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Abstract

COVID-19 is a rapidly spreading viral disease and has affected over 100 countries worldwide. The numbers of casualties

and infected cases have been escalated particularly in vulnerable states with weakened healthcare systems. Recently, reverse

transcription-polymerase chain reaction (RT-PCR) is the test of choice for diagnosing COVID-19. However, current evidence

suggests that COVID-19 infected patients are mostly stimulated from a lung infection after coming in contact with this virus.

Therefore, chest X-ray (i.e., radiography) and chest CT can be a surrogate in some countries where PCR is not readily

available. This has forced the scientific community to detect COVID-19 infection from X-ray images and recently proposed

machine learning methods offer great promise for fast and accurate detection. Deep learning with convolutional neural networks

(CNNs) has been successfully applied to radiological imaging for improving the accuracy of diagnosis. However, the performance

remains limited due to the lack of representative X-ray images available in public benchmark datasets. To alleviate this issue, we

propose an attention mechanism for data augmentation in the feature space rather than in the data space using reconstruction

independent component analysis (RICA). Specifically, a unified architecture is proposed which contains a deep convolutional

neural network (CNN), an attention mechanism, and a bidirectional LSTM (BiLSTM). The CNN provides the high-level features

extracted at the pooling layer where the attention mechanism chooses the most relevant features and generates low-dimensional

augmented features. Finally, BiLSTM is used to classify the processed sequential information. We conducted experiments on

two publicly available databases to show that the proposed approach achieves the state-of-the-art results with an accuracy of

97% and 84% while being able to generate explanations. Explainability analysis has been carried out using feature visualization

through PCA projection and t-SNE plots.
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Abstract— COVID-19 is a rapidly spreading viral disease
and has affected over 100 countries worldwide. The numbers of
casualties and cases of infection have escalated particularly in
countries with weakened healthcare systems. Recently, reverse
transcription-polymerase chain reaction (RT-PCR) is the test of
choice for diagnosing COVID-19. However, current evidence sug-
gests that COVID-19 infected patients are mostly stimulated from
a lung infection after coming in contact with this virus. Therefore,
chest X-ray (i.e., radiography) and chest CT can be a surrogate
in some countries where PCR is not readily available. This has
forced the scientific community to detect COVID-19 infection
from X-ray images and recently proposed machine learning
methods offer great promise for fast and accurate detection.
Deep learning with convolutional neural networks (CNNs) has
been successfully applied to radiological imaging for improving
the accuracy of diagnosis. However, the performance remains
limited due to the lack of representative X-ray images available
in public benchmark datasets. To alleviate this issue, we propose
a self-augmentation mechanism for data augmentation in the
feature space rather than in the data space using reconstruction
independent component analysis (RICA). Specifically, a unified
architecture is proposed which contains a deep convolutional
neural network (CNN), a feature augmentation mechanism, and a
bidirectional LSTM (BiLSTM). The CNN provides the high-level
features extracted at the pooling layer where the augmentation
mechanism chooses the most relevant features and generates
low-dimensional augmented features. Finally, BiLSTM is used
to classify the processed sequential information. We conducted
experiments on three publicly available databases to show that
the proposed approach achieves the state-of-the-art results with
accuracy of 97%, 84% and 98%. Explainability analysis has been
carried out using feature visualization through PCA projection
and t-SNE plots.

Index Terms—COVID-19 detection, Attention mechanism, Fea-
ture augmentation, Transfer learning, BiLSTM, RICA

I. Introduction

Coronavirus disease (COVID-19) is a viral respiratory dis-
ease that initially emerged in China when a cluster of patients
with unknown pneumonia was reported in the capital of Hubei
Province (Wuhan). The virus that caused the disease was iden-
tified to be severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) by the International Committee on Taxonomy
of Viruses based on phylogeny, taxonomy, and established
practice [1]. At the time of writing, the World Health Organi-
zation (WHO) reported that approximately 185 million people
are affected and 92, 798 deaths worldwide [2]. Moreover,
animals such as cats and dogs have also been reported to
be infected with SARS-CoV-2 in many countries, including
the United States. Thus, WHO declared this virus a “Public

health emergency of international concerns” and classified it as
a pandemic on March 2020 [3]. Most infected people develop
mild to moderate illness and common symptoms are runny
nose, body aches, cough, fever, sore throat, and shortness of
breath [4].

Since the beginning of the pandemic, several diagnostic
methods have been approved by several international and
country-specific agencies. However, there is no clear consen-
sus on the correct tests to be used related to any acute com-
plaints to yield a correct diagnosis in a timely constraint. In
EU member countries, there are 365 different commercialized
devices that have been used for conducting a such research.
Among them, 168 are Immunoassays, three are sequencing-
based methods, 192 are PCR-based methods, and two commer-
cialized tools are based on different medical devices [5]. WHO
recommended RT-PCR test (developed by Corman), which is
nowadays considered as the current standard for detecting a
coronavirus infection. However, the false-negative rate was
found to be approximately 20% to 40% in the infected cases in
China due to inappropriate sample collection, faulty operation,
storage, and low sensitivity test kits [6].

Along with laboratory testing, chest CT scans with the help
of a radiologist can be considered as a complementary tool
with RT-PCR [7]. COVID-19 infected patients show ground-
glass opacities (GGO) in the periphery of both lungs, and
appear more grey or hazy as opposed to the normally dark-
appearing lungs. It is also stated that those patients who recov-
ered from COVID-19 pneumonia, lung disease was observed
ten days after the onset of symptoms [8]. In the early days of
the pandemic, clinical centers in Wuhan were working with an
insufficient number of often malfunctioning test kits, resulting
in a concerning amount of false negatives. To counteract these
challenges, doctors were persuaded to make diagnoses based
only on laboratory and chest CT results [9]. In developing
countries, such as India, where the number of test kits remains
low, CT is also used for COVID-19 detection.

In addition to CT scans, chest X-ray scanning machines are
easily accessible in almost all hospitals, and have a potential
role in the diagnosis because X-ray images represent visual
indexes linked with COVID-19 [7]. In Fig. 1, we visualize
example images from normal, COVID-19, pneumonia, and
bacterial pneumonia classes, taken from two X-ray image
databases [10, 11, 8]. Thus, radiologic images obtained from
COVID-19 cases with laboratory results may help in the early
detection of infection. The study conducted on CT images by
Kong et al. [12], demonstrates acute bilateral airspace opacities
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Figure 1: Samples images from chest X-ray database:(A) Nor-
mal, (B) COVID-19, (C) Pneumonia, D) Bacterial pneumonia.

in infected patients. Zhao et al.[13] reported that most patients
had a fever as the onset symptom. Based on the result of X-
ray scans, GGO 87%, vascular enlargement in the lesion 72%
or mixed GGO, and consolidation 65% appeared. Moreover,
authors show that lesions present on CT images are more likely
to have a peripheral distribution. Li et al. observed that chest
CT had a small rate of missed diagnosis of COVID-19. GGOs
and consolidation with or without vascular enlargement are
common CT features of COVID-19 and may be useful as a
standard method for the rapid diagnosis of COVID-19 [7].
Similarly, Zu et al. [14] concluded that 1649 of chest CTs can
have rounded lung opacities.

Machine learning (ML) techniques are attracting substantial
interest in the medical field, where deep learning-based models
have been successfully utilized in many healthcare applications
such as depression detection [15], pain estimation [16], breast
cancer detection [17], Alzheimer’s disease classification [18],
and pneumonia detection from chest X-ray images [19]. Due
to the increase in COVID-19 cases, healthcare systems have
been overwhelmed and require alternative solutions for the
automated diagnosis of COVID-19. In this regard, many
attempts have been put forward to address such problems using
radiology images [8, 9, 7, 20, 21, 12]. However, it is not
feasible to build a large labeled database for every disease, i.e.,
viral pneumonia, COVID-19, bacterial pneumonia, aspiration
pneumonia, etc. Thus, the bias in small datasets and the lack of
representative training and tuning data impair the performance
of such deep learning models.

A simple way to deal with these challenges consists in ap-
plying data augmentation techniques, which enable researchers
to significantly increase the diversity of data, without col-
lecting new data. However, augmented data that could be
borrowed from unlabeled data [22], random erasing [23] or
randomly masking regions [24] are heavily dependent on
training parameters. For instance, a slight rotation between
1 to 30 or a random cropping ((288, 288) → (224, 224)),
could be useful on digit recognition tasks such as MNIST,
but as the rotation degree increases, the label of the data

Figure 2: The main idea of the proposed work. RICA is
designed to augment the feature space. The augmented features
are used as a sequence input to train the BiLSTM network for
final detection. Three different colors in RICA represent three
augmented features.

is no longer preserved under post-transformation [25]. The
dominant approaches such as Generative adversarial networks
(GANs) [26], Bidirectional GANs [27], the DCGAN [28],
Progressively Growing GANs [29], the CycleGAN [30], gen-
erate synthetic images but require careful domain adaptation
to transfer the knowledge and features to the real image
domain. A study based on combined CNN-BiLSTM reveals
that training samples of COVID-19 needs to be enlarged to
test the generalizability of the developed systems [31]. The
authors claim that COVID-19 images might be associated with
multiple disease symptoms, and demand computer-aided diag-
nostic systems (CAD) to detect them accurately and rapidly.
Most of the existing methods either consider 2-class (normal
vs. COVID-19) i.e., binary classification) or 3-class classifi-
cation (normal vs pneumonia vs COVID-19). To overcome
this issue, Asif et al. [32] proposed a deep learning model
based on Xception architecture for 4-class cases (COVID vs
Pneumonia bacterial vs pneumonia viral vs normal). Wang et
al. [33] introduces COVID-Net and achieved 83.5% accuracy
in classifying pneumonia-bacterial, COVID-19, normal, and
pneumonia-viral classes. However, the performance for multi-
class disease predictions remains unclear. Except ensemble-
CNNs [7], none of the methods discussed to treat 5-class cases.

On the other hand, existing CNN-LSTM based COVID-
19 detection methods [34] treat the convolutional features as
equally important and ignore the interference information (e.g.,
mutual exclusion and redundancy), which can prevent learning
of long data sequences. Moreover, the high dimensional vector
generated by CNN can increase the network parameters of
LSTM and make the network difficult to optimize. Therefore,
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motivated by the urgent need to develop an artificial intelli-
gence (AI) solution to aid in rapid evaluation of different lung
diseases with COVID-19 detection, inspired by open source
available databases, we propose a unified architecture that
consists of a deep convolutional neural network (CNN), a
feature augmentation mechanism, and a bidirectional LSTM
(BiLSTM) for the detection of 5-cases including COVID-19
from X-Ray images. Specifically, the feature augmentation
mechanism based on reconstruction independent component
analysis (RICA) [35] is designed in such a way that it
improves the performance of CNN-based BiLSTM architec-
ture by approximating the real distribution in feature space
rather than in data space, where the generated features are
mutually independent and promise diversity. To the best of
our knowledge, this is the first work in COVID-19 literature
that implements feature augmentation without performing any
training data augmentation strategy. An illustration of a such
concept is provided in Fig.2. By employing this strategy, the
interference information or redundancy is significantly elimi-
nated by selecting the low-dimensional augmented features.

In addition, it is worth mentioning that chest radiography
analysis is known to have inherent limitation in early stages
of COVID-19 detection, due to low sensitivity in ground-
glass opacity detection [14]. Moreover, recovered patients are
likely to be protected against reinfection for several weeks
but may still transmit the virus. However, well-trained deep
learning methods can focus on anomalies that are not visible to
human eyes, and may encourage their applications in a health
care system. Overall, our main contributions in this paper are
summarized as follows:

1) We introduce a deep feature augmentation framework
to improve COVID-19 detection mitigating the current
lack of sufficient annotated data.

2) We employ a combined CNN-BiLSTM network to show
that the proposed low-dimensional augmented features
are more compact and more powerful than raw CNN
features for the diagnosis of COVID-19 in a robust
manner.

3) The effectiveness and validation of our proposed method
have been extensively explored on three publicly avail-
able datasets and compared with state-of-the-art results.

4) PCA and t-SNE feature visualization has been utilized to
demonstrate the explainability of the proposed learning
model. Moreover, a detailed experimental analysis is
conducted in terms of specificity, sensitivity, F1-score,
accuracy, confusion matrix, and receiver operating char-
acteristic (ROC) to determine the performance of the
proposed method.

The rest of this paper is organized as follows. Section 2
deals with literature review in the field. Section 3 details the
proposed method highlighting the different phases of our pro-
posal, including deep-feature extraction, augmentation-based
learning module and the associated recurrent neural network.
Section 4 emphasizes the experiment results, including dataset
description, evaluation metrics, implementation details, results
and explainability analysis. Finally conclusive statements and
perspective works are provided in Section 5.

II. Literature Review

In recent months, researchers have evaluated SARS-CoV-2
infected chest X-ray images using convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), generative
adversarial networks (GANs) and encoder-decoder models. A
brief overview about recent developments is provided in this
section.

Narin et al. [36] utilized five pre-trained deep learning mod-
els (InceptionV3, Inception-ResNetV2, ResNet50, Res-Net101
and ResNet152) to detect COVID-19, bacterial pneumonia
and viral pneumonia. Their best performing model achieved
an accuracy of 98% using a ResNet-50 CNN pre-trained on
COVID-19 images. Rajaraman et al. [37] proposed a method
that increases training data using weakly labeled data aug-
mentation. A stage-wise approach was used to train the CNN.
The authors concluded weakly labeled data augmentation is
superior in comparison to baseline non-augmented training. A
correlation learning mechanism is proposed, and the images
are augmented by flipping, image nosing, and rotation in [38].

Ozyurt et al. [39] used a traditional machine learning de-
scriptor (LBP), and a feature selector method that selects most
informative features together to achieve a better performance,
achieving a 95.84% classification accuracy on CT images.
Rahimzadeh and Attar [40] introduced a combined deep CNN
to identify 11302 chest X-ray images. In their study, Xception
and ResNet50V2 were used and claimed as a new strategy
to address the unbalanced dataset problem. They reported an
accuracy rate of 99.56%. Castiglioni et al. [41] utilized an
independent dataset of 110 patients suspected for COVID-19
infection, and developed a ten convolutional neural networks
(CNNs) to evaluate the performance.

Multiple state-of-the-art deep learning models including
DenseNet201, Resnet50V2 and Inceptionv3, were fine-tuned
individually to make independent predictions in [42]. Then, a
weighted average ensembling technique was used to combine
them to achieve a classification accuracy of 91.62%. Similarly,
Wang et al. [33] proposed a tailored deep convolutional neural
network for classifying chest X-ray images. Hemdan et al.
[43] examined seven different CNN architectures in their
experiment, including DenseNet-121, VGG-19, ResNet-V2,
Inception-V3, Xception, MobileNet-V2 and InceptionResNet-
V2. Their work revealed that the DenseNet and VGG-19
models achieved the best performance with 91% accuracy for
detecting COVID-19 and non-COVID-19 infections.

Berrimi et al. [44] fine-tuned two pre-trained models,
Den-seNet and InceptionV3 to classify both X-ray and CT
chest scans. To increase the diversity of the training data,
the images were rotated, zoomed, horizontally flipped, and
shifted. Nour et al.[45] designed a five convolution layers
(CNN) from the scratch. The extracted CNN features are then
evaluated with traditional machine learning classifiers such
as k-nearest neighbor, support vector machine (SVM), and
decision tree. The authors concluded that the SVM classifier
with an accuracy of 98.97% performs the best among all of
them. Giacomo et al. [46] detect lung disorder by using X-
ray images. Specifically, a fuzzy logic segmentation method
combined with a neural network is proposed, and accuracy
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of 92.56% is reported in their work. Yoo et al. [47] used the
pre-trained ResNet18 and different decision trees are utilized
to detect CXR images as normal, tuberculosis, and COVID-
19. Aslan et al. [34] proposed a hybrid architecture based
on CNN–BiLSTM for COVID-19 detection. Moreover, the
authors employed two deep learning architectures including
Artificial Neural Networks (ANN) and a hybrid structure
containing a BiLSTM layer to utilize the temporal properties.
The accuracy of 98.14% and 98.70% were achieved using
first and second architecture, respectively. Nayaar et al. [48]
showed thoracic (chest) imaging are found to be effective in
the diagnosis of coronavirus disease (COVID-19). Mukherjee
et al. [49] utilized a lightweight (9 layered) CNN-tailored
deep neural network to detect COVID-19 positive cases, and
achieved an overall accuracy of 96.28%. A federated learning
is proposed to detect COVID-19, and 98.72% accuracy was
reported in [50]. Challenges, innovations and opportunities to
detect COVID-19 are discussed in [51]. Mukher et al. [52]
proposed a a light-weight CNN-tailored shallow architecture
to detect COVID-19. The proposed model was designed with
fewer parameters as compared to other deep learning models
and validated using 321 COVID-19 positive Chest X-ray
images with an accuracy 99.69%. Marcin et al. [53] designed a
method for diseased tissues detection over input X-ray images.

M. Turkoglu [54] employed the transfer learning approach
by using the AlexNet architecture. To choose the most effec-
tive features, the Relief feature selection algorithm is used.
Finally, the Support Vector Machine (SVM) is applied to
detect COVID-19, and Pneumonia disease. An accuracy of
99.18% was reported. Sahlol et al. [55] proposed a combined
approach where Inception model is utilized to extract the
features and a swarm-based feature selection algorithm is
applied to choose the most relevant features. Two public
COVID-19 X-ray datasets are used and 99.18% accuracy
was reported. Mesut et al. [56] utilized MobileNetV2 and
SqueezeNet models to extract the deep features. Then, the
Social Mimic optimization method is proposed and the fea-
tures were combined and classified using SVM classifer. To
overcome the limitation of chest X-ray samples, Karbhari et al.
[57] proposed an Auxiliary Classifier Generative Adversarial
Network (ACGAN) to generate synthetic images. Based on
obtained images, Convolutional Neural Networks (CNNs) is
utilized to detect COVID-19 in the CXRs.

Loey et al. [58] utilized a GAN architecture to synthesize
auxiliary images as a motivation to overcome the issue of
lack of datasets especially in chest X-rays images. Three
deep transfer models are selected to detect four classes, i.e.,
the COVID-19, normal, pneumonia bacterial, and pneumonia
virus. Googlenet performed the best in their work. The net-
work consists of encoder and decoder is proposed in [59],
to show that CORONA-Net performs the best for COVID-
19 detection. MASC-Net consists of a multi-input encoder-
decoder, and introduced to automatically detect infected lung
regions from COVID-19 chest CT scans [60]. 3D U-Net
is proposed as encoder-decoder method in [61], where the
multi-task learning is applied and compared with four transfer
learning strategies. The authors concluded that using multiple
lung lesion datasets can extract more general features.

Therefore, previous research showed that chest X-ray im-
ages have been commonly used in most of the current works
and have an important role in the diagnosis of COVID-19
detection. However, learning from imbalanced data or lack
of necessary extracted features obtained from limited X-ray
training samples cannot provide the expected performance in
the COVID-19 detection. Thus, the proposed work focuses on
a data augmentation strategy where the label preserved features
are generated to improve the performance of deep learning
model.

III. The Proposed Method
The general framework of the proposed approach is divided

into three components: (1) extraction of deep features (2)
an augmentation-based learning module and (3) a BiLSTM
based sub-network. We first describe the procedure of feature
extraction for guiding the process of feature generation. Next,
we explain the procedure of augmenting the training data in
feature space. Finally, the structure of BiLSTM network is
discussed. The overall procedure of the proposed approach is
illustrated in Fig.3.

A. Deep features extraction

Inspired by the performance of deep learning models, we
adapt ResNet-50, a CNN architecture known for its stability
and performance, to extract high-quality features for our task
[62]. The model is fine-tuned by replacing the last fully-
connected layer with a new fully connected layer and setting
the number of outputs equal to the number of classes in
the dataset. We freeze the weights of the first ten layers
so that the gradients of these do not need to be computed.
This is motivated by the fact that earlier features of ResNet
contain more generic features (e.g. color blob detectors or edge
detectors) and make the remaining layers more specific to the
details of the classes contained in the original dataset. The
weights of the new fully-connected layer are increased by a
learning factor 10 and a bias factor 20. By biasing the weight
updates in the new fully-connected layer, the influence of each
training sample in the new data set is magnified and training
time is reduced. We utilize cross-entropy loss to adjust model
weights during training. The purpose is to decrease the loss
and motivate the network towards accurate predictions. It is
defined as

L = −
k∑

i=1

ti log(si), For k classes, (1)

where ti denotes the true label, si the softmax probability
for the ith class, and k the total number of classes.

B. An augmentation-based learning module

Data augmentation in the image space is a well estab-
lished technique that enhances the size and quality of training
datasets such that deep learning models can robustly model
the training data. However, feature augmentation has not
yet acquired the same level of attention. This is crucial for
applications like COVID-19 detection, where the number of
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Figure 3: Flowchart of the proposed method. First, fine-tuning is performed to train a convolutional neural network (CNN)
for COVID-19 detection. An augmentation mechanism based on reconstruction independent component analysis is used to
leverage the most relevant CNN features and form a sequence of augmented features, which are then fed into a Bidirectional
Long Short-Term Memory (LSTM) network for the final representation.

training samples remain limited. To accomplish this, feature
augmentation is conducted based on reconstruction indepen-
dent component analysis (RICA) [35]. The latter was designed
to overcome the drawbacks of independent component analysis
(ICA) by replacing ICA’s orthonormality constraint with a soft
reconstruction penalty, which turns out to be very useful in
learning sparse features. Therefore, the idea behind our pro-
posed mechanism is to extract more meaningful information
from generated ones to correctly classify target samples.

In our case, RICA receives data as input from the last pool-
ing layer of RestNet-50, then it converts it into a new lower-
dimension representation. In order to apply transformation,
RICA is calculated by using the following equation:

v = Zk (2)

where v is the vector representing the CNN features, Z
denotes the matrix, and k are the independent components
for dimensionality reduction. The goal of RICA is to define
the observed data v by mixing the components k. We need to
determine both Z and k from the data v because we can not
directly extract the sources k, nor know the mixing matrix Z.
Let W be the inverse of Z, then the model can be expressed
as:

k = Wv (3)

Hence, using the original data v, the goal is to determine a
set of vectors (corresponding to the column vectors of matrix
W ) that will form the features k sparse; while being an
orthonormal basis. In this regard, our matrix W will assign
the data v to features k. The optimization problem defined by
RICA becomes [35]:

min
W

λ∥(Wv)∥1 +
1

2
∥WTWx− x∥22 (4)

where λ evaluates the objective and non-linear convex function
and W ∈ Rq×n (where q denotes the features and n is the
number of data vectors in v). L1 denotes the sparsity penalty
and has a tied reconstruction matrix W . To decrease the
computational cost of the optimization, limited-memory BFGS
(LBFGS) algorithm method [63] is used as a constrained
optimizer that results in fast convergence. Moreover, RICA
can manage data with approximate whitening or even without
whitening [35].

As illustrated in the formulation of RICA in equation (4), in
the first part, λ represents the weight assigned to the sparsity
constraint in relation to the recreation condition. The second
part emphasizes accurate recreation of the original features by
minimizing the recreation error

∥∥WTWx− x
∥∥. In this regard,

we fix the feature dimension of pooling layer features equal
to 400, and empirically set the λ weights to 80, 100, and 120
because the higher the weight we give to the sparsity constraint
the less precise will the recreation be, and vice-versa. Hence,
we obtained three augmented feature vectors with different
weights by keeping the same dimension 400 as mentioned
above. Similarly, we repeat the same procedure to obtain three
augmented features sets for the second dataset by setting the
feature dimension to 500. The representations learned by the
augmentation mechanism contain discriminative information
related to the classes, which allows the network to accurately
predict them.

C. Recurrent Neural Network (RNN)

Mainstream CNN frameworks are related to conventional
statistical models, thus lacking the capacity to map sequences
to sequences. BiLSTM [64] is one kind of RNN, which has
the ability to process sequences of arbitrary length, and has
obtained surprising performance in natural language process-
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ing [65]. However, the high dimensionality and sparsity of the
data are one of the major challenges that limit its performance.
Taking advantage of the low-dimensional RICA features, BiL-
STM performs better than using the raw CNN features (we
further discuss this argument in Section 4.4). The BiLSTM
is implemented similarly to the standard bi-directional LSTM
except that the input is based on three augmented features. We
found that the proposed strategy calculated on each time step
resulted in improved reconstructions, which we found to be
vital to accomplish our feature augmentation process.

BiLSTM Networks capture each sequence vector based on
the memory cell (Ce), and compete for retaining dependencies
between the elements in the input sequence. It is comprised of
an input gate (ie), an output gate (oe) and a forget gate (ge).
The input gate governs the information flow into the cell by
multiplying the cell’s non-linear transformation of inputs me.
The output gate decides how much information from the cell
is used to compute the output activation of the LSTM unit.
The forget gate regulates the extent to which a value remains
in the cell. The LSTM unit updates for time step e are:

ge
ie
me

oe

 =


σ
σ

tanh
σ

H · [pe−1, xe] (5)

Ce = ge ⊙ Ce−1 +me ⊙ ie (6)

pe = tanh(Ce)⊙ oe (7)

where xe is the input at the current time-step, ie is the current
cell state, g, i and m is the input gate activation, forget gate
activation and output gate activation respectively, σ illustrates
the logistic sigmoid function and ⊙ represents element-wise
multiplication.

IV. Experiments and Results
In this section, we first provide a brief description of

three databases that are used to evaluate our method. Then,
we present evaluation metrics, implementation details, and
experimental results, which are discussed later in comparison
to state-of-the-art methods.

A. Datasets

X-ray image dataset: The first dataset used in the exper-
iments is obtained from open access sources provided by
Cohen JP [10] and Wang et al. [11]. It contains three classes:
pneumonia, "no-findings", and COVID-19, where pneumonia,
and "no-findings" have 500 images each and COVID-19 has
125 X-ray scan images. A detailed explanation (https://github.
com/muhammedtalo/COVID-19, (accessed on June 05, 2021))
can be found in [8].

COVID-19 X-ray scan database: The second dataset is
collected from the open access source provided by Vantaggiato
et al. [7], where two scenarios are examined. In the first
scenario, three classes (Normal, COVID-19, and Pneumonia)
are provided in the dataset. For training, each class has 404
images. Validation and testing set contain 100 and 207 images,

Table I: Number of images per class for each dataset.

Datasets Classes Train Set Validation Set Test Set
X-ray image dataset 3 900 - 225

COVID-19 X-ray scan dataset 3 1212 300 621
COVID-19 X-ray scan (II) 5 2020 500 1035

SARS-CoV-2 CT-scan dataset 2 2232 - 249

Table II: The performance comparison results for the three-
class X-ray image database.

Method Performance Metrics (%)
Sensitivity Specificity Precision F1-Score Accuracy

SqueezeNet 70.00 80.90 82.87 69.59 75.66
SqueezeNet+BiLSTM 89.00 93.60 93.30 90.40 91.89
SqueezeNet+SAM+BiLSTM 94.66 95.73 95.40 94.63 95.25
Googlenet 84.66 88.93 83.41 83.06 87.25
Googlenet+BiLSTM 92.00 94.10 93.58 93.49 93.55
Googlenet+SAM+BiLSTM 93.66 96.73 96.67 94.66 96.10
DenseNet201 89.66 92.03 87.04 88.18 90.81
DenseNet201+BiLSTM 95.33 94.86 91.27 92.42 94.16
DenseNet201+SAM+BiLSTM 98.00 95.20 96.02 94.99 96.40
ResNet-50 83.00 91.20 88.29 85.56 87.55
ResNet-50+BiLSTM 99.80 88.80 87.71 93.45 93.77
ResNet-50+SAM+BiLSTM 99.93 92.80 91.74 95.69 97.26

respectively. In the second scenario, two more classes were
added by the authors yielding a five class model: Normal,
COVID-19, Viral-Pneumonia, Bacterial-Pneumonia and Lung-
Opacity. This dataset (https://github.com/Edo2610/Covid-19_
X-ray_Two-proposed-Databases, (accessed on June 11, 2021))
is acquired from different open access sources [10, 66, 67, 68].

The SARS-CoV-2 CT-scan dataset: The third dataset used
in our work is acquired from [69]. It consists of 2481 CT
scan images and collected from hospitals of Sao Paulo, Brazil.
In total 1252 patients were infected with SARS-CoV-2 and
(1230) were reported as normal. This dataset (https://www.
kaggle.com/plameneduardo/sarscov2-ctscan-dataset, (accessed
on Nov 15, 2021)) is also publicly available , and we sum-
marize number of classes and images of each dataset in Table
I.

B. Evaluation Metrics

The performance of the proposed method is evaluated
with respect to Sensitivity, Specificity, Precision, F-Score and
Accuracy, defined using the equations below:

Sensitivity =
TP

TP + FN
∗ 100 (8)

Specificity =
TN

TN + FP
∗ 100 (9)

Precision =
TP

TP + FP
∗ 100 (10)

F1-Score = 2 ∗ (Precision ∗ Sensitivity)
Precision + Sensitivity

∗ 100 (11)

Accuracy =
Number of correct prediction
Total number of prediction

∗ 100 (12)

Where TP, FP and FN represent the True Positive, False
Positive and False Negative, respectively.

In addition to the above, the ROC (Receiver Operating
Characteristics) curves have been provided as well. These
consists of graphs showing the variation of True Positive Rate

https://github.com/muhammedtalo/COVID-19
https://github.com/muhammedtalo/COVID-19
https://github.com/Edo2610/Covid-19_X-ray_Two-proposed-Databases
https://github.com/Edo2610/Covid-19_X-ray_Two-proposed-Databases
https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
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Table III: The general comparison of the proposed method
with other 3-class state-of-the-art methods.

Study Methods Class Overall Accuracy
Ucar et al. [70] COVIDiagnosis-Net 3 98.26

Apostolopoulos et al. [71] The pretrained CNNs 3 93.48
Li and Zhu [72] DenseNet 3 88.9

Wang and Wong [33] Tailored CNN 3 92.3
Chowdhury et al. [73] Sgdm-SqueezeNet 3 98.3

Ucar et al. [70] Bayes-SqueezeNet 3 98.3
Ozturk et al. [74] DarkCovidNet 3 87.02
Proposed method ResNet-50+SAM+BiLSTM 3 97.26

(TPR) or, equivalently, Sensitivity as defined in Eq. (8), with
respect to False Positive Rate (FPR), where FPR is defined as:

FPR =
FP

FP + TN
∗ 100 (13)

The ROC exhibits the performance of the underlined classifi-
cation model at all classification thresholds.

C. Implementation details

All the X-ray images are resized to 224× 224 based on the
size requirement of the model. No image data augmentation
was applied, the features are augmented only in the feature
space. The CNN is fine-tuned using stochastic gradient descent
(SGD) with a learning rate of 3e − 4, mini-batch size of
32 and epochs of 5, and with shuffling of samples between
every epoch. To build the feature augmentation mechanism, the
feature vector is extracted from the output of the last pooling
layer of ResNet-50 with a size of 2048. RICA is utilized
to augment the pooling layer features into three augmented
feature sets with dimension of 400 for X-ray image dataset,
and 500 for COVID-19 X-ray scan and the SARS-CoV-2
CT-scan databases, respectively. The performance also varies
by varying the number of iterations done by RICA before
stopping, and 80 to 120 iterations were used to extract the
augmented features.

We treat these augmented features as three sequences, and
each sequence is an A-by-Z array, where A is the number
of features (the output size of RICA) and Z is the number of
samples. Therefore, BiLSTM takes the input of three sequence
features sets. For training the BiLSTM, the Adam optimizer
is used by setting the learning rate up to 0.0001. A BiLSTM
layer with 60 hidden units, a fully connected layer, a softmax
layer, and the number of epochs are fixed to 150. Initializing
the BiLSTM sub-network with random initialization can be
challenging because large random-valued weights may lead
to the problem of exploding gradients. Therefore, we set the
recurrent weights with He initializer [75] which performs the
best in all scenarios of our experiments.

D. Experimental results

In order to detect COVID-19 on the first X-ray image
database [10, 11], we split the original image dataset to eighty
percent for training and twenty percent for testing as in the
same spirit as [8]. Rather than proposing the CNN model from
the scratch, we leverage transfer learning using pre-trained
CNN models that have shown outstanding results in classifi-
cation tasks of a wide variety of classes/types/applications.

Table IV: The performance comparison results for the three-
class COVID-19 database.

Method Performance Metrics (%)
Accuracy Precision Sensitivity Specificity F1-Score

SqueezeNet 66.60±0.44 61.25 49.75 74.87 48.57
SqueezeNet+BiLSTM 73.26±0.82 59.90 70.30 83.91 56.68
SqueezeNet+SAM+BiLSTM 76.57±1.47 64.57 67.28 84.01 63.29
Googlenet 72.38±1.47 70.82 67.08 80.54 65.57
Googlenet+BiLSTM 76.49±1.47 67.24 73.97 85.62 62.19
Googlenet+SAM+BiLSTM 77.61±2.47 74.42 73.79 86.15 73.97
DenseNet201 75.19±2.47 71.17 67.69 81.34 64.65
DenseNet201+BiLSTM 76.19±2.47 61.03 67.19 82.55 62.30
DenseNet201+SAM+BiLSTM 79.90±3.05 75.48 78.39 81.36 69.75
ResNet-50 74.53±1.25 73.88 73.10 86.55 68.97
ResNet-50+BiLSTM 77.53±3.53 71.49 71.93 87.71 69.64
Ensemble-CNNs [7] 75.23±3.40 78.28 73.20 87.60 73.43
ResNet-50+SAM+BiLSTM 79.53±1.41 74.55 77.52 88.42 71.96

Table V: The performance comparison results for the five-class
COVID-19 database.

Method Performance Metrics (%)
Accuracy Precision Sensitivity Specificity F1-Score

SqueezeNet 72.88±1.17 63.42 58.45 89.61 55.62
SqueezeNet+BiLSTM 79.55±2.17 61.73 67.98 91.22 55.41
SqueezeNet+SAM+BiLSTM 81.78±2.41 67.43 75.10 92.75 61.27
Googlenet 73.98±1.88 68.01 63.28 90.82 62.55
Googlenet+BiLSTM 77.68±1.47 70.53 74.87 81.87 62.43
Googlenet+SAM+BiLSTM 80.77±1.13 73.62 77.40 94.03 71.36
DenseNet201 82.51±2.40 73.02 72.36 93.09 70.14
DenseNet201+BiLSTM 81.10±1.54 84.54 77.41 82.29 83.95
DenseNet201+SAM+BiLSTM 84.10±1.90 83.76 80.11 91.22 83.25
ResNet-50 79.64±1.84 75.94 71.49 92.87 68.29
ResNet-50+BiLSTM 83.64±1.84 67.14 77.93 92.41 60.71
Ensemble-CNNs [7] 81.00±2.39 82.99 82.96 85.24 81.49
ResNet-50+SAM+BiLSTM 84.64±2.55 76.32 82.19 90.82 73.88

Figure 4: Confusion matrix of the three-class using
ResNet50+SAM+BiLSTM for X-ray image dataset [8]. The
horizontal and vertical axis is for predicted and true classes,
respectively.

Figure 5: Confusion matrix of the three-class using
ResNet50+SAM+BiLSTM for COVID-19 X-ray scan database
[7]. The horizontal and vertical axis is for predicted and true
class, respectively.
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Figure 6: Confusion matrix of the five-class using
ResNet50+SAM+BiLSTM for COVID-19 X-ray scan
database [7]. The horizontal and vertical axis is for predicted
and true class, respectively.

Figure 7: Two class confusion matrix for COVID-19 X-ray
scan database. The horizontal and vertical axis is for predicted
and true class, respectively.

Specifically, four state-of-the-art pre-trained models, such
as ResNet50 [62], SquuezeNet [76], GoogleNet [77], and
DenseNet-201 [78] were fine-tuned for the COVID-19 detec-
tion task and their results are reported in terms of specificity,
sensitivity, precision, F1-score, and accuracy in Table II. Then,
we evaluate the performance of deep models by combining
them with BiLSTM (CNN-BiLSTM) network. Finally, we
report the efficacy of the proposed augmentation mechanism
with a combined CNN-BiLSTM. It can be noted that all these
deep learning models exhibit a limited performance to detect
three classes: COVID-19, No-Findings, and Pneumonia. One
of the reasons is that a number of training samples in the
COVID-19 class resembles Pneumonia class and this is not
enough to compare to the other two classes (No-Findings
and Pneumonia), which might cause overfitting of the model.
However, when these models are connected with BiLSTM, the
performance improves but remains limited due to ignoring the
interference information.

Table III summarizes the comparison with other state-of-
the-art works using three-class X-ray image database. Since
COVID-19 is an emerging disease, the first dataset (X-ray
image) used in our work is being updated regularly with
the new images. Thus, making a fair comparison with other
works would not be possible except the previous work [8]

in comparison to us. However, we compare our method with
other three class methods which are specifically designed for
COVID-19 detection. At the time of writing this paper, the
database contained a total of 125 COVID-19 chest X-ray
images. The best results were obtained from the ResNet-50
and validated using a 5-fold cross-validation procedure. The
proposed method provides a 97% accuracy which is 10%
higher than the previously proposed method [8] on the same
dataset (three classes), and 99% accuracy for the two-class
scenario. For further analysis, a confusion matrix is shown in
Fig.4. It can be observed that the proposed approach classified
COVID-19 better than the other two classes.

Table IV illustrates the results of the three-class scenario on
the second COVID-19 database [7]. The training set, validation
set, and testing set are provided separately. Using the self-
augmentation mechanism, the proposed method achieves 79%
accuracy and improves 4% performance from the previous
study [7]. In addition to the three-class scenario, the results
of the five-class scenario are also reported in Table V. It can
be observed that the proposed method provides 84% accuracy
which is 3% better than the Ensemble-CNNs [7]. For further
analysis, Figure 5 and 6 represent the confusion matrices of
the three-class and the five-class, respectively. The main ob-
servation is that the proposed method attained 99.5% accuracy
for the detection of COVID-19 samples. A confusion matrix
in Fig.7 is illustrated only for COVID-19 and Normal class
with two rows and two columns showing the number of true
positives, false negatives, false positives and true negatives.
It shows that the model predicted all 207 COVID-19 X-ray
images correctly, and no false negative are detected. In the case
of normal class, 98 images are misclassified while 109 images
were correctly classified. All correct predictions are located in
the diagonal of the table (highlighted in light blue and dark
blue), so it is easy to visually inspect the table for prediction
errors. Therefore, we can observe that the proposed framework
is proficient in distinguishing the COVID-19 samples in both
datasets.

As our main focus is the classification of COVID-19
samples, we present ROC curves for a two-class detection
problem (COVID-19 vs Normal), in which only the true
positive rate (TPR) and false positive rate (FPR) are needed.
The best possible detection method would allow a learning
curve in the upper left corner or coordinate (0,1) of the
ROC space, depicting 100% sensitivity (no false negatives)
and 100% specificity (no false positives). In Fig.8, the curves
are visualized with raw CNN features, CNN with BiLSTM-
based network, and finally with an augmentation mechanism.
It can be observed that the proposed augmentation mechanism
clearly improves the performance of a CNN-based BiLSTM
architecture as exhibited by higher sensitivity rate.

In Table VI, we evaluate our proposed method for the
COVID-19 CT-scan dataset with state of-the-art methods.
The results are obtained by dividing the dataset into 90%
as training and 10% as testing dataset [80]. In contrast to
previous deep learning methods [69, 79, 80], our proposed
method explicitly takes advantage of augmented features and
efficiently detect COVID-19 cases by achieving the accuracy
of 98.38%. Thus, based on experimental analysis on all three
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(a) The performance evaluation with the
ResNet-50 model.

0 0.2 0.4 0.6 0.8 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

GoogLeNet

GoogLeNet+BiLSTM

GoogLeNet+SA+BiLSTM

(b) The performance evaluation with the
GoogLeNet model.
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(c) The performance evaluation with the
DenseNet-201 model.

Figure 8: The Receiver Operating Characteristics (ROC) curves of the COVID-19 X-ray scan database, where the true positive
rate represents the y-axis and false positive rate represents the x-axis.

Table VI: The performance comparison results for the SARS-
CoV-2 CT-scan dataset.

Method Performance Metrics (%)
Accuracy Precision Sensitivity Specificity F1-Score

xDNN [69] 97.38 99.16 95.53 - 97.31
GoogleNet [69] 91.73 90.20 93.50 - 91.82
Inception ResNet [79] 90.90 90.15 92.06 89.72 91.09
DenseNet [79] 96.25 96.29 96.29 96.21 96.29
ResNet-152V2 [79] 94.91 92.92 97.35 92.43 95.09
VGG16 [80] 96.39 96.80 96.03 96.21 96.41
COV-CAF [80] 97.59 96.88 98.41 97.82 97.63
ResNet-50+SAM+BiLSTM (Ours) 98.38 96.85 99.97 96.80 98.40

Table VII: Quantitative analysis on each dataset.

Quantitative analysis on each dataset Accuracy(%) Training (s) Testing (s)
X-ray image dataset

λ3 ResNet-50+λ3+BiLSTM 96.88 313.4 1.2
λ2 ResNet-50+λ2+BiLSTM 96.41 312.6 1.2
λ1 ResNet-50+λ1+BiLSTM 95.60 313.3 1.2
All ResNet-50+SAM+BiLSTM 97.26 352.4 1.2

COVID-19 X-ray scan database
λ3 ResNet-50+λ3+BiLSTM 84.59 494.7 1.9
λ2 ResNet-50+λ2+BiLSTM 82.10 492.8 1.9
λ1 ResNet-50+λ1+BiLSTM 83.71 493.2 1.9
All ResNet-50+SAM+BiLSTM 84.64 528.4 1.9

SARS-CoV-2 CT-scan dataset
λ3 ResNet-50+λ3+BiLSTM 98.10 510.7 1.3
λ2 ResNet-50+λ2+BiLSTM 97.56 514.8 1.3
λ1 ResNet-50+λ1+BiLSTM 97.75 511.4 1.3
All ResNet-50+SAM+BiLSTM 98.38 539.1 1.3

datasets, we concluded that neither a single CNN model
nor CNN-based BiLSTM achieves the best results for all
the evaluation metrics. Therefore, the proposed augmentation
is essential to produce a robust feature representation for
COVID-19 detection.

E. Ablation study
We conduct the ablation study to present how the weight

(λ) assigned to the sparsity constraint can have influences on
performance. We note the effectiveness of each augmented
feature set on all three datasets. The computational time is
also calculated which was required to train and test the model.
Moreover, we utilize other dimensional reduction techniques
such as principal component analysis (PCA) [81] and factor
analysis [82] to compare the performance with our propose
method. All the experiments are performed on a workstation
with 3.5 GHz Intel Core i7-5930k and 64 GB RAM memory.

From the Table VII findings, it is evident that the ResNet-
50+λ1+BiLSTM obtains good accuracy by achieving 95.60%

accuracy. When we increase the weights(λ2, λ3), the model
further improves the performance. By combining all the
weighted features, we achieved the best performance on X-
ray image dataset (3-class case). Similarly, for COVID-19 X-
ray scan database (5-class case) and SARS-CoV-2 CT-scan
dataset (2-class case), we obtained the highest performance
with the combination of λ1, λ2, and λ3. In our experiments, the
proposed method takes 352.4s for training and 1.1s for testing
X-ray image dataset. In addition, COVID-19 X-ray scan
database and SARS-CoV-2 CT-scan dataset take 528.4s and
478.1s for training, and 1.9s and 1.1s for testing, respectively.

In Table VIII, we can see the detailed classification results
after using dimensional reduction techniques. The obtained
results show that PCA significantly drops the performance on
all the datasets. It might be possible that PCA fails to sustain
feature transformation when reduce into a small number of
components, i.e. linear combinations of the original features.
Surprisingly, factor analysis provides better performance on
COVID-19 X-ray scan database and achieves state-of-the-art
performance when combined Resnet with BiLSTM network.
However, it decreases the performance when tested on SARS-
CoV-2 CT-scan and X-ray image databases. In contrast to PCA
and factor analysis, the proposed mechanism maintains the
best performance on all three datasets.

F. Explainability Analysis

One of the advantages of the proposed approach is that we
can interpret the detection process of the model. For each
stage, we can see how the features are structured into the
high-dimensional (ResNet) and the impact of the augmented
feature space along the different classification stages. Taking
this into consideration, we employed the PCA projection [83]
and the (t-SNE) algorithm [84]. PCA offers a nice explanatory
framework since its axes are made of a linear combination
of the original dimensions, allowing comprehension of high
dimensional patterns. Similarly, t-distributed Stochastic Neigh-
bor Embedding (t-SNE) creates a low-dimensional represen-
tation of complex high dimensional data through a series
of transformation and fine-tuned optimization procedures. In
this respect, the projection results of both PCA and t-SNE
provide a rough indication of the quality of the separation and
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Table VIII: Performance evaluation of dimensionality reduction methods for COVID-19 datasets.

Dataset Method Accuracy(%) Sensitivity (%) Specificity(%)

X-ray image dataset ResNet+PCA+BiLSTM 83.10 76.22 89.17
ResNet+FAC+BiLSTM 91.20 89.64 93.66
ResNet+SAM+BiLSTM 97.26 99.93 92.80

COVID-19 X-ray scan database ResNet+PCA+BiLSTM 59.27 52.88 63.07
ResNet+FAC+BiLSTM 81.88 79.22 84.48
ResNet+SAM+BiLSTM 79.53 77.52 88.42

The SARS-CoV-2 CT-scan dataset ResNet+PCA+BiLSTM 81.27 77.10 87.15
ResNet+FAC+BiLSTM 89.36 84.24 92.14
ResNet+SAM+BiLSTM 98.38 99.97 96.80

COVID-19

Normal

(a) ResNet-50 features with PCA
visualization.

COVID-19

Normal

(b) ResNet+BiLSTM with PCA vi-
sualization.

COVID-19

Normal

(c) ResNet+BiLSTM with t-SNE
visualization.

Bacterial

COVID-19

Lung Opacity

Normal

Viral

(d) ResNet+BiLSTM with t-SNE
visualization.

Figure 9: Two-dimensional scatter plots of ResNet features with PCA and t-SNE over COVID-19 X-ray database. The clusters
correspond to two and five different classes available in the data.
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(a) ResNet-50+RICA with PCA
visualization.

COVID-19

Normal

(b) ResNet+RICA+BiLSTM with
PCA visualization.

COVID-19

Normal

(c) ResNet+RICA+BiLSTM with
t-SNE visualization.

Bacterial

COVID-19
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(d) ResNet+RICA+BiLSTM with
t-SNE visualization.

Figure 10: Two-dimensional scatter plots of augmented features with PCA and t-SNE over COVID-19 X-ray database. The
clusters correspond to two and five different classes available in the data.

supporting explainability through visual exploration.
The ResNet features in Fig.9 (a) indicate that both classes

(COVID-19 vs Normal) are strongly correlated, which makes
it hard for the BiLSTM to separate them as shown in Fig.9
(b) and Fig.9 (c). We also visualize the five class features in
Fig.9 (d) and observed that the Normal class is still correlated
with the Lung Opacity class that causes overfitting of CNN-
BiLSTM architecture. The derived clusters indicate that the
prior information obtained from raw CNN features causes
to decrease the performance. On the other side, augmented
features generated by RICA reduce the correlation between
similar classes as shown in Fig.10 (a) and are able to cap-
ture more variability in the feature space. Moreover, it can
be noticed from Fig.10 (b) and Fig.10 (c) that data points
corresponding to Normal and COVID-19 are linearly separable
which could potentially lead to better performance when
training BiLSTM on low-dimensional data. Thus, the proposed
mechanism helps to overcome the overfitting issue and also
separate the five classes efficiently in comparison to raw CNN

features as shown in Fig.10 (d).
It should be noted that our exploration through visualization

as a way to achieve explanability can be further expanded in
different directions. First, projection quality metric can be used
to assess the quality of each projection by using PCA or t-SNE.
This includes global measures such that Normalized Stress,
Distance Consistency, ClustMe [85], or local measures such as
projection precision score [86] can contribute to shedding light
on the quality of such projections. Nevertheless, it should be
noted that such assessment may also be misleading and cannot
contribute towards comprehending why such results occurred.
In this context, one shall mention the interesting work of
Fujiwara et al. [87] who proposed a contrasting clusters in
PCA (ccPCA) as a way to to find out which dimensions
contributed more to the formation of a selected cluster and why
it differed from the rest of the dataset, based on information
on separation and internal versus external variability.
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V. Conclusion
In this study, we address the problem of COVID-19 de-

tection from chest CT and X-ray images. For this purpose, a
unified architecture consisting of a deep convolutional neural
network, an augmentation mechanism, and a bidirectional-
LSTM is proposed. The CNN provides the high-level features
extracted at the pooling layer where the augmentation mech-
anism selects the most relevant features and generates low-
dimensional augmented features. Finally, BiLSTM is used to
classify the processed sequential information. The proposed
method provides an end-to-end structure without the need for
manual feature extraction. We showed that the detection of
COVID-19 was improved by using the low-dimensional aug-
mented features through a reconstruction independent compo-
nent analysis method. Extensive experiments on three publicly
available COVID-19 X-ray image datasets using state-of-the-
art network architectures including Squeez-eNet, GoogleNet,
and DenseNet-201 and recently published works showed that
our newly designed CNN-based BiLSTM architecture outper-
formed several state-of-the-art models.

Our model achieved a 97% accuracy which is 10% higher
than the best performing model published so far in the lit-
erature [74] on the three classes, and 99% accuracy for the
two-classes dataset. In the five class case, our model achieved
84% accuracy which is 3% better than the previously proposed
method in [7]. In some other scenarios, the developed model
has demonstrated the ability to achieve 100% accuracy for the
detection of COVID-19 samples. On the other hand, we also
showed the possibility to utilize the componentwise property
of the overall architecture where each stage (component) can
be used to generate explanations that can be employed to
comprehend the actions of the model. Explainability through
PCA and t-SNE have also been explored and duly commented
as well as highlighting the potential deficiencies that may
restrict the ability of PCS or t-SNE projection to provide an
answer to the "why" question in the explainability, while the
prospect of a newly introduced ccPCA has been recognized.
In the future, we plan to further robustify the feature selection
method and RICA analysis in the convolutional layer of a
CNN in a way to enhance the explanability of the results
and develop joint visualization approach that can compre-
hend both PCA, t-SNE projection outcomes with attention
weights. The source code is available at the project webpage:
https://github.com/ziaul55/COVID-19-Detection
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