three pairs of 

“yes/no” training data and a pair of test data for cross-

validation, as described in the Appendix. After the SVM 

training, partners asked the subjects to answer “yes” or “no” 

eight times (four times each), and the classification accuracy 

was calculated for each channel (i.e., the probe positions on the 

right or left forehead). 

Then, PE 2 was conducted once a week from October 27, 

2018 to February 13, 2019 for four weeks for each subject. In 

this preliminary experiment, we checked whether the subjects 

and partners were able to select correct vowels, and we trained 

them to use the word communication system. For these 

purposes, we asked the subjects and partners to use the system 

to select the first three vowels of the subjects’ birthplaces, 

which the partners knew. Because the vowel selection was 

performed online, we had to determine suitable parameters to 

use. Accordingly, we performed a test experiment, which we 
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call the “parameter test” hereafter, to select the channel and 

feature set that were expected to have a higher classification 

accuracy. The results of PE 1 showed that the accuracy was not 

always good enough, as described later in Section III. A. It 

might be that the training data was too small or the brain 

activity changed after training the SVM. Therefore, we applied 

a procedure composed of steps (1) to (6) below. Our idea was 

to renew the training data by adding test data to it when 

necessary. The test data on which the classification accuracy 

was calculated consisted basically of four “yes/no” pairs as in 

PE 1, but we reduced the data to three pairs in some cases 

depending on the subject’s condition. 

(1) Train the SVM as in PE 1 for both channels and all feature 

sets. Optimal time windows are set automatically. 

(2)  Check the accuracies of feature sets chosen as optimal 

by the optimization algorithm and select the channel 

giving higher accuracy (or both channels if their 

accuracies are the same). 

(3) If the accuracy is at least 75%, go to step (6); otherwise, 

go to step (4). 

(4) Check feature sets other than those chosen as optimal 

whether there are ones whose accuracy is at least 75%. If 

such feature sets exist, select ones giving the highest 

accuracy and go to step (6); otherwise, go to step (5). 

(5) On the first run of this step, add the test data to the 

training data, retrain the SVM, and go to step (2). 

Otherwise finish parameter selection and stop. 

(6) Adopt the selected channel and feature set. If multiple of 

them are selected, reduce them each to one by applying 

the following criteria successively: (a) the balance of 

“yes/no” answers to the test data, (b) the “yes/no” 

separation of the training data, and (c) the geometric 

margin. 

When we retrain the SVM, it would be desirable to check 

the results by using new, independent test data.  Obtaining 

additional new data is a burden, however, to ALS patients in 

the late stages, and we thus adopted the above procedure. 

Following the above parameter test, the subjects chose the 

first three vowels of their birthplaces by using the vowel table. 

For example, when the first vowel of a subject’s birthplace was 

“A”, the first question to the subject was whether the vowel lay 

in (A, I, U) or not (E, O). Even when the subject answered 

incorrectly (E, O), the partner asked the second question to 

determine whether the first vowel was “A” or not (“I”, “U”), 

because the partner knew that the correct answer lay in (A, I, 

U). In this way, the subjects and partners learned how to use 

the word expression system, and we calculated the number of 

correctly selected vowels. 

2) Word Expression Experiments (WH-Questions)  

Word expression experiments were performed once a week 

from November 24, 2018 to June 7, 2019 at the subjects’ own 

homes. A member of a subject’s family chose themes and 

asked wh-questions, which could not be answered with 

“yes/no.” As described in Section II. B. 1), the subject chose 

three vowels through the communication aid. The subject was 

then informed of the answer after each “yes/no” selection. The 

subjects were also instructed that, when they failed to give the 

correct “yes/no” answer, they were to just keep relaxing 

afterward in the vowel acquisition trial, because the correct 

vowel could not be obtained regardless of whatever “yes/no” 

response they had made. We also used the parameter test in the 

word expression experiments. In the parameter test, the 

number of test data sets ranged from two to four “yes/no” pairs, 

with three as the default number, depending on the subject’s 

condition. Accordingly, we lowered the threshold to 66.7 % 

(=2/3) in steps (3) and (4) when the SVM training data was 

original. For cases in which the test data was added to the 

training data, we kept the threshold at 75% because the 

classification accuracy should be high in those cases. 

III. RESULTS 

A. Preliminary Experiments 

Fig. 3 shows an example of measured waveforms in PE 1, 

which were obtained from the left forehead of subject B on the 

first day. The optimization algorithm selected feature set 2 (the 

hemodynamic rotation number and amplitude) and a time 

window of 7-22 s. As seen in the figure, while only low-

frequency Mayer waves were observed for the “no” task, task-

related waveform variations were clearly seen for the “yes” 

task, except for one case in the test session shown in Fig. 3(b).  

Table II lists the online classification accuracy in PE 1 for 

each channel (R: right forehead; L: left forehead). The feature 

set and time window selected as optimal are also listed. The 

listed average is the average of the higher accuracy rate of 

either the right or left forehead over four days. The confidence 

interval of the chance level was calculated as p ±

(1 ) / ( 4)p p n  Z1 – α /2, where p = 0.5, Z1 – α /2 is the 1−α /2  

 

Fig. 3. Examples of the oscillation of the blood volume hb around the baseline, 
and examples of the feature vectors, for the left forehead of subject B on the 

first day of the preliminary experiment 1. The yellow region represents the 

time window. The time origin, t = 0, is the starting point of the answering 
period. In the feature vector graphs, the pink regions represent “yes,” and the 

light purple regions represent “no.” (a) Waves and feature vectors in the SVM 

training session. The optimization algorithm selected feature set 2 (the 
hemodynamic rotation number and amplitude) and a time window of 7-22 s. 

The red and blue waves are the SVM training data, and the light blue waves 

are the data for cross-validation. The red (blue) marks represent the feature 
vectors for “yes” (“no”) answers. The stars represent vectors for cross-

validation. (b) Results of the classification accuracy check for the decision 

function obtained in (a). 
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TABLE II 

 

S‡ F† 
Accuracy Rate 

1st day 2nd day 3rd day 4th day Average* 

± SD 

A R 

L 

75.0 

12.5 

75.0 

25.0 

62.5 

62.5 

50.0 

37.5 

65.6 ± 

12.0 

B R 

L 

37.5 

87.5 

62.5 

75.0 

50.0 

75.0 

75.0 

75.0 

78.1 ± 

6.3 

C R 

L 

62.5 

37.5 

50.0 

37.5 

50.0 

75.0 

50.0 

87.5 

68.8 ± 

16.1 

D R 

L 

75.0 

62.5 

62.5 

12.5 

50.0 

62.5 

37.5 

50.0 

62.5 ± 

10.2 

E R 

L 

50.0 

37.5 

75.0 

50.0 

75.0 

62.5 

62.5 

50.0 

65.6 ± 

12.0 

Total Average ± SD                      68.1 ± 11.8 

 
                                              

quantile of the normal distribution, and α is the significance 

[47]. When we set α = 0.1, the interval was 26.3-73.7%. For 

subject B, the classification accuracy on the left forehead 

significantly exceeded the chance level throughout the 

experiments. For the other subjects, however, there were days 

when the accuracy did not significantly exceed the chance 

level even for the better channel. However, the fact that the 

null hypothesis of randomness is not rejected does not 
necessarily mean that the accuracy is definitely random. We 

thus proceeded to PE 2 according to steps (1) to (6) given in 

Section II. D. 1). 

In PE 2, the first three vowels of the patients’ birthplaces 

were (A, I, A) for subject A, (O, U, I) for subject B, (A, A, A) 

for subject C, (I, A, A) for subject D, and (U, U, I) for subject 

E. The corresponding sequences of “yes/no” answers were (yes, 

yes | yes, no, yes | yes, yes) for subject A, (no, no | yes, no, no 

| yes, no, yes) for B, (yes, yes | yes, yes | yes, yes) for C, (yes, 

no, yes | yes, yes | yes, yes) for D, and (yes, no, no | yes, no, no 

| yes, no, yes) for E. 

Table III lists the numbers of correctly selected vowels. 

Cases listed without the symbol † were obtained with the 

original SVM training data, while cases with † were obtained 

by adding the test data to the original training data, as noted in 

step (5) above. To obtain a correct word in the present system, 

it is desirable that at least two correct vowels are selected. If a 

subject selects three vowels correctly, his or her partner should 

easily find the correct word in the dictionary. If two vowels are 

correct, the partner should be able to guess and replace a vowel 

during the communication process. With only one correct 

vowel, however, it is probably impossible to obtain the correct 

word. As listed in Table III, subject A gave three correct 

vowels once and two vowels once. All subjects other than E 

gave two or three vowels correctly within two sessions. As a 

result, we expected that the subjects and partners would be able 

to obtain the subjects’ words within three or four sessions, and 

we proceeded to the word expression experiment. 

 

TABLE III 

NUMBER OF CORRECT VOWELS OBTAINED ONLINE IN 

PRELIMINARY EXPERIMENT 2 

 

B.   Expressed Words for Wh-Questions 

Table IV lists the words that the subjects expressed. Column 

2 lists the session numbers in which each subject selected three 

or two correct vowels. The column also lists the total number 

of sessions including word confirmation, in parentheses. It was  

 
TABLE IV  

EXPRESSED WORD OF EACH SUBJECT 

S+ 
Session* 

(Total 

No) ** 

Accuracy*** 

(Parameters) † 

Wh-

question 

   3          

vowels 

Expressed 

word 

C+ 

A Third 

(5) 

100 

(Original, L, 

3, 2-17) 

Favorite 

animal 

E, A, A Medaka 

(killifish) 

91.0 

% 

B First 

(3) 

75.0 

(Original, R, 

3, 0-21) 

Comment 

on system 

U, A, O 

(NN) 

Fuanntei 

(unstable) 

81.3 

C Third 

(4) 

66.7 
(Original, R, 

3, 0-22) 

Favorite 

genre for 

reading 

E, I, A 
→ E, I, I 

Rekishi 
(history) 

74.6 

D Second

(3) 

83.3 
(Addition, R, 

3, 5-21) 

‡Trans-

potation 

method to 

return to 

hometown 

O, O, U 
→ I,O,U 

Hikouki 

(airplane) 

91.0 

E Third 

(4) 

66.7 

(Original, L, 
3, 1-21) 

Comment 

on system 

A, I, A Arigatai 

(thanks) 

74.6 

S‡ V‡ 
Number of correct vowels 

(accuracy rate*, forehead, feature set) 

1st day 2nd day 3rd day 4th day 

A A, I, A 3 

(75.0, R, 3) 

2 

(100, L, 2) 

0 

(75.0, R, 2) 

1 

(100, R, 2) † 

B O, U, I 0 

(87.5, R,2) † 

2 

(75.0, L,1) † 

1 

(75.0, R, 3) 

0 

(87.5, R, 2) 

C A, A,A 0 

(100, R, 3) † 

2 

(87.5, R,3) † 

1 

(87.5, L,3) † 

0 

(87.5, R,1) † 

D I, A, A 2 

(75.0, R, 1) 

0 

(75.0, L, 1) 

0 

(83.3, R, 1) 

0 

(83.3, R,1) † 

E U, U, I 0 

(75.0, L, 1) 

0 

(100, L, 3) † 

0 

(100, R, 3) † 

2 

(83.3, R, 2)† 

ONLINE YES/NO CLASSIFICATION ACCURACY OF 

PRELIMINARY EXPERIMENT 1 

S‡: Subject, F†: Side of forehead (Right or Left). 

*: The average is that of the higher accuracy rate (bold letters) of either 

the right (R) or left (L) forehead on each day. 

S+: Subjects, C+: Credibility. 

*: Session at which the subject selected more than one correct vowels 

which led to his or her word (one session per day). 
**: (Total number of sessions including confirmation of words). 

***: Accuracy rate of the parameter test at the day where subject selected 

vowels which led to correct word. 
†: (SVM Training data, Side of Forehead, Feature set, Time window), 

     Original: Original training data, Addition: Original + Parameter test 

data,   R: Right, L: Left. 
‡: The partner was convinced that “Hikouki” was the only suitable method   

but didn’t lead the subject toward it. 

 S‡: Subject, V‡: First three vowels in birthplace.  

*: “Yes/no” classification accuracy of the parameter test. 
†: Parameter test data was added to the original training data for training 

the SVM. 
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difficult to confirm a word in the same session when the word 

was obtained, because the time of one experimental session 

was limited to 30 minutes by the Institutional Review Board. 

For subject A, who selected two or three correct vowels twice 

in PE 2, the credibility of the expressed word was high. Subject 

B, whose average online “yes/no” classification accuracy 

exceeded the chance level in PE 1, selected three correct 

vowels in the first session. The word credibility was also high 

for subject D, who selected two correct vowels on the first day 

in PE 2. Column 3 lists the “yes/no” classification accuracy of 

the parameter test when the subjects selected vowels that led 

to the correct word. Feature set 3 was selected as optimal for 

all the subjects.  In the following, we describe the detailed 

experimental results for each subject.  

1) Subject A  

The theme “favorite animal” was given by the subject’s wife, 

who anticipated the answer “dog” or “cat.” His expressed word, 

however, was medaka (killifish), which none of his partners 

(i.e., his wife, an occupational therapist, and a nursing-care 

helper) expected. He took five days to express that word. It was 

confirmed by his affirmative answers six times out of eight.  

On the first day, subject A answered all “no” for the three 

vowels, which resulted in “O, O, (End).” Unfortunately, there 

were no appropriate candidate words in the dictionary. On the 

second day, his partners chose hato (pigeon), neko (cat), hito 

(person), and “other” among 14 candidate animals in which 

one vowel differed from “O, O.” His wife asked him words 

that were divided into two groups of (1) hato or neko and (2)   

hito or “other.” His answer was in group (1) three times out of 

four. Then, his wife was sure that his answer was neko and 

asked him if it was correct. He replied that it was three times 

out of four. She asked again about groups (1) and (2) and he 

answered “no” for both. As a result, the partners were at a loss 

and finished up for the day. 

 

 On the third day, the partners started from the beginning 

and asked subject A for three vowels. This time, he expressed 

“E, A, A,” as shown in Fig. 4(a), for which there was one 

candidate word: medaka. The partners tried to confirm it, and 

he answered “yes” only two times out of four, so they could 

not decide his word. On the fourth day, he expressed “E, A, E.” 

Though the partners found no candidate words in the 

dictionary, they noticed that “E, A, E” differed by just one 

vowel from the previously expressed vowels “E, A, A.” They 

asked him if “E, A, A” was correct, and his answer was “yes.” 

Then, they asked if medaka was correct, to which he answered 

“yes” two times. At this point it seemed probably correct. 

Finally, on the fifth day, the partners asked subject A if medaka 

was correct, and he answered affirmatively six times out of 

eight, as shown in Fig. 4(b).  

2) Subject B  

The wh-question, “How do you like the word 

communication system?”, was given by the subject’s aunt, and 

his answer was fuanntei (unstable). On the first day, he 

expressed “U, A, O,” and she selected fumann (dissatisfaction) 

and fuann (uneasiness). He answered “no” to fumann and “yes” 

to fuann. On the second day, she asked whether “U, A, O” was 

correct, and he answered “yes” three times out of four. Then, 

she added fuanntei to the candidate words, because she 

thought it was more suitable for her question than fuann. She 

thus gave him a fourfold choice of fumann, fuann, fuanntei, 

and “other,” which actually resulted in fuanntei. She then 

confirmed it twice, and he answered that it was correct twice. 

Finally, on the third day, the aunt confirmed it again, and 

subject B answered that it was correct three times out of four, 

giving a posterior affirmative probability P of 0.814 and a BF 

of 4.38 (rating “Positive”). At that point, she accepted the word. 

The word “unstable” probably came from his experience two 

years before the present experiment: he had used the 

communication aid on a trial basis for two weeks, but the 

accuracy rate was unstable then. 

3) Subject C  

The wh-question, “What is your favorite genre for reading?”, 

was given by the subject’s mother. He expressed rekishi 

(history). He used to like listening to his partners (his mother 

and his caregivers) read books on Roman history, philosophy, 

and ethics. She thought his taste might have changed and thus 

asked this question. 

On the first day, subject C expressed “I, E, O,” and his 

mother selected shizenn (nature) among 48 candidate words. 

He denied that word, however, by giving a “no” answer. On 

the second day, she started from the beginning, and he 

expressed “O, A, (End).” Just to make sure, she looked up “O, 

A, (End)” in the dictionary and found rohma (Rome) as a 

candidate word. She asked him if rohma was correct, and he 

denied it twice. On the third day, rohma was asked again, 

because he used to like Roman history. He answered “no,” 

however, six times out of eight. Therefore, she started fresh 

from the beginning, and he expressed “E, I, A.” She guessed 

eiga (movie) among the candidate words and asked him if it 

was correct, but it was not.  

Fig. 4.  Feature vectors for subject A. (a) Vectors in vowel acquisition 

when the vowel sequence “E, A, A” was obtained from the left forehead. 

The “yes/no” classification algorithm selected feature set 3 (the rotation 

number and amplitude of the heart rate hr) and a time window of 2-17 s as 

optimal. (b) Vectors in word confirmation from the right forehead. The red 

circles represent “yes” answers to the affirmative question, while the blue 

diamonds represent “no” answers to the negative question. Thus, the red 

circles in the “yes” region (1, 3, 7) and the blue diamonds in the “no” region 

(2, 4, 6) are regarded as affirmative. The classification algorithm also 

selected feature set 3 in the confirmation session, but with a time window 

of 4-23 s. 
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Then, after the third day, the subject’s mother noticed that 

“E, I, A” became “E, I, I” if the last vowel A was replaced with 

I, which suggested rekishi. Finally, on the fourth day, she 

asked him if rekishi was correct, and he answered affirmatively 

five times out of eight. 

4) Subject D  

 The wh-question, “What transportation method do you like 

to use to return to your hometown?”, was given by the 

subject’s son. She expressed hikouki (airplane). Her hometown 

is far from Tokyo, where she lives, and her son said that air 

transport was actually the only suitable method among road, 

rail, air, and sea transport, because the other methods take too 

much time for her to return to her hometown.  

On the first day, Subject D expressed “I, I, I,” but her son 

found no appropriate words in the dictionary. On the second 

day, she expressed “O, O, U.” He then found the appropriate 

words hikouki and jidousha (automobile) in the dictionary by 

replacing the first O with I. On the third day, he asked whether 

hikouki or jidousha was correct, and she confirmed hikouki six 

times out of eight. 

5) Subject E  

The wh-question, “How do you like the word 

communication system?”, was given by the subject’s wife and 

daughter. On the first day, he expressed “U, A, I.” His daughter 

found 72 candidate words in the dictionary, but none of them 

were appropriate. On the second day, his daughter sought to 

confirm “U, A, I,” and he answered “no” three times out of 

four. Then, she started from the beginning and obtained the 

three vowels “O, U, (End).” She found 98 candidate words in 

the dictionary but again none were appropriate. 

Then, on the third day, Subject E expressed “A, I, A,” and 

his daughter found 219 words in the dictionary. Among those 

words, she selected arigatai (thanks) and confirmed it with 

him. He answered “yes” two times and “no” two times, 

unfortunately. Finally, on the fourth day she asked again 

whether it was correct, and this time, he answered 

affirmatively five times out of eight. 

IV. DISCUSSION 

In this paper, we have proposed a simple word 

communication system for daily home use by ALS patients in 

a severely locked-in state. In this system, partners are actively 

involved in obtaining words that patients want to express. Here, 

the process of word expression itself becomes a kind of 

conversation between patients and partners, which is expected 

to improve patients’ quality of life. Käthner et al. [48] 

suggested that direct interaction between a patient and an 

interlocutor raised the patient’s preference for partner-

dependent assistive devices. 

To reach a patient’s true word, partner intervention is 

essential because only subject B expressed three vowels 

correctly in the first session, whereas the other subjects failed 

to do so. In those cases, the partners had to change one vowel 

or start over. Subject A’s partner (his wife) succeeded by 

replacing one vowel, because she noticed that he gave almost 

the same vowels (E, A, A) and (E, A, E).  Subject C’s partner 

(his mother) also succeeded by replacing one vowel (A) with 

I, which changed (E, I, A) to (E, I, I). Subject D’s partner (her 

son) was convinced of the correct answer and the first three 

vowels. Therefore, he did not have to replace a vowel and 

simply started afresh on the second day, and the subject 

selected two correct vowels. Finally, subject E’s partner (his 

daughter) was successful when she started over again. 

The partners’ heuristic capability was especially helpful. For 

example, subject A’s wife asked her husband, “What do you 

hate most?”, one day after the experiment had finished. He 

answered “E, E, E,” but there were no appropriate candidate 

words (among only two candidates: Eberesuto (Everest) and 

erebehtah (elevator)). She immediately understood, however, 

that the correct word was “ALS,” because its pronunciation in 

Japanese is “ei (A), eru (L), esu (S),” though the first three 

vowels are “E, I, E (eieruesu).” When she confirmed “ALS,” 

he showed affirmative intention seven times out of eight. This 

is a typical case in which the heuristic capability is helpful. 

While subjects B and E could not select three correct vowels 

in PE 2 (Table III), they succeeded in the word expression 

experiment with wh-questions (Table IV). It may be that, 

because the wh-questions concerned the patients’ real lives, 

they had increased motivation to respond. 

For a BCI communication system to be used at a patient’s 

home, it must be simple to use: it must be usable without 

technical support, the setups of the apparatus and the decision 

function need to finish within a short time. The system must 

also be inexpensive. The system reported here fulfills all of 

these requirements. A patient only needs a half-cut plastic band 

with a pair of probes on his or her forehead, and software 

installed in a PC measures the hemodynamics, calculates 

feature vectors, trains the SVM, and optimizes the feature set 

and time window. No professional technical support is 

necessary, and patients do no need training to use an fNIRS-

based BCI. 

At present, the system has several limitations, which are 

basically due to the communication aid. It took 3-5 days for 

the subjects to express their words (with a 30-minute session 

each day). We will need to improve the online classification 

accuracy of the “yes/no” communication aid in order to reduce 

the time needed for patients to express words. Although the 

classification accuracy of BCIs is high for healthy people [18], 

[19], it is generally low for heavily locked-in patients. The low 

accuracy might suggest that the number of questions asked in 

training the classifier should be kept as small as possible to 

avoid tiring patients. To raise the classification accuracy, one 

possible approach would be to add past data to the training data 

and thus increase the available data for training the classifier. 

Selection of the feature set and time window in reference to a 

patient’s past tendencies is another possibility. For example, 

with the present communication aid, there were cases when we 

obtained good parameters by using the moving average of the 

accuracies of past tests. Application of deep learning methods 

is another possible approach [49], [50]. 

The best combination of the channel, feature set, and time 

window differed on every day of measurement even for the 
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same patient, and we had to optimize the parameters every time. 

To improve the system’s usability, it would be desirable for 

partners to use the same parameters at least several times, even 

though the physical conditions and motivations of patients are 

not constant. In this context, there were cases when we 

obtained good results by choosing the best-suited decision 

function from past ones. The usability could also be improved 

by using feature sets that are relatively insensitive to patients’ 

conditions. From the viewpoint of usability, training and 

personalization of the dictionary would help partners find 

appropriate words. Studies on finding easy, stress-free tasks 

would also help patients to answer “yes” with ease. 

The structure of English is different from that of Japanese, 

but our method is also applicable to an alphabet letter matrix. 

One such possible matrix consists of six rows and six columns. 

The alphabet letters are grouped according to column numbers: 

column 1 (A, F, K, P, U, Z), column 2 (B, G, L, Q, V), column 

3 (C, H, M, R, W), column 4 (D, I, N, S, X), column 5 (E, J, O, 

T, Y), and column 6 (space). For example, if a patient chooses 

the three column numbers, “4, 1, 5,” then the candidate words 

are the following: “data,” “date,”…,“suede,” ”suet”  (131 

words) [51]. If the partner asks the patient, “What genre would 

you like to listen to?”, then the answer “4, 1, 5” could mean 

“sports”: S in column 4, P in column 1, and O in column 5. 

BCIs based on fNIRS [25], [27], [31], [32] and EEG [28], 

[29], [30] enable CLIS-ALS patients to answer “yes/no” to 

questions. By using these BCIs as communication aids, a 

system in which patients and partners cooperate as proposed in 

this study will enable ALS patients in CLIS or almost in CLIS 

to communicate beyond binary “yes/no” responses. 

APPENDIX 

The feature vectors are obtained as follows. Given a time 

window, we make a baseline by applying the least-squares 

method to the wave data in the window; then, we subtract the 

baseline from the wave to obtain the oscillation around the 

baseline. We then apply the Hilbert transform to the oscillating 

wave and obtain the instantaneous amplitude A(t) and the 

unwrapped instantaneous phase ϕ(t). At both ends of the 

analytic signal, we discard data over 1 s to remove transform-

induced waveform artifacts near the end regions. The rotation 

number is given by R = {ϕ(tf) – ϕ(ti)}/ 2π, where ti = ts + 1 and 

tf = te − 1 for the time window ts ≤ t ≤ te (s), and the amplitude 

is given by Amp = max{A(ti ≤ t ≤ tf)}. 

The feature set and time window are automatically 

optimized during SVM training. We train the SVM with 

several pairs of “yes/no” training data and a pair of test data 

for cross-validation. First, we train the SVM scanning the time 

window for a given feature set. In this process, we check a 

performance measure, defined as the average of the separation 

of training vectors and the classification accuracy of cross-test 

vectors, and select the time window(s) with the largest measure. 

When there are multiple selected windows, the one giving the 

largest geometric margin in the SVM is adopted. For the 

searched time windows, the starting point increases every 

second, starting from 0 s, which is the starting point of the 

answering period, and the width increases by 1 s for each 

starting point, starting from a width of 15 s. Because we found 

that hb(t) lags hr(t) by 3 s on average for the “yes” task, which 

should represent the delay of the hemodynamic response, we 

shift the time window for hb(t) back by 3 s in feature set 1. In 

this way, the time window is determined for each feature set. 

Next, the optimal feature set is selected by using the above 

performance measure and the geometric margin. 
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