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Abstract

Dynamic multi-objective optimization problems (DMOPs) and Many-Objective Optimization Problems (MaOPs) are two classes

of the optimization filed which have potential applications in engineering. Modified Multi-Objective Evolutionary Algorithms

hybrid approaches seem to be suitable to effectively deal with such problems. However, the Crow Search Algorithm has not

yet considered for both DMOP and MaOP. This paper proposes a Distributed Bi-behaviorsCrow Search Algorithm (DB-CSA)

with two different mechanisms, one corresponding to the search behavior and another to the exploitative behavior with a

dynamic switch mechanism. The bi-behaviors CSA chasing profile is defined based on a large Gaussian-like Beta-1 function

which ensures diversity enhancement, while the narrow Gaussian Beta-2 function is used to improve the solution tuning and

convergence behavior. The DB-CSA approach is developed to solve several types of DMOPs and a set of MaOPs with 2, 3, 5, 7,

8, 10 and 15 objectives. The Inverted General Distance, the Mean Inverted General Distance and the Hypervolume Difference

are the main measurement metrics are used to compare the DB-CSA approach to the state-of-the-art MOEAs. All quantitative

results are analyzed using the nonparametric Wilcoxon signed rank test with 0.05 significance level which proving the efficiency

of the proposed method for solving both 44 DMOPs and MaOPs utilized.
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Abstract 

Dynamic multi-objective optimization problems (DMOPs) and Many-Objective 

Optimization Problems (MaOPs) are two classes of the optimization filed which have potential 

applications in engineering. Modified Multi-Objective Evolutionary Algorithms hybrid 

approaches seem to be suitable to effectively deal with such problems. However, the Crow 

Search Algorithm has not yet considered for both DMOP and MaOP. This paper proposes a 

Distributed Bi-behaviors Crow Search Algorithm (DB-CSA) with two different mechanisms, 

one corresponding to the search behavior and another to the exploitative behavior with a 

dynamic switch mechanism. The bi-behaviors CSA chasing profile is defined based on a large 

Gaussian-like Beta-1 function which ensures diversity enhancement, while the narrow Gaussian 

Beta-2 function is used to improve the solution tuning and convergence behavior. The DB-CSA 

approach is developed to solve several types of DMOPs and a set of MaOPs with 2, 3, 5, 7, 8, 

10 and 15 objectives. The Inverted General Distance, the Mean Inverted General Distance and 

the Hypervolume Difference are the main measurement metrics are used to compare the DB-

CSA approach to the state-of-the-art MOEAs. All quantitative results are analyzed using the 

nonparametric Wilcoxon signed rank test with 0.05 significance level which proving the 

efficiency of the proposed method for solving both 44 DMOPs and MaOPs utilized.  

Keywords:  Beta Function, Crow Search Algorithm, Dynamic Multi-Objective Optimization, 

Evolutionary Algorithm, Many-Objective Optimization. 

1. Introduction 

During the last decade, a wide range of metaheuristics are designed to solve many complex 

problems based on Evolutionary Algorithms (EA) like the Genetic Algorithm (GA) [1] and the 

Swarm Intelligence (SI) such as the Particle Swarm Optimization (PSO) approach [2]– [5]. 

Different Multi-Objective Evolutionary Algorithms (MOEAs) have been employed to solve 

static single and multi-objective optimization problems, where the main challenge is to find the 

best global solutions through a compromise between convergence and diversity on the search 

space. However, this process becomes more challenging when solving Dynamic Multi-

Objective Optimization Problems (DMOPs) characterized by several types of time-varying 

Pareto Optimal Set (POS) and Pareto Optimal Front (POF) [6].  

Generally speaking, MOEAs are designed to track and react effectively to the change that 

may affect the POS and the POF while conserving both convergence and diversity concepts [7], 

[8]. On the other hand, Evolutionary Dynamic Optimization (EDO) approaches should include 

explicit and implicit mechanisms to detect and correctly react to those changes. A change 



detection mechanism can be maintained through detectors from a feasible search population 

like the current best solutions, the memory of optimal solutions or some predefined sub-

population. Also, it can be assumed separately to the search space using a set of random selected 

solutions, a fixed point, a regular grid of solutions or a set of determined points. In addition, the 

algorithm behaviors have considered as a robust detection strategy based-on the average of best-

found solutions, the time-varying observation of different sub-swarms, the diversity of the 

solutions compared to the success rate, time-varying distributions and statistical methods.  

Five groups of EDO methods are available in the literature to solve DMOPs; diversity-based 

techniques, memory-based approaches, prediction methods, parallel systems and the transfer 

learning-based algorithms. Increasing the mutation rate (hyper-mutation) or adding a randomly 

new member and relocate some useful solutions are the main mechanisms to manage the 

diversity in dynamic optimization, this technique may fall within undetected regions while of 

interests. The diversity-based approach [1] shown their ability for solving dynamic problem 

with continuous and small time-varying parameters and show their limits in problems with 

severe environmental changes. Furthermore, many DMOPs have presented some periodical or 

recurrent changes making storing historical experience of solutions useful to preserve diversity.  

Memory-based approaches use redundant representation of an evolutionary algorithm using 

extra- memory components to help detecting future changes [9]. This category of approaches 

is very effective to solve DMOPs with periodically time-varying properties.  However, such 

mechanisms slow down the convergence and strengthen diversity in the EDO approaches. The 

main disadvantage of memory-based algorithms is the ineffectiveness of redundant solutions 

stored in the archive. On the other hand, the prediction-based methods tend to predict changes 

based-on limited patterns. Such system can detect the global best solution quickly but they fail 

when the changes are stochastic which increases their relative training error rates.  The parallel 

approaches present an optimization process over multiple sub-swarms that may handle the 

problem on separate search space and are recommended for multi-modal problems while are 

computationally expensive. A key challenge for these methods is finding the appropriate 

number of sub-swarm and their sizes. Last but not least, the transfer learning-based methods 

[5], [10]–[12] have the advantage to re-use previous computational experience to improve the 

efficiency of the new generated populations after each change detection by adding transfer 

learning mechanisms which is a time-consuming process. 

 The efficiency of MOEAs significantly decreases when dealing with MaOPs. In MaOPs, the 

number of objectives to satisfy is in general equal or higher to 3. Furthermore, three main issues 

are introduced when solving MaOPs thus including; (i) the inutility of dominance operator 



when dealing with a large number of objectives, (ii) the lack of convergence and diversity and 

(iii) the limited population size in a large dimension of objectives space that increase 

exponentially. Many Pareto-based approaches showed their limits to deal with the increasing 

number of non-dominated solutions using the dominance operator causing the issue of poor 

convergence implicated by the Active Diversity Promotion (ADP) phenomenon [13].  

As a solution, a variety of enhancements are adopted to the original MOEAs when solving 

MaOPs including the decomposition-based and indicator-based approaches. Decomposition 

mechanisms combine multiple objectives into a single one or sub-problems. Some of the 

popular techniques of this type are Pareto sampling [14], improved Pareto sampling (MSOPS-

II) [15] and multi-objective evolutionary algorithm based on decomposition (MOEA/D) [16]. 

The decomposition-based approach become more effective with a set of sub-MOPs such as 

presented in the reference vector-guided evolutionary algorithm (RVEA) [17], MOEA/D-M2M 

[18], NSGA-III [19] and the MOEA/DD [20] and the MOEA/D-ROD [21]. In addition, a set of 

performance metrics are considered to guide the optimization process over different indicator-

based approaches like the fast hypervolume based evolutionary algorithm (HypE) [22], the S-

metric selection based evolutionary multi-objective algorithm (SMS-EMOA) [23], the indicator 

based evolutionary algorithm (IBEA) [24], the Evolutionary Many-Objective Optimization 

Algorithm based on IGD Indicator with Region Decomposition [25] and the MaOEA/IGD [26]. 

A set of new techniques are proposed to deal with the issue of the ineffectiveness of the 

dominance operator over a set of Pareto-based methods like L-optimality [27], 𝜀-dominance 

[28], fuzzy dominance [29], Grid-based Evolutionary Algorithm (GrEA) [30], θ Dominance-

based Evolutionary Algorithm (θ-DEA) [31] and the preference order ranking [32].  Diversity 

management techniques are proposed to arrange a good balance between the convergence and 

the diversity when solving MaOPs. In [30] a three grid-based criterion was proposed to maintain 

diversity including the grid crowding distance, the grid coordinate point distance and the grid 

ranking. A diversity promotion mechanism, DM, is introduced in [33] to activate or disactivate 

the diversity of the population based on the spread and the crowding distance of solutions.  

In NSGA-III algorithm [19],  the reference point-based strategy is used to solve MaOPs. The 

shift-based density estimation (SDE) strategy [34] has been utilized to replace the dominance 

operators of MOEAs. Also, the knee point-driven evolutionary algorithm (KnEA) [35] has 

developed using both knee point-based selection and dominance-based selection. Three groups 

of preference-based approaches including priori algorithms, interactive algorithms and 

posteriori algorithms are employed to deal with the issue of population size limitation in regards 

to the large dimension of the objective space. The most known posteriori approaches are the 



Preference-Inspired Coevolutionary Algorithms (PICEA-g) [36], the novel two-archive 

algorithm (TAA) [37] and its improved version (Two_Arch2) [38].  

In addition, the Particle Swarm Optimization (PSO) algorithm has received a great attention 

in MaOP. The Control Dominance Area of Solutions (CDAS) [39] is used with SMPSO and 

SigmaMOPSO for MaOPS. The indicator-based PSO systems have been proposed to maintain 

leader’s selection using the R2 indicator as presented in H-MOPSO [40] or the hypervolume 

metric in S-MOPSO [41]. Two-stage strategy and a parallel cell coordinate system are adopted 

in MaOPSO/2s-pccs [42]. A preference-based method is proposed using PSO system focusing 

on solutions around the knee point and called knee driven particle swarm optimization (KnPSO) 

[43]. In [44] the MaPSO method uses leader’s selection from a certain number of historical 

solutions by using scalar projection. In addition, the HGLSS-MOPSO algorithm [45] has 

adopted the Hybrid Global Leader Selection (HGLSS) using two global leader selection 

mechanisms the first for exploration and the second for exploitation. A recent published paper 

[46] has presented an adaptive localized decision variable analysis approach under the 

decomposition-based framework to solve the Large-Scale Multi-Objective Optimization 

problems and Multi-Tasking Optimization Problems in MaOPs. As a conclusion, all mentioned 

Many-Objective Evolutionary Algorithms (MaOEAs) are presented as highly complex and 

time-consuming systems, essentially when using decomposition-based mechanisms and/or the 

quality indicators to deal separately with convergence and diversity. 

The Crow Search Algorithm (CSA) [47] is a meta-heuristic simulating the social organization 

of crow folks essentially for food-search procedure. Crows are characterized by their ability to 

memorize food sources they found but also sources that other members of the flock may hold 

or hide. The CSA algorithm was first proposed as a mono-objective optimization technique and 

then extended to solve static Multi-Objective Problem (MOP) and constrained engineering 

optimization problems, in which the algorithm showed a relative effectiveness in comparison 

with techniques such as harmony search (HS) [48], the GA [1] and the PSO approaches.  

This paper presents a novel Distributed Bi-behaviours Crow Search Algorithm (DB-CSA) 

for solving both DMOPs and MaOPs. The DB-CSA approach presents two new chasing profiles 

denoted by Beta Distribution profiles over the large Gaussian Beta-1 function for diversity 

enhancement, and the narrow Gaussian Beta-2 function for convergence improvement. The 

proposed approach tends to achieve a dynamic balance between exploitation and exploration at 

each iteration during the optimization process which makes more suitable for both dynamic 

multi-objective optimization and many-objective optimization.  



The reminder of this manuscript is organized as follow; Section 2 presents an overview of 

the most known Dynamic Multi-Objective Optimization methods, the Many-Objective 

Optimization Approaches and some existing Crow Search Algorithms based-methods. Section 

3 presents the proposed Distributed Bi-behaviours Crow Search Algorithm (DB-CSA). Section 

4, details the experimental evaluation which is based on two comparative studies: one for 

DMOPs and the second for MaOPs. Results are presented in term of mean, and standard 

deviation. Then a comparative of the proposed method toward key state of art methods using 

the nonparametric Wilcoxon signed rank test. Finally, Section 5 conclude this paper and 

presents some future work. 

2. State of the Art on Evolutionary multi-objective optimization 

This section presents a set of comparable MOEAs and MaOEAs designed for both Dynamic 

Multi-Objective Optimization and Many-Objective Optimization are presented in sub-sections 

2.1 and 2.2 respectively. In addition, the existing crow search-based methods are in sub-section 

2.3. 

2.1. Dynamic Multi-Objective Optimization Methods 

  Several Multi-Objective Evolutionary Algorithms (MOEAs) have been designed in the 

literature to solve DMOPs with time-varying objective, variables or constraints, a set of them 

are visible Table 1. Among them two variant of the dynamic non-dominated sorting genetic 

algorithm II (DNSGA-II) [1] are proposed to enhance the diversity of solutions when solving 

DMOPs. In DNSGA-II, a set of solutions is selected randomly as detectors and re-evaluated 

iteratively. Then, if a change is detected all selected solutions are re-initialized or hyper-

mutated. The Steady-State and Generational Evolutionary Algorithm (SGEA) [9] is designed 

to detect and react effectively to the change in a steady-state manner. If a change is detected, a 

number of good solutions is re-used in the next processing step then a combination of previous 

and the new solutions are used to approximate the new pareto optimal front. The Competitive-

Cooperative Coevolutionary Algorithm (dCOEA) in [49] aims to track the time-varying POF 

based on the decomposition of the optimization process. However, only the winners of each 

sub-population are considered to manage the optimal solutions. The population prediction 

strategy (PPS) [50] is a prediction-based method which divides the non- dominated solutions 

into a center point and a manifold, then both are used to predict the future center point and 

manifold respectively. When a change is detected based a population re-initialization is 

operated. The MOEA/D [16] is a decomposition-based approach aiming to subdivide the 



population into several sub-populations and solving many sub-problems separately and 

simultaneously making the MOEA/D system lower and timely consuming. 

 Transfer-learning-based techniques are reliable alternatives for DMOPs based on the 

MOEA/D as a baseline system. In 2020, the new memory-driven manifold transfer learning 

was proposed based evolutionary algorithm (MMTL-MOEA/D) [51]. This approach has 

combined the memory mechanism to preserve the previous best solutions and the manifold 

transfer learning feature to estimate the best solutions, so that the best solutions are conserved 

and set as initial population of the next generation.  

In addition, a randomly reinitialized mechanism (RI-MOEA/D) [51] is used to 10 % of 

selected populations after each change to maintain the diversity.  A combination between the 

PPS  [50] and the MOEA/D are considered in the PPS-MOEA/D algorithm to solve the DMOP. 

Also, the support vector regression (SVR) based on evolutionary algorithm (SVR-MOEA/D) is 

proposed in  [52] is designed to solve the nonlinear correlation between two historical 

optimization process. The SVR, is used to predict a new population after each change in the 

search space. A transfer learning-based dynamic multi-objective evolutionary algorithm (Tr-

MOEA/D) is proposed in [53], aiming to solve the issue of non-independent and identically 

distributed data in a dynamic environment. The Tr-MOEA/D system implements a transfer 

learning mechanism to reuse the past historical population after each change which speed-up 

the optimization process.   In KF-MOEA/D [54] system a Kalman filter (KF) is used to predict 

a new population prior to perform the convergence concept. 

Table 1. Classification of the MOEAs for DMOPs.  

Diversity-based Approaches DNSGA-II [1] 

Memory-based Approaches SGEA [9]  

dCOEA [49] 

Prediction-based methods PPS [50] 

Parallel Approaches MOEA/D [16] 

 

 

Transfer Learning-based Methods 

MMTL-MOEA/D [51]. 

RI-MOEA/D [51]  

SVR-MOEA/D [52] 

Tr-MOEA/D [53] 

KF-MOEA/D [54] 

2.2. Many-Objective Optimization Methods 

Generally speaking, many-objective algorithms are designed to optimally manage the couple 

of exploitation and exploration concepts. Table 2, presents key Many-Objective Evolutionary 



Algorithms (MaOEAs). The inutility of dominance operator in Pareto-based methods is 

managed based-on the decomposition of many-objective to single or multi-objectives. The 

multiple single objective pareto sampling (MSOPS) [14]  algorithm generates a set of target 

vectors, then it undergoes a multiple single objective optimization processes to solve MaOP, 

such a strategy may return moderated results since it is not managing the multi-objectives of 

MaOp’s correctly. The enhanced MSOPS-II [13] use a set of target vectors to guide the 

optimization process at each iteration. Then, the aggregation of fitness functions is used to 

evaluate the performances of the proposed solutions. The MOEA/D [16] algorithm, proceed 

with a decomposition of the many-objectives into a set of single objectives using a uniformly 

distributed weight vector. Similar to the weight vectors of the MOEA/D algorithm, the NSGA-

III [19] has used a number of well-spread reference points to approximate non-dominated 

solutions, then it enhances the diversity of the population. Based on the main idea of the NSGA-

II, the reference vector-guided evolutionary algorithm (RVEA) [17] adopted two reference 

vectors, one for the selection and the second was for the adaptation. In RVEA system, the 

concept of convergence and diversity are dynamically managed using the Angle Penalized 

Distance (APD).  

A vector angle-based evolutionary algorithm (VaEA) [55] is proposed for Unconstrained 

MaOPs. This algorithm uses the maximum-vector-angle as selection mechanism to guarantee a 

good distribution and approximation to a POF; while the worse solutions are replaced with a 

new generated one. The θ-DEA [31] system is based on NSGA-III while with a new θ-

nondominated concept which is different from the original dominance operator used on the 

pareto-based methods.  It employs a set of reference points to cluster the solutions set in order 

to enhance the exploration phase. The NSGA-II/SDR is a modified version of the NSGA-II 

with a Strengthened Dominance Relation (SDR), presented in [56] for solving MaOP. The 

NSGA-II/SDR adopts the angle and the niching mechanism to select the best converged 

solutions. MOEA/DD, MOEA dominance and decomposition [20] is a hybridization between 

the MOEA/D [16] and the NSGA-III [19]; where the many-objectives are decomposed into 

sub-problems then a dominance criterion is used to aggregate the global solution.  Different 

grid-based criterions like the grid crowding distance (GCD), the grid ranking (GR) and the grid 

coordinate point distance (GCPD) are integrated in MOEAs to evaluate the fitness function of 

the MaOP. In addition, the GrEA system [30], is designed to maintain a good balance between 

convergence and diversity over both the grid dominance and grid difference to evaluate the 

fitness function and pushing the system toward the best optimal solutions.  Two variants of the 

Pareto-based evolutionary algorithm using the penalty mechanism (PMEA) are presented in 



[57], the MPEA-MP and the MPEA*-MA. The PMEA-MA is developed using the Manhattan-

distance and the cosine distance as the convergence and distribution metrics, it includes a 

population preprocessing to enhance the diversity. The second variant, PMEA*-MA, is a 

simplified one, which do not adopt the preprocessing step.  

  The AnD algorithm [58] is a non-pareto-based method and maintains the diversity of the 

population using an angle-based selection technique, then it picks optimized members which 

are the same search direction as a sorting solution. A hybridization between the Strength Pareto 

Evolutionary Algorithm (SPEA) and the shift-based density estimation (SDE) strategy in [34] 

is denoted by (SPEA/SDE) it estimates the density of the population, then individuals who are 

not converging are eliminated to enhance the diversity among the divergent solutions only.  In 

[59], the SPEAR leverages on reference direction-based density estimator using the standard 

SPEA algorithm for multi/many objective optimization problems. The knee point-driven 

evolutionary algorithm (KnEA), proposed in [35], evolves a population then select non-

dominated solutions based on knee point criterion, which may be assumed to a Pareto strategy. 

Furthermore, the two-stage evolutionary algorithm (TSEA) is developed in [60], in the first 

stage several sub-populations are optimized to converge to different regions of the Pareto front, 

then the nondominated solutions of each sub-population are considered as individuals to 

optimize in the second stage.  In indicator-based methods several quality metrics are used to 

perform the optimization process, for example the Monto Carlo simulation is used in HypE 

algorithm [22] to minimize the computation cost and to approximate the results. The preference-

based approaches use different adaptation mechanisms to perform the decision toward the true 

Pareto front. In [36], the PICEA-g algorithm integrates the coevolution as a posteriori 

adaptation mechanism with a set of candidate solutions to help decision making and 

approximate the entire of POF. Two archives are used in the Two_Arch2 [38] system, where 

the first is considered for convergence (CA) and the second is to maintain diversity (DA). A 

crossover operator is used between the CA and DA as selector mechanism and mutation 

operator is used in CA memory. 

Table 2. Classification of the MaOEAs for MaOPs. 

 

 

 

Decomposition-based approaches 

MSOPS [14] and MSOPS-II [13] 

MOEA/D [16] 

MOEA/DD [20]  

TSEA [60] 

MPEA-MP and MPEA*-MA [57] 

Indicator-based approaches HypE [22] 



 

Diversity-based selection criterion 

NSGA-III [19] 

SPEA/SDE [34]   

KnEA [35]  

SPEAR [59] 

  

Modified dominance relation-based 

approaches 

GrEA [30] 

VaEA [55] 

 θ-DEA [31] 

NSGA-II/SDR [56]  

AnD [58] 

 

Preference-based approaches 

RVEA [17]  

VaEA [55] 

PICEA-g  [36] 

Two_Arch2 [38] 

2.3. Existing Crow Search-based Methods 

   The Crow Search Algorithm (CSA) [47]  was first proposed in 2016 to solve constrained 

engineering optimization problems. In [61], Meriahi et al. published a new overview paper to 

present all modified version of CSA system. CSA has been extended in a way to solve MOPs 

as well. A Multi-Objective Crow Search Algorithm (MOCSA) is proposed in  [62], for instance 

in which chaos and orthogonal opposition-based operators are used to hybridize CSA, (M2O-

CSA) with a focus on solving MOPs. Also, the Multi-objective Taylor Crow Optimization 

algorithm (MOTCO) is proposed for clustering aware wireless sensor network [63].  

Furthermore, two binary version of CSA algorithm are proposed in [64] and [65]. The first one 

is the BCSA [64] which used a V-shaped transfer function to obtain a binary representation a 

continuous data with application to feature selection. The second on [65] consists in applying a 

sigmoid transformation and was applied to solve the 2D bin packing problem.  Several modified 

versions of CSA tended to manage the diversity based on the Gaussian distribution and diversity 

information of the population such in [66] for electromagnetic optimization, the usability 

factors hierarchical model for feature extraction and prediction [67], the priority-based 

technique is used to determine the sufficient flight length amount for each crow to update their 

position based other crow for economic load dispatch problem [68] and the modification of the 

CSA parameters like; the awareness probability and the random perturbation of each crow is 

proposed in [69].  

A set of mechanisms has been used to improve the CSA algorithm including search bounds 

limits management strategy [70], adding an archive component [71], restructuring the 

awareness probability [72] to enhance the random perturbation and the dynamic probability of 



CSA system. Several operators have been added to achieve a good balance between the 

convergence and the diversity such as the Roulette wheel selection tool and the inertia weight, 

the Lévy flight and the adaptive adjustment factors. In addition, a cross-over and a mutation 

operator was proposed to hybridize CSA intrinsically in [73] with application to a hybrid 

renewable energy PV/wind/battery system. Many hybridization methods are developed to 

combine the CSA algorithm with the Grey Wolf Optimizer (GWO) [74], the Cat Swarm 

Optimization (CSO), the Crow PSO [75] and the Crow Search Mating-based Lion Algorithm 

[76].  

3. The proposed Distributed Bi-behaviors Crow Search Algorithm 

Different MOEAs are designed to solve the DMOP should be able to detect the problem 

patterns changes and to response respectively. However, many modified evolutionary 

approaches are designed for MaOP to deal with a high number of objective functions. The two 

classes of optimization approaches have been characterized by their complexity in terms of time 

and resources. This work proposes a new Distributed Bi-behaviours Crow Search Algorithm 

(DB-CSA) to manage both convergence and diversity concepts dynamically when solving both 

DMOP and MaOP. The new DB-CSA is classified as a diversity-based approach combined the 

simplicity of CSA algorithm and the flexibility of the Beta function proposed by [77] to produce 

several forms and configurations of distributions, including the normal Gaussian one. More 

details about the proposed DB-CSA are presented in the next sub-section.    

3.1. The Standard Crow Search Algorithm 

The Crow Search Algorithm (CSA) was proposed by Askarzadeh in 2016 [47] as a meta-

heuristic for solving constrained engineering optimization problems. Crows are known to be 

social bird with the ability to memorize and use food source positions when needed; those 

sources may be the result of a personal search or from the crow group social activity. The CSA 

algorithm mimics the crows flock search mechanisms’ and use it for optimization purposes. 

The search process is detailed in Figure 1 and starts by a random initialization of N crow’s 

positions with d dimensional search space. Each crow 𝑖  is characterized by a position vector Xi 

defined by: X𝑖 = 𝑋1
𝑖 , 𝑋2

𝑖 , … , 𝑋𝑑
𝑖  and their best position 𝑀𝑖 presenting the food positions. All 

crows are flying in search space aiming to optimize their fitness function 𝐹𝑖𝑡(𝑋𝑖)
 based on their 

positions and memories to attend the best food source. While exploring the search space for 

new food positions, a crow will keep needs to reminder the location where it hides its own food, 

and should keep awake if other crows discover.  Assuming that the j-th crow decides to visit a 



previously memorized position at iteration (𝑡) (𝑀𝑗,𝑡) and assuming that a congener (i) is 

following the crow (j), two controversial behaviors, may occur each one represented by a state:  

- The first state is when the crow 𝑗 ignores being followed, so it simply continues 

searching considering what it previously found(𝑀𝑗,𝑡). 

- The second state is when the crow is aware of being followed; in this case the crow will 

simply hide its food source and undergo a fully random search.  

These two position updates are detailed in equation (1). 

                Xi(t + 1) =

{
 
 
 

 
 
 
//𝐒𝐭𝐚𝐭𝐞 𝟏:                                                              

𝐈𝐟   Rj(t) ≥ APj(t) 𝐭𝐡𝐞𝐧:                                     

 Xi(t) + Ri(t) × Fli(t) × (Mj(t) − Xi(t))

𝐄𝐥𝐬𝐞:                                                                           
//𝐒𝐭𝐚𝐭𝐞 𝟐:                                                          
random update                                           

  

                             (1) 

    where; 𝑅𝑖(𝑡) is a random number with uniform distribution between the interval [0, 1] at 

iteration t and 𝐹𝑙𝑖(𝑡) is the flight length of the crow i and 𝐴𝑃𝑗(𝑡) is the awareness probability 

of the crow j. 

In CSA algorithm, the balance between exploration and exploitation during the optimization 

process is achieved by the flight length (Fl) of the 𝑖𝑡ℎ crow during the update process of each 

position. However, the memory 𝑀𝑖(𝑡 + 1) of each crow i is updated using equation (2). All the 

optimization process is executed until a predefined maximum number of iterations. 

                  𝑀𝑖(𝑡 + 1) = {
𝑋𝑖(𝑡 + 1)   𝐼𝐹    𝐹𝑖𝑡

 (𝑋𝑖(𝑡 + 1)) ≥ 𝐹𝑖𝑡(𝑀𝑖(𝑡))

𝑀𝑖(𝑡)   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                             
                                   (2) 

 

Algorithm 1. The Standard Crow Search Algorithm 

1. Randomly initialize the position (X) of N crows 

2. Evaluate the position of the crows  

3. Initialize the memory of each crow  

4. While iteration < Max-Iteration 

5. For i = 1: N  

5.1. Randomly choose one (j) crow to follow  

5.2. Define the awareness probability 𝑨𝑷𝒋(𝒕) 

5.3. Define the flight length 𝑭𝒍𝒊(𝒕) 
5.4. Update the crow position using Equation (1) 

6. End For  

7. Check the feasibility of new positions  

8. Evaluate the new position of the crows  

9. Update the memory of crows using Equation (2) 

10. End While 

Fig. 1. Pseudo code of the Standard Crow Search Algorithm 



3.2. A General Presentation of the new DB-CSA Approach 

The Distributed Bi-behaviours Crow Search Algorithm (DB-CSA) is based on the couple of 

Beta distribution profiles for exploitation and exploration enhancement as presented the 

flowchart in Figure 2 and detailed in the pseudo code in Figure 3. The new DB-CSA system 

has the same optimization process as the standard CSA algorithm [47] and the main difference 

is provided on the convergence and the diversity treatment during the optimization process 

when updating the position of each crow 𝑖. In DB-CSA algorithm, each crow 𝑖 is presented as 

a potential solution in the search space. 

 

Fig. 2. The proposed Distributed Bi-behaviours Crow Search Algorithm (DB-CSA). (a) Flow chart of 

the DB-CSA, (b) Beta profiles, respectively Beta-1 and Beta -2. 

The key processing steps of the proposed approach, see Figure 2, are detailed as follow: 

1. Initialization (population positions and their memories): the DB-CSA starts with 

a random initialization of the position (X) and the memory (M) of the flock of N crows, 

when each crow 𝑖 has presented as a potential solution in the search space. 

2. Initialization of the archive of the non-dominated solutions: the archive (A) is 



initially created to store all the non-dominated solutions during the optimization 

process. After that, all the following steps are executed until a predefined number of 

iterations. 

3. Fitness Function Evaluation: for each crow i, the fitness function (Fit (𝑋𝑖)) is 

evaluated.  

4. Determine the followed crow j: at each iteration, one of the main behaviors of the 

crow i is to determine one crow j to follow by selecting a random position value 

between zero and the size of the flock of crows.   

5. Determine the average crow i: the aggregative value of 𝐾 objectives are computed 

as the fitness function 𝐹𝑖𝑡(𝑋𝑖(𝑡)) of each crow 𝑖, then the average value of all fitness 

functions is selected to determine the mean solution (crow).  

6. Update the crow position using the bi-behaviours beta distribution profiles  

7. Update the memory (M): the memory of each crow 𝑖 is updated using Equation (2). 

8. Apply the mutation operators 

9. Update the archive of non-dominated solutions: at each time 𝑡 of the optimization 

procedure, all the non-dominated solutions are stored in the archive (A).   

10.  Generate OUTPUT = best Pareto solution from Archive (A).   

In the standard CSA algorithm, the update of crow position is done according to the Equation 

(1), while the convergence and the diversity stages are treated separately causing the issue of 

premature convergence. However, this issue has treated by the new DB-CSA system using a 

bi-behaviours beta distribution profiles to assume a dynamic and a good balance between both 

stages. The two beta distribution profiles are presented in equation (6) denoted by 

𝑩𝒆𝒕𝒂𝟏_𝒓𝒂𝒏𝒅 which and 𝑩𝒆𝒕𝒂𝟐_𝒓𝒂𝒏𝒅 respectively for exploitation and exploration. The 

couple of beta profiles are used to modify the original equation (1) presenting the update process 

executed at each iteration for each crow 𝑖.   The two profiles were presented based on the beta 

function proposed by Alimi [77] and presented in both equations (3), (4) and (5).  When, the 

main advantage in using the beta functions here, is their capacity to produce several forms and 

configurations of distributions, including the normal Gaussian one. The one-dimensional Beta 

function is defined in equation (3).     

                 𝛽(𝑥, 𝑝, 𝑞, 𝑥0, 𝑥1) = {
(
𝑥−𝑥0

𝑥𝑐−𝑥0
)
𝑝

(
𝑥1−𝑥 

𝑥1−𝑥𝑐
)
𝑞

  𝑰𝑭  𝑥 ∈ [𝑥0,  𝑥1]
                

0                   𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆                             
                        (3) 

Where; p, q, 𝑥0 and 𝑥1 are a real value, with (𝑥0 < 𝑥1)  ∈ ℝ  and 𝑥𝑐 is detailed in equation 

(4). 



                                                       
1 0. .

c

p x q x
x

p q

+
=

+
                                                                          (4) 

However, the multi-dimensional version is provided in the mathematical definition (5) 

presenting 𝑚 product of the one-dimensional in (3). 

                            𝛽(𝑥) = ∏ 𝛽(𝑥𝑘, 𝑝𝑘, 𝑞𝑘, 𝑥0,𝑘, 𝑥1,𝑘)
𝑚
𝑘=1                                          (5) 

The dynamic switch mechanism between the bi-behaviors Beta-1 and Beta-2 profiles are 

assumed by a comparison between the fitness function 𝐹𝑖𝑡(𝑋𝑖(𝑡)) of each crow 𝑖 and the 

average solution (crow). If the fitness function 𝐹𝑖𝑡(𝑋𝑖(𝑡)) = ∑ 𝑓𝑘
𝐾
𝑘=1  is greater than the mean 

value, we assume an exploration stage for the crow optimization process using Beta-1 behaviour 

in Equation (6) is used the update the crow position. Otherwise, the second Beta-2 behaviour 

in Equation (6) is considered pushing each solution to the exploitation stage. 

 As it can be illustrated in figure 2, the two beta distribution profiles are detailed as follows: 

✓ The first large Gaussian Beta-1 exploitation profile, which characterized by a large 

standard deviation pushing the population for a good diversity in the search space with 

p and q variables of the Beta function in equation (3) are equals to 50. 

✓ The second narrow Gaussian Beta-2 exploration profile adapts a limited standard 

deviation with p and q in equation (3) are equals to 5 allowing a good convergence to 

the optimal solution over the time. 

𝑋𝑖(𝑡 + 1) =

{
 
 
 
 

 
 
 
 

  

  //𝐁𝐞𝐭𝐚 𝟏 𝐁𝐞𝐡𝐚𝐯𝐢𝐨𝐮𝐫 𝐟𝐨𝐫 𝐞𝐱𝐩𝐥𝐨𝐭𝐚𝐭𝐢𝐨𝐧 𝐩𝐫𝐨𝐟𝐢𝐥𝐞:                                
 

𝑰𝒇 𝐹𝑖𝑡  (𝑋𝑖(𝑡)) ≥ 𝑀𝑒𝑎𝑛(𝐹𝑖𝑡
 (𝑋𝑖(𝑡)) 𝒕𝒉𝒆𝒏:               

 𝑋𝑖(𝑡) + 𝑩𝒆𝒕𝒂𝟏_𝒓𝒂𝒏𝒅(𝒊) × (𝑀𝑗(𝑡) − 𝑋𝑖(𝑡))
 

𝑬𝒍𝒔𝒆:                                                                                  
 

//𝐁𝐞𝐭𝐚 𝟐 𝐁𝐞𝐡𝐚𝐯𝐢𝐨𝐮𝐫 𝐟𝐨𝐫 𝐞𝐱𝐩𝐥𝐨𝐫𝐚𝐭𝐢𝐨𝐧 𝐩𝐫𝐨𝐟𝐢𝐥𝐞:                             
𝑩𝒆𝒕𝒂𝟐_𝒓𝒂𝒏𝒅()                                      

  

           (6) 

     where; Beta-1 is a beta random distribution over [0, 1] which is assimilated to fine search 

step around the optimal solution, while the Beta-2 is more like a random explore mechanism 

performed away from the previous optimal solution,  𝑀𝑗(𝑡). Both Beta-1 and Beta-2 values are 

determined using equation (3) with different configuration of the two properties p and q. 

The mutation operators in [78] is added to maintain more diversity in the flock of N crows. 

The nonuniform and the boundary mutation operators in equations (7) and (8) are applied to 

modify the variables  X𝑖 = 𝑋1
𝑖 , 𝑋2

𝑖 , … , 𝑋𝑑
𝑖  of each crow 𝑖 according to the probability mutation 

𝑃𝑚 equal to 
1

𝑑
 , where 𝑑 is the dimensional search space and  X𝑖 ∈ [𝑎𝑖, 𝑏𝑖] where: 𝑎𝑖 and 𝑏𝑖 are 



the lower and the upper bounds respectively. The nonuniform mutation in equation (7) is 

applied when the modulo value when dividing the crow position i by three is equal to zero.  

However, if the remainder is equal to one the boundary mutation in equation (8) is 

used. Otherwise, all variables are considered without mutation operators. 

    𝑋𝑖
′ =

{
 
 

 
 

  

𝑋𝑖 + (𝑏𝑖 − 𝑋𝑖) × (𝑟1 × (1 −
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
)
𝑏

, 𝑖𝑓 𝑟1 ≤ 0.5 , 𝑖 𝑚𝑜𝑑 3 = 0

𝑋𝑖 + (𝑋𝑖 − 𝑎𝑖) × (𝑟2 × (1 −
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
)
𝑏

, 𝑖𝑓 𝑟2 > 0.5, 𝑖 𝑚𝑜𝑑 3 = 0  

𝑋𝑖 ,                                                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               (7) 

where: 𝑟1 and 𝑟2 are a random value between 0 and 1. 

  

𝑋𝑖
′ = {

𝑎𝑖, 𝑖𝑓 𝑋𝑖 + (𝑟 − 0.5 ∗  𝑃𝑚) <  𝑎𝑖, 𝑖 𝑚𝑜𝑑 3 = 1

𝑏𝑖, 𝑖𝑓 𝑋𝑖 + (𝑟 − 0.5 ∗  𝑃𝑚) ≥  𝑏𝑖, 𝑖 𝑚𝑜𝑑 3 = 1

𝑋𝑖 + (𝑟 − 0.5 ∗  𝑃𝑚),          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;   where 𝑟 =  𝑈(0,1)

 (8) 

 

Algorithm 2. The proposed Distributed Bi-behaviours Crow Search Algorithm (DB-CSA) 

1. Randomly initialize the position (X) of the flock of N crows 

2. Initialize the memory (M) of each crow  

3. Initialize the archive (A) of non-dominated solutions 

4. Evaluate the position of the crows  

5. While iteration < Max-Iterations do: 

6. For i = 1: N  

6.1. Evaluate the fitness function of the crow i: 𝑭𝒊𝒕 (𝑿𝒊(𝒕)) 
6.2. Choose the followed crow (j) randomly 

6.3. Determine the average crow i: Mean (𝑭𝒊𝒕 (𝑿𝒊(𝒕))) 

6.4. If (𝑭𝒊𝒕 (𝑿𝒊(𝒕)) ≥ 𝑴𝒆𝒂𝒏(𝑭𝒊𝒕
 (𝑿𝒊(𝒕)))  𝐭𝐡𝐞𝐧: 

6.5. Update the crow position using Equation (6) on Beta-1 exploitation profile 

6.6. Else: 

6.7. Update the crow position using Equation (6) on Beta-2 exploration profile 

6.8. End If 

6.9. Update the memory using Equation (2) 

7. End For  

8. Apply the mutation operators using equation (7) and (8) 

9. Update the archive of non-dominated solutions 

10. End While 

11. Return the archive of the non-dominated solutions 

Fig. 3. The pseudo code of the proposed Distributed Bi-behaviours Crow Search Algorithm (DB-CSA). 

The advantage of the proposed DB-CSA algorithm is proved over their simplicity in terms of 

complexity which is equal to 𝑂(𝑛 × log(𝑛)). When, the dynamic beta distribution profiles are 

the main properties of the DB-CSA algorithm investigating a high flexibility to produce several 

forms and configurations of distributions. Using both large Beta-1 and the narrow Beta-2 



functions have given the standard CSA a new mechanism to assume a good distribution of the 

population toward the best approximated results. 

4. Experimental Study 

The experimental study presented in this section is conducted using personal computer with 

8 Go of Ram and a i7 intel processor. A Java implementation of the proposed method is done 

on the jMetal framework [79].  Results are presented with two comparative studies as detailed 

in Table 5:  

- The first is done to compare the new proposed DB-CSA to a set of MOEAs designed for 

Dynamic Multi-Objective Optimization Problems (DMOPs). 

- The second is for Many-Objective Optimization Problems (MaOPs).  

- Algorithm configuration and parameters are listed in Table 4. 

4.1. Quality Indicators 

The performance measurements of all tested systems are done using the minimum values of 

the three quality indicators (QI), including the Inverted General Distance (IGD), the Mean 

Inverted General Distance (MIGD) and the Hypervolume Difference (HVD) which are 

presented respectively in equations (9), (10) and (11) respectively. All those metrics are used 

to measure both convergence and diversity of the tested MOEAs.  

- The Inverted General Distance (IGD) [9] in equation (9) measures a Euclidian distance 

𝑑(𝑖, 𝑃𝑂𝐹) between the ith points in the non-dominated solutions  𝑃𝑂𝐹∗ to the nearest 

approximated 𝑃𝑂𝐹  point.                                                                               

                                           
**

*

( , )

( , ) =


i POF

d i POF

IGD POF POF
POF

                                               (9) 

- The Mean Inverted General Distance (MIGD) [9] , is presented in equation (10) presenting 

the average of IGD values at each iteration 𝑡 ∈ 𝑇.  

 
* *1

( , ) ( , )


= t t t tt T
MIGD POF POF IGD POF POF

T
 (10) 

- The Hypervolume Difference (HVD) [9], detailed in equation (11) aims to compute the 

difference between the Hypervolume (HV) of the true  𝑃𝑂𝐹∗ and the approximated 𝑃𝑂𝐹 . 

                                                      
*( ) ( )= −t tHVD HV POF HV POF                                    (11) 



4.2. Tested Benchmarks 

Forty-four benchmarks are used to evaluate the relative performances of the proposed method 

upon the two scenarios.  The twenty-one DMOPs test beds are as follows: five FDA [6], three 

dMOP [49], seven UDF [80] and six F(ZJZ) [81] functions. The twenty-three problems for 

MaOPs are composed of: seven MaF test suite MaF1-7, seven DTLZ1-7 functions and nine 

WFG1-9 problems.  Test configurations detailed in Table 4 according to the number of 

variables (D) and objectives (M). 

For dynamic multi-objective optimization, Farina et al.[6] has presented three types of 

DMOPs classified into three categories according to the time-varying POF and POS. In type I, 

the POS change and the POF remains the same, in type II both POS and POF are changed. 

However, type III of DMOP presents a time-varying POF and POS is unchanged.  The main 

properties of all tested problems are reported in Table 3 presenting the variation of both POS 

and POF. 

Table 3. Properties of the tested benchmarks: DMOPs and MaOPs. 

Problems D M Properties  

 

 

Dynamic Multi-

Objective 

Optimization 

Problems 

(DMOPs) 

FDA1 20 2 Type I, convex, POS:   sinusoidal and vertical shift 

FDA2 15 2 Type II, POF: convex to concave, dynamic density, POS: sinusoidal and 

vertical shift 

FDA3 30 2 Type II, POF: convex, dynamic spread, POS: sinusoidal and vertical 

shift 

FDA4 12 3 Type I, POF: concave, dynamic spread, POS: sinusoidal and vertical 

shift 

FDA5 12 3 Type II, POF: concave, dynamic spread, POS: sinusoidal and vertical 

shift 

dMOP1 10 2 Type III, POF: convex to concave, POS: no change 

dMOP2 10 2 Type II, POF: convex to concave, POS: sinusoidal and vertical shift 

dMOP3 10 2 Type I, POF: convex, dynamic spread, POS: sinusoidal and vertical shift 

F5, F6, F7, F9, F10 20 2 Type II, POF: convex to concave, POS: trigonometric and vertical shift 

F8 20 3 

UDF1 10 2 Type I, POF: linear continuous, POS: trigonometric and vertical shift 

UDF2 10 2 Type I, POF: linear continuous, POS: polynomial and vertical shift 

UDF3 10 2 Type III, POF: discontinuous, POS: trigonometric and no variation 

UDF4 10 2 Type II, convex to concave, POS: trigonometric and horizontal shift 

UDF5 10 2 Type II, convex to concave, POS: polynomial + vertical shift 

UDF6 10 2 Type III, discontinuous, POS: trigonometric and no variation  

UDF7 10 3 Type III, POF :3D radius concave, POS: trigonometric and no variation 

 

 

 

 

 

 

Many-Objective 

Optimization 

Problems 

(MaOPs) 

 

MaF1  

11 

12 

16 

 

2 

3 

7 

Linear 

MaF2 Concave 

MaF3 Convex, multimodal 

MaF4 Concave, multimodal 

MaF5 Convex, biased 

MaF6 Concave, degenerate 

 

MaF7 

21 2 Mixed 

Disconnected 

Multimodal 
22 3 

26 7 

WFG1 11 

12 

16 

2 

3 

7 

Convex, unimodal 

WFG2 Convex, disconnected 

WFG3 Linear, unimodal 



WFG4  

12 

14 

17 

19 

24 

 

3 

5 

8 

10 

15 

Concave, multimodal 

WFG5 Concave, deceptive 

WFG6 Concave, unimodal 

WFG7 Concave, unimodal 

WFG8 Concave, unimodal 

WFG9 Concave, multimodal 

 

 

DTLZ1 

7 

9 

12 

14 

19 

3 

5 

8 

10 

15 

 

 

Linear 

DTLZ2  12 

14 

17 

19 

24 

3 

5 

8 

10 

15 

Concave  

DTLZ3 Concave 

DTLZ4 Concave  

DTLZ5 Degenerate 

DTLZ6 Degenerate 

 

 

DTLZ7 

22 

24 

27 

29 

34 

3 

5 

8 

10 

15 

 

 

Disconnected  

4.3. Experimental Settings 

A- Comparative study (1) for DMOPs:  

 

    The first comparative test is done for DMOPs using FDA, dMOP, UDF and F(ZJZ) 

benchmarks with 2 and 3 objectives. Five standard MOEAs [9] and the six-transfer learning-

based methods [51] are compared to the new proposal DB-CSA system. All compared 

algorithms have the same parameters settings referring to the original publications  [9] and [51]. 

However, all DMOPs are characterized by a dynamic POS or/and POF according to the time-

varying property 𝑡 that change at each instance as in equation (12). 

    
1 


=

t t

t
n

                                                      (12) 

     where: 𝑛𝑡 , 𝜏 and 𝜏𝑡  are the severity of change, the iteration counter and the frequency of the 

change respectively. Three categories of environmental change are considered in this study and 

differentiated according to the values of 𝑛𝑡  fixed to 10 and the variation of the frequency 𝜏𝑡. 

The property 𝜏𝑡 is equal to 5, 10 and 20 for severe, moderate and slight environmental changes 

respectively. 

  As resumed in Table 4, the swarm and the archive size are equal to 100 as fixed in [9] and 

[51].  All MOEAs are executed 30 times independently and each run is stopped when the 

maximum number of iterations is reached and computed as follow; 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 = 3 × 𝑛𝑡 × 𝜏𝑡 +

50. For each DMOP the number of variables (D) and objectives (M) are such in Table 3. 

B- Comparative study (2) for MaOPs:  



 

 The second experimental test is done for many-objective optimization referring to the 

contributions [57] and [58] to compare the proposed DB-CSA approach to seven and thirteen 

Many Objective Evolutionary Algorithms (MaOEAs) respectively. As mentioned in Table 4, 

the population size is fixed according to the number of objectives (M).  The seven and thirteen 

MaOEAs are executed during 30 and 31 independent runs respectively.  

Each run is stopped when the maximum number of iterations (𝑀𝑎𝑥𝑖𝑡𝑒𝑟) is reached. As per 

the recommendations in [58], the number of objectives (M) for both MaF and WFG test suites 

is set to 2, 3 and 7 and the number of variables (D) is computed as follow; 𝐷 = 𝑀 + 𝐾 − 1, 

where k is set to 10 for MaF1-MaF6 and 20 for MaF7. However, the WFG test suite has 

characterized by three parameters including; the number of decision variables (D) equal to 𝐷 =

𝑀 + 9 the number of position related variables (K) equal to 𝐾 = 𝑀 − 1 and the number of 

distance related variables (L) set as 𝐿 = 𝐷 − 𝑘. Furthermore, in [57] both WGF and DTLZ 

functions are tested with 3, 5, 8, 10 and 15 objectives.  

Table 4. Parameters Settings 

Reference Nb. Objectives (M) Population size Max-Iteration (Max𝑖𝑡𝑒𝑟) Independent runs 

[9] 2 and 3 100 3 × 𝑛𝑡 × 𝜏𝑡 + 50 30 

[58] 2, 3 and 7 100 25000 31 

 

 

[57] 

3 

5 

8 

10 

15 

92 

 224 

 164 

 280 

152  

 

300 WFG1-7 and DTLZ 2,4,5,7 

1000:   DTLZ 1,3,6 

 

30 

 

Table 5. MOEAs and MaOEAs Solvers used for the comparative study  

 Comparative study (1) for DMOPs Comparative study (2) for MaOPs 

 

 

 

 

 

 

 

Tested 

MOEAs and 

MaOEAs 

Five MOEAs [9] 

 

Six transfer learning-

based methods [51] 

Thirteen MaOEAs [58] Seven MaOEAs [57] 

DNSGA-II [1] 

SGEA [9] 

dCOEA [49] 

PPS [50]  

MOEA/D [16] 

MMTL-MOEA/D [51] 

RI-MOEA/D [51] 

PPS-MOEA/D [51] 

SVR-MOEA/D [52] 

Tr-MOEA/D [53]  

KF-MOEA/D [54] 

MSOPS-II [15] 

MOEA/D [16] 

HypE [22] 

PICEA-g [36] 

SPEA/SDE [34] 

GrEA [30] 

NSGA-III [19] 

KnEA [35] 

RVEA [17] 

Two_Arch2 [38] 

θ-DEA [31] 

MOEA/DD [20] 

AnD [58] 

PMEA-MA [57] 

PMEA*-MA[57] 

SPEA2/SDE [34] 

NSGA-II/SDR [56] 

MaOEA/IGD [26] 

VaEA [55]  

SPEA [59] 

QI IGD and HVD MIGD IGD IGD 

Benchmarks FDA, dMOP, UDF, F FDA, dMOP WFG, MaF WFG, DTLZ 

Number of 

Objectives 

(M) 

2 and 3 2 and 3 2, 3 and 7 3, 5, 8, 10, and 15 



4.4. Results Analysis and Discussion 

   In this sub-section, comparative result analysis is conducted for the experimental studies of 

DMOPs and MaOPS, using the nonparametric Wilcoxon sign rank test [82], while some 

qualitative results are performed over the box plot of the one-way ANOVA test [83]. The 

statistical analysis methods are used to estimate the p-value property to determine the 

statistically significant difference between the compared methods. If the p-value is less or equal 

to 0.05, the statistical results are considered significantly important.  All quantitative results are 

presented in the appendices section including Tables 9, 10, 11, 12, 13, 14, 15, 16 and 17. 

A- Analysis of the comparative study (1) for FDA and dMOP problems 

 

The comparative study (1) is firstly considered to compare the proposed DB-CSA to six 

transfer learning-based methods for solving FDA and dMOP problems with severe (𝜏𝑡 =

5,  𝑛𝑡 = 10) , moderate (𝜏𝑡 = 𝑛𝑡 = 10) and slight (𝜏𝑡 = 20,  𝑛𝑡 = 10)  environmental changes. 

Based on the reported results over MIGD metric in Table 9, it is remarkable the efficiency of 

the new DB-CSA system having the best mean and standard deviations values for all test suites 

with different environmental changes compared to six transfer learning-based approaches. 

Based on the statistical results over the Wilcoxon signed rank test on Table 6, we can determine 

the importance of the new DB-CSA with a p-value less than 0.05 defining a significant 

difference compared to MMTL-MOEA/D, KF-MOEA/D, PPS-MOEA/D, SVR-MOEA/D, Tr-

MOEA/D, and RI-MOEA/D approaches. Also, Figure 4 determines the importance of DB-CSA 

compared to six transfer learning-based methods over the one-way ANOVA test.  

Table 6. Nonparametric statistical analysis based on Wilcoxon signed rank test of DB-CSA vs. Six 

peer transfer-learning based approaches over MIGD metric for FDA and dMOP functions. 

DB-CSA Vs. QI Prob. R- R+ P-value Best method 

MMTL-MOEA/D  

 

MIGD 

 

 

FDA & dMOP 

300 0 0.000018 DB-CSA 

KF-MOEA/D 300 0 0.000018 DB-CSA 

PPS-MOEA/D 300 0 0.000018 DB-CSA 

SVR-MOEA/D 300 0 0.000018 DB-CSA 

Tr-MOEA/D 300 0 0.000018 DB-CSA 

RI-MOEA/D 300 0 0.000018 DB-CSA 

 

Secondly, the five standard MOEAs (DNSGA-II, dCOEA, PPS, MOEA/D, and SGEA) are 

compared to the new DB-CSA. The average and the standard deviation values for both FDA 

and dMOP test suites over the IGD and HVD metrics respectively can be seen in Tables 10 and 

11. Based on IGD metric on Table 10, we can argue the superiority of DB-CSA method 

compared to five standard MOEAs designed for dynamic multi-objective optimization. The 

results based on Wilcoxon signed rank test are presented in Table 7, indicating that DB-CSA is 

the best method over IGD at 0.05 statistically significance level compared to other MOEAs. 



While, the same conclusion is confirmed using the box plot over one-way ANOVA test in 

Figure 5.   

Table 11 reports the quantitative results over HVD quality indicator. We can conclude that 

the proposed DB-CSA is the winner for solving different types of DMOPs including FDA1 in 

type I with dynamic POS and static POF, FDA3, FDA5 and dMOP2 in type II with time-varying 

POS and POF and dMOP1 in type III with unchangeable POS and dynamic POF respecting to 

all category of environmental changes. Meanwhile the DB-CSA has a closed result to the SGEA 

system for solving FDA2 function in type II characterized by a dynamic density of the solutions 

set as well as a cyclic change of the POF from convex to concave and the FDA4 in type I with 

time-varying spread of solutions and severe search space. In addition, the dCOEA algorithm 

has a closed mean value for solving dMOP3 function characterized by a static curvature of the 

estimated POF and dynamic spread of the solution set compared to the proposed DB-CSA.  

Based on Table 7 and comparing the negative and positive ranks, the DB-CSA is the best 

method over HVD quality indicator. While, this importance does not determine as statistically 

significant with a p-value greater than 0.05.  The one-way ANOVA results in Figure 6 assume 

the competitive importance of DNSGA-II, dCOEA, PPS, MOEA/D, and SGEA for solving 

FDA and dMOPs test functions with 2 and 3 objective including different environmental 

changes when using the HVD metric. 

B- Analysis of the comparative study (1) for UDF and F problems 

 Considering the quantitative results for the Unconstrained Dynamic Functions (UDF1-

UDF7) in Table 12, it appears that the DB-CSA has the greatest values for all UDF functions. 

Furthermore, we can resume the stability of the new DB-CSA algorithm when solving the tri-

objective problem (F8) and the bi-objectives function (F10) over IGD metrics compared to the 

Population Prediction Strategy (PPS) approach which is performed only for solving F5, F6, F7 

and F9 test functions.  However, the F(ZJZ) problems are a complex benchmark including a 

time-varying POF and POS with a nonlinear correlation between the decision variables. Based 

on the Wilcoxon sign rank in Table 7, we can resume that the DB-CSA is the best method, 

however this importance does not present a high statistically significance with a p-values 

greater than 0.05 compared to the five MOEAs over the IGD metric. 

Based on HVD results reported in Table 13, the DB-CSA has a good result for the majority 

of UDF benchmarks, and fails only for solving the disconnected UDF6 compared to the 

DNSGA-II system.  However, we can resume the importance of the PPS system for solving F5, 

F7 and F10 and the SGEA for F6 and F9. Also, the Wilcoxon signed rank test detailed in Table 

7 presents the importance of DNSGA-II, dCOEA, PPS, MOEA/D and SGEA with a p-value 



exceeding 0.05 significance level. Figure 7 has reported the one-way ANOVA results in a box 

plot of the six MOEAs over IGD and HVD metrics.  

Table 7. Nonparametric statistical analysis based on Wilcoxon signed rank test of DB-CSA vs. five 

peer MOEAs over IGD, HVD metrics for FDA, dMOP, UDF and F functions 

DB-CSA Vs. Prob. QI R- R+ P-value Best method  Prob. QI R- R+ P-value Best method 

DNSGA-II  

 

 

FDA 

& 

dMOP 

 

 

 

IGD 

300 0 0.000018 DB-CSA  

 

 

UDF 

& 

F 

 

 

IGD 

56 35 0,463071 DB-CSA 

dCOEA 300 0 0.000018 DB-CSA 61 30 0,278707 DB-CSA 

PPS 300 0 0.000018 DB-CSA 56 35 0,463071 DB-CSA 

MOEA/D 300 0 0.000018 DB-CSA 55 36 0,506746 DB-CSA 

SGEA 300 0 0.000018 DB-CSA 55 36 0,506746 DB-CSA 

DNSGA-II  

 

HVD 

181 119 0,375772 DB-CSA  

 

HVD 

35 56 0,463071 DNSGA-II 

dCOEA 170 130 0,567709 DB-CSA 36 55 0,506746 dCOEA 

PPS 173 127 0,511089 DB-CSA 36 55 0,506746 PPS 

MOEA/D 181 119 0,375772 DB-CSA 36 55 0,506746 MOEA/D 

SGEA 163 137 0,710318 DB-CSA 35 56 0,463071 SGEA 

 

1) Analysis of the comparative study (2) for MaF and WFG problems with 2, 3 and 7 

objectives 

For the second comparative study (2), thirteen many-objectives evolutionary approaches 

(MSOPS-II, MOEA/D, HypE, PICEA-g, SPEA/SDE, GrEA, NSGA-III, KnEA, RVEA, 

two_Arch2, θ-DEA, MOEA/DD, AnD) are firstly compared to the new proposed DB-CSA 

system based on a set of many-objective optimization problems denoted by MaF and WFG test 

suites with 2, 3 and 7 objectives including different numbers of decision variables as detailed 

in Table 3.  Results reported in Table 14, shown the IGD results of the 14 compared Many-

Objective Evolutionary Algorithms for solving nine MaOPs (WFG1-WFG9) characterized by 

a dynamic shape of the POF that change from convex to concave. The DB-CSA has ranked as 

the first system for solving seven WFG test suites from nine thus including; WFG1, WFG3, 

WFG4, WFG5, WFG6, WFG8 and WFG9 and fails only for WFG2 compared to HypE and θ-

DEA having almost the same mean values of the IGD metric for WFG7 when the number of 

objectives is equal to 2.  By increasing the number of objectives to 3 and 7 the WFG becomes 

more complex and the issue of the lack of convergence and diversity presents the challenging 

task. Based on the reported IGD values of the tri-objectives WFG functions in Table 14, we can 

conclude the efficiency of the new proposed DB-CSA approach to deal with the increasing 

number of objectives. Also, Table 14 has shown the best values for MaOPS with 7 objectives.  

In addition, Table 15 has showing the mean and the standard deviation values over IGD 

metric for solving the MaF test suite (MaF1-MaF7) with 2, 3 and 7 objectives functions. Figure 

12, has presented the approximated POF for the MaF test suite. The new DB-CSA is presented 

a good method for solving the MaF test suite compared to the thirteen state of the art MaOEAs. 

Table 8, has shown the importance of DB-CSA over the Wilcoxon signed rank test, while all 



computed p-values are less than 0.05 assuming the statistically significance difference of DB-

CSA compared to the thirteen MaOEAs thus including; MSOPS-II, MOEA/D, HypE, PICEA-

g, SPEA/SDE, GrEA, NSGA-III, KnEA, RVEA, two_Arch2, θ-DEA, MOEA/DD, AnD for 

solving the MaF test suite with 2,3 and 7 objectives compared. The dynamic treatment of both 

convergence and diversity concepts is very useful when solving a set of complex MaOPs with 

high number of objectives.  

2) Analysis of the comparative study (2) for DTLZ and WFG problems with 3, 5, 8, 

10 and 15 objectives 

    In the second part the comparative study (2), seven MaOEAs (PMEA-MA, PMEA*-MA, 

SPEA2/SDE, NSGA-II/SDR, MaOEA/IGD, VaEA, SPEA) are compared to the new DB-CSA 

approach for solving a set of complex DTLZ and WFG test suites with 3, 5, 8, 10 and 15 

objectives. Some qualitative results are presented in Figures 13 and 14 to present the estimated 

POF to the true optimal solutions for both WFG and DTLZ with 10 and 15 objectives 

respectively. However, all quantitative results are given in Tables 16 and 17 presenting the 

efficiency of new DB-CSA approach over IGD metric for solving the complex set of tested nine 

WFG1-9 problems and seven DTLZ1-7 functions respectively. However, this difference is 

reported as statistically very significant when using the Wilcoxon signed rank test with 0.05 

significance level as detailed in Table 8, when all computed p-values are less than 0.05. Figure 

8, has presented the boxplot over the one-way ANOVA test for solving a set of WFG test suit 

with 3, 5 and 15 objectives, when the DB-CSA is the best method. 

Table 8. Nonparametric statistical analysis based on Wilcoxon signed rank test of DB-CSA vs. 

thirteen peer MAOEAs over IGD metric for WFG, MaF and DTLZ functions.  
DB-CSA Vs. QI Prob. R- R+ P-value Best 

method  

QI Prob. R- R+ P-value Best 

method 

MSOPS-II  

 

 

 

 

 

 

 

 

 

IGD 

 

 

 

 

 

WFG 

378 0 0,000006 DB-CSA  

 

 

 

 

 

 

 

 

 

IGD 

 

 

 

 

 

MaF 

 

231 0 0,000060 DB-CSA 

MOEA/D 378 0 0,000006 DB-CSA 231 0 0,000060 DB-CSA 

HypE 374 4 0,000009 DB-CSA 231 0 0,000060 DB-CSA 

PICEA-g 378 0 0,000006 DB-CSA 231 0 0,000060 DB-CSA 

SPEA/SDE 376 2 0,000007 DB-CSA 231 0 0,000060 DB-CSA 

GrEA 378 0 0,000006 DB-CSA 231 0 0,000060 DB-CSA 

NSGA-III 373 5 0,000010 DB-CSA 231 0 0,000060 DB-CSA 

KnEA 378 0 0,000006 DB-CSA 231 0 0,000060 DB-CSA 

RVEA 378 0 0,000006 DB-CSA 231 0 0,000060 DB-CSA 

Two_Arch2 374 4 0,000009 DB-CSA 231 0 0,000060 DB-CSA 

θ-DEA 376.5 1.5 0,000007 DB-CSA 231 0 0,000060 DB-CSA 

MOEA/DD 377 1 0,000006 DB-CSA 231 0 0,000060 DB-CSA 

AnD 378 0 0,000006 DB-CSA 231 0 0,000060 DB-CSA 

PMEA-MA  

 

 

WFG 

1035 0 5,179E-9 DB-CSA  

 

 

DTLZ 

629 1 2,70E-7 DB-CSA 

PMEA*-MA 1035 0 5,179E-9 DB-CSA 629 1 2,70E-7 DB-CSA 

SPEA2/SDE 1035 0 5,179E-9 DB-CSA 630 0 2,48E-7 DB-CSA 

NSGA-

II/SDR 

1035 0 5,179E-9 DB-CSA 630 0 2,48E-7 DB-CSA 

MaOEA/IGD 1035 0 5,179E-9 DB-CSA 630 0 2,48E-7 DB-CSA 

VaEA 1035 0 5,179E-9 DB-CSA 629 1 2,70E-7 DB-CSA 

SPEA 1035 0 5,179E-9 DB-CSA 630 0 2,48E-7 DB-CSA 



Fig. 4. One-way ANOVA Results in a Boxplot of 7 MOEAs over MIGD of FDA, dMOP 

Functions for (a) severe with (𝜏𝑡 = 5, 𝑛𝑡=10), (b) moderate with (𝜏𝑡 = 10, 𝑛𝑡=10), and (c) 

slight  with (𝜏𝑡 = 20, 𝑛𝑡=10) environmental changes respectively. 

 

Fig. 5 One-way ANOVA Results in a Boxplot of 6 MOEAs over IGD of FDA, dMOP for (a) severe 

with (𝜏𝑡 = 5, 𝑛𝑡=10), (b) moderate (𝜏𝑡 = 10, 𝑛𝑡=10), and (c) slight  (𝜏𝑡 = 20, 𝑛𝑡=10) environmental 

changes respectively. 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 



 

Fig. 6. One-way ANOVA Results in a Boxplot of 6 MOEAs over HVD of FDA, dMOP for (a) severe 

(𝜏𝑡 = 5, 𝑛𝑡=10), (b) moderate (𝜏𝑡 = 10, 𝑛𝑡=10), and (c) slight  (𝜏𝑡 = 20, 𝑛𝑡=10) environmental 

changes respectively. 

 
 

Fig. 7 One-way ANOVA Results in a Boxplot of 6 MOEAs over (a) IGD and (b) HVD of UDF, F 

functions for moderate (𝜏𝑡 = 10, 𝑛𝑡=10) environmental changes. 

(a) 

(b) 

(c) 

(a) 

(b) 



 

Fig. 8 One-way ANOVA Results in a Boxplot of 8 MOEAs over IGD for WFG functions with (a) 3, 

(b) 5 and (c) 15 objectives. 

      As a global conclusion and based on both comparative studies (1) and (2), all quantitative 

results have shown the efficiency of DB-CSA system and its flexibility for solving eight 

DMOPs (FDA and dMOP) with 2 and 3 objectives including several types of time-varying POF 

and POS compared to seven transfer-learning based methods (MMTL-MOEA/D, KF-

MOEA/D, PPS-MOEA/D, SVR-MOEA/D, Tr-MOEA/D, and RI-MOEA/D) using the MIGD 

metric. Considering the plot of MIGD, IGD and HVD values in Figures 9, 10 and 11 during 30 

independent runs, we can determine the importance of DB-CSA for solving DMOPs in types I 

(FDA1, FDA4, dMOP3), II (dMOP2) and III (dMOP1). By analyzing the perturbation of 

MIGD, IGD and HVD plots, we can see the challenging results when solving FDA1, FDA4, 

dMOP1, dMOP2 and dMOP3 compared to FDA5 and FDA3 in type II with time-varying POF 

and POS in both severe and moderate search space and FDA5, FDA3 and FDA2 in a slight 

change.  

     Also, this efficiency of DB-CSA is demonstrated when solving a dynamic tri-objective 

FDA4 with dynamic POS. However, the proposed DB-CSA algorithm has assumed a 

(a) 

(b) 

(c) 



competitive importance compared to the five standard MOEAs (DNSGA-II, dCOEA, PPS, 

MOEA/D and SGEA) when solving five FDA functions, three dMOP problems over IGD 

metric including different type of environmental changes. Contradictory to the HVD metric 

when all results are not statistically significant at a level of 0.05. Furthermore, the importance 

of DB-CSA does not assume a high significance level compared to the five standard MOEAs 

when solving seven UDF and six F problems in type II with a time-varying POF and POS in a 

moderate environmental change.  

Last but not least, we can resume the importance of the DB-CSA system compared to 13 

algorithms thus including; MSOPS-II, MOEA/D, HypE, PICEA-g, SPEA/SDE, GrEA, NSGA-

III, KnEA, RVEA, Two_Arch2, θ-DEA, MOEA/DD , AnD  for solving a set of many-objective 

optimization problems (9 WFG and 7 MaF) with 2, 3 and 7 objectives as well as the  more 

complex DTLZ and WFG test suites with 3, 5, 8, 10 and 15 objectives compared to the seven 

MaOEAs (PMEA-MA, PMEA*-MA, SPEA2/SDE, NSGA-II/SDR, MaOEA/IGD, VaEA, 

SPEA). 

 

Fig. 9. MIGD Plot for FDA, dMOP functions with (a) severe, (b) moderate and (c) slight 

environmental changes using DB-CSA algorithm. 



 

Fig. 10.  IGD Plot for FDA, dMOP functions with (a) severe, (b) moderate and (c) slight 

environmental changes using DB-CSA algorithm. 

 

Fig. 11.  HVD Plot for FDA, dMOP functions with (a) severe, (b) moderate and (c) slight 

environmental changes using DB-CSA algorithm. 



 

 

Fig. 12.  POF for MaF1-7 functions with 7 objectives using DB-CSA algorithm. 

 

 

Fig. 13.  POF for WFG1-9 functions with 10 objectives using DB-CSA algorithm. 

 

 

Fig. 14.  POF for DTLZ1-7 functions with 15 objectives using DB-CSA algorithm. 



5. Conclusions and perspectives 

     In this paper, a new Distributed Bi-behaviors Crow Search Algorithm (DB-CSA) is proposed 

for dynamic treatment of both convergence and diversity concepts, which is based on two new 

mechanisms: distributed bi-behaviors profiles characterized by a large gaussian Beta-1 and 

narrow gaussian Beta-2 functions for exploitation and exploration enhancement respectively. 

All quantitative results are analyzed using the nonparametric Wilcoxon signed rank test with 

0.05 significance level. The experiments showed that the proposed DB-CSA is significantly 

better than the key similar techniques used in this paper for comparisons. DB-CSA is found to 

be more effective in solving dynamic multi-objective problem characterized by different time-

varying of both POS and POF with 2 and 3 objectives. It is also a powerful solver for the many-

objectives optimizations problems with 2, 3, 5, 7, 8, 10 and 15 objectives characterized by a 

dynamic shift of the POF from convex to concave and multimodal, unimodal, disconnected and 

deceptive geometric forms.  The comparative study (1) including seven transfer-learning based 

methods (MMTL-MOEA/D, KF-MOEA/D, PPS-MOEA/D, SVR-MOEA/D, Tr-MOEA/D, and 

RI-MOEA/D) using MIGD metric and the five popular MOEAs (DNSGA-II, dCOEA, PPS, 

MOEA/D and SGEA) for solving twenty-one DMOPs with different types of changes on both 

POF and POS over IGD and HVD quality indicators. Confirmed that the proposal relative 

results are better for all test beds. Based on the comparative study (2), we can resume the 

efficiency of DB-CSA system compared to thirteen MaOEAs (MSOPS-II, MOEA/D, HypE, 

PICEA-g, SPEA/SDE, GrEA, NSGA-III, KnEA, RVEA, Two_Arch2, θ-DEA, MOEA/DD , 

AnD)  for solving sixteen  many-objective optimization problems (9 WFG and 7 MaF) with 2, 

3 and 7 objectives as well as the more complex DTLZ and WFG test suites with 3, 5, 8, 10 and 

15 objectives compared to seven MaOEAs (PMEA-MA, PMEA*-MA, SPEA2/SDE, NSGA-

II/SDR, MaOEA/IGD, VaEA, SPEA). All results confirmed the relevance of the proposed DB-

CSA and its capacity to correctly manage convergence and diversity concepts when solving 

DMOPs and MaOPS.  For future works, it is recommended to investigate the impact of the beta 

profiles on performances when solving a DMOP characterized by a time-varying POS and POF, 

a dynamic spread or dynamic density of the approximated solution set with a nonlinear 

correlation between the decision variables. The DB-CSA method is worthy of consideration to 

solve a set of Evolutionary Transfer Multi/Many-objective Optimization Problems. 
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Appendices 

Table 9. MIGD results (Mean and Standard Deviation) for FDA and dMOP functions. 
  Reference: [51]  

DB-CSA Prob. (𝜏𝑡, 𝑛𝑡) MMTL-
MOEA/D  

KF-MOEA/D  PPS-MOEA/D  SVR-
MOEA/D  

Tr-MOEA/D  RI-MOEA/D  

 

FDA1 

(5, 10) 0.1214(1.07E-1) - 0.4670(3.38E-1) - 0.2485(1.40E-1) - 0.3745(3.12E-1) - 0.3381(2.14E-1) - 0.3166(3.58E-1) -  3.15E-4(4.0E-5) 
(10, 10) 0.1199(7.93E-2) - 0.2659(1.23E-1) - 0.2141(1.22E-1) - 0.2332(1.66E-1) - 0.3592(3.41E-1) - 0.2733(1.83E-1) - 1.96E-4(3.7E-5) 
(20, 10) 0.0658(3.64E-2) - 0.1635(9.12E-2) - 0.1018(1.25E-1) - 0.2168(2.03E-1) - 0.1778(2.47E-1) - 0.1959(2.36E-1) - 9.73E-5(1.6E-5) 

 

FDA2 

(5, 10) 0.0740(3.53E-2) - 0.1695(6.51E-2) - 0.1023(1.09E-1) - 0.2062(1.66E-1) - 0.1241(4.72E-2) - 0.2127(1.49E-1)- 8.31E-4(1.8E-4) 
(10, 10) 0.0842(3.34E-2) - 0.1906(7.00E-2) -  0.1200(2.00E-1) -  0.1965(1.31E-1) - 0.1243(4.27E-2) - 0.2528(1.34E-1) -   6.98E-4(2.3E-4) 
(20, 10) 0.0662(3.63E-2) - 0.1335(4.02E-2) - 0.0719(9.86E-2) - 0.1810(1.88E-1) - 0.0785(3.37E-2) - 0.1678(1.44E-1) - 6.18E-4(2.1E-4) 

 

FDA3 

 

(5, 10) 0.1428(1.11E-1) - 0.2685(2.66E-1) - 0.3142(2.14E-1) - 0.2250(1.81E-1) - 0.2925(2.44E-1) - 0.3493(4.27E-1) - 2.51E-3(9.0E-4) 
(10, 10) 0.0914(9.77E-2) - 0.1429(7.49E-2) - 0.2072(1.38E-1) - 0.1994(1.93E-1) -  0.252(2.75E-1) - 0.2530(3.05E-1) - 1.43E-3(5.2E-4) 
(20, 10) 0.0749(5.08E-2) - 0.1349(1.02E-1) - 0.2286(1.76E-1) - 0.1409(1.94E-1) -   0.1442(8.24E-2) -  0.1361(7.58E-2) - 7.32E-4(2.4E-4) 

 

FDA4 

(5, 10) 0.1523(9.67E-2) - 0.1578(7.21E-2) - 0.2114(1.48E-1) - 0.1866(7.83E-2) - 0.2335(1.21E-1) - 0.1702(4.11E-2) - 8.43E-4(1.3E-4) 
(10, 10) 0.1594(5.77E-2) - 0.1311(4.03E-2) - 0.1848(1.75E-1) - 0.1709(5.15E-2) - 0.2180(1.05E-1) - 0.1787(8.33E-2) - 6.53E-4(7.2E-5) 
(20, 10) 0.1336(3.89E-2) - 0.125(4.06E-2) - 0.1765(2.02E-1) -  0.1234(2.36E-2) - 0.1998(9.90E-2) - 0.1253(2.66E-2) - 5.33E-4(6.6E-5) 

 

FDA5 

(5, 10) 0.2081(6.47E-2) - 0.2683(8.65E-2) - 0.2036(7.28E-2) - 0.2120(1.05E-1) - 0.1737(4.19E-2) - 0.2184(1.01E-1) - 3.03E-3(8.3E-4) 
(10, 10) 0.1892(5.19E-2) - 0.2369(7.79E-2) - 0.2305(1.04E-1) - 0.1862(9.43E-2) - 0.1752(4.89E-2) - 0.2140(1.01E-1) - 1.84E-3(3.4E-4) 
(20, 10) 0.1642(6.06E-2) - 0.1818(5.76E-2) - 0.1895(8.11E-2) - 0.1729(9.00E-2) - 0.1879(4.56E-2) - 0.1968(7.64E-2) - 1.01E-3(1.5E-4) 

 

dMOP1 

(5, 10) 0.0589(3.82E-2) - 0.1857(9.13E-2) - 0.1269(2.37E-1) - 0.2237(8.15E-2) - 0.2345(6.53E-2) - 0.2421(1.33E-1) - 1.65E-4(2.0E-5) 
(10, 10) 0.0543(5.52E-2) - 0.1565(7.39E-2) - 0.0965(2.18E-1) - 0.3266(1.99E-1) - 0.2507(8.15E-2) - 0.2734(1.46E-1) - 1.34E-4(1.4E-5) 
(20, 10) 0.0252(9.00E-3) -  0.1145(5.03E-2) - 0.0690(1.95E-1) - 0.1938(1.25E-1) - 0.1204(9.13E-2) - 0.1606(1.63E-1) - 1.21E-4(1.1E-5) 

 

dMOP2 

(5, 10) 0.0494(1.59E-2) - 0.2258(1.31E-1) - 0.1265(1.34E-1) - 0.1302(8.99E-2) -  0.1311(6.02E-2) - 0.1505(1.58E-1) - 2.73E-4(4.5E-5) 
(10, 10) 0.0717(4.20E-2) - 0.1646(8.01E-2) - 0.1102(1.00E-1) - 0.1142(8.98E-2) - 0.1157(6.03E-2) - 0.1586(1.33E-1) - 1.77E-4(2.2E-5) 
(20, 10) 0.0261(8.53E-3) - 0.120(8.70E-2) - 0.0771(1.12E-1) - 0.0541(4.82E-2) -  0.0795(4.89E-2) -  0.0609(4.64E-2) - 1.30E-4(1.3E-5) 

 

dMOP3 

(5, 10) 0.0593(3.10E-2) - 0.1132(8.72E-2) - 0.1136(8.84E-2) - 0.0987(7.16E-2) - 0.1203(4.29E-2) - 0.0729(3.87E-2) -  8.09E-5(2.9E-5) 
(10, 10) 0.0683(4.26E-2) - 0.1431(5.58E-2) - 0.0736(6.38E-2) - 0.0897(4.56E-2) - 0.1057(5.18E-2) - 0.0850(5.68E-2) - 6.80E-5(2.8E-5) 
(20, 10) 0.0260(5.56E-3) - 0.0730(4.91E-2) - 0.0563(6.87E-2) - 0.0510(3.52E-2) - 0.0575(3.22E-2) - 0.0401(2.57E-2) - 4.54E-5(1.2E-5) 

+/-/ ≈  0/24/0 0/24/0 0/24/0 0/24/0 0/24/0  

The symbols “+”, “≈” and “−” denote that the performance of the compared algorithm is statistically better than, equivalent 

to, and worse than DB-CSA. 

Table 10. IGD results (Mean and Standard Deviation) for FDA and dMOP functions. 
  Reference: [9]  

DB-CSA Prob. (𝜏𝑡, 𝑛𝑡) DNSGA-II   dCOEA  PPS  MOEA/D  SGEA  
 

FDA1 

(5, 10) 6.40E-1(9.8E-2) -  6.36E-2(1.1E-2) - 2.08E-1(8.4E-2) - 3.56E-1(4.9E-2) - 3.41E-2(8.0E-3) - 3.15E-4(4.0E-5) 
(10, 10) 5.82E-2(3.8E-3) - 4.13E-2(6.5E-3) - 4.27E-2(1.9E-2) - 1.21E-1(1.1E-2) - 1.48E-2(2.0E-3) - 1.96E-4(3.7E-5) 
(20, 10) 4.14E-2(4.2E-3) - 2.39E-2(2.2E-3) - 1.62E-2(7.9E-3) -  4.04E-2(2.2E-3) - 7.55E-3(1.4E-3) - 9.73E-5(1.6E-5) 

 

FDA2 

(5, 10) 2.85E-2(2.4E-3) - 7.28E-2(3.8E-2) - 8.13E-2(3.0E-2) - 8.40E-2(1.3E-2) - 1.50E-2(1.6E-3) - 8.31E-4(1.8E-4) 
(10, 10) 1.68E-3(9.0E-4) - 4.73E-2(3.3E-2) - 6.35E-2(1.0E-2) - 3.38E-2(8.8E-3) - 9.11E-3(6.3E-4) - 6.98E-4(2.3E-4) 
(20, 10) 6.51E-3(5.3E-4) - 3.24E-2(4.6E-2) - 6.27E-2(9.1E-3) - 1.64E-2(4.9E-3) - 6.32E-3(4.1E-4) - 6.18E-4(2.1E-4) 

 

FDA3 

 

(5, 10) 2.63E-1(6.0E-2) - 2.63E-1(3.5E-2) - 4.43E-1(1.1E-1) - 2.47E-1(2.3E-2) - 6.25E-2(3.8E-2) - 2.51E-3(9.0E-4) 
(10, 10) 1.08E-1(3.3E-2) - 1.95E-1(3.2E-2) - 2.19E-1(1.8E-2) - 1.30E-1(2.5E-2) - 4.03E-2(2.9E-2) - 1.43E-3(5.2E-4) 
(20, 10) 9.03E-2(2.8E-3) - 1.26E-1(3.1E-2) - 1.92E-1(2.4E-2) - 5.45E-2(8.3E-3) - 3.52E-2(2.9E-2) - 7.32E-4(2.4E-4) 

 

FDA4 

(5, 10) 1.49E+0(1.2E-1) - 1.62E-1(6.1E-3) - 3.07E-1(1.9E-2) - 1.36E+0(1.6E-1) - 4.60E-1(6.6E-2) - 8.43E-4(1.3E-4) 
(10, 10) 7.63E-1(4.4E-2) - 1.24E-1(4.5E-3) - 2.11E-1(2.0E-2) - 5.77E-1(5.4E-2) - 1.83E-1(6.6E-3) - 6.53E-4(7.2E-5) 
(20, 10) 2.62E-1(1.6E-2) - 1.03E-1(1.7E-3) - 1.79E-1(3.0E-3) - 2.22E-1(1.3E-2) - 1.26E-1(1.5E-3) - 5.33E-4(6.6E-5) 

 

FDA5 

(5, 10) 1.76E+0(1.0E-1) -  4.33E-1(4.6E-2) - 6.55E-1(3.1E-2) - 1.57E+0(1.3E-1) - 5.23E-1(3.3E-2) - 3.03E-3(8.3E-4) 
(10, 10) 1.02E+0(5.4E-2) - 3.62E-1(4.0E-2) - 4.80E-1(3.5E-2) - 8.19E-1(6.0E-2) - 3.62E-1(8.5E-3) - 1.84E-3(3.4E-4) 
(20, 10) 4.88E-1(1.2E-2) - 3.10E-1(2.7E-2) - 3.71E-1(1.2E-2) - 4.07E-1(1.4E-2) - 3.09E-1(2.2E-3) - 1.01E-3(1.5E-4) 

 

dMOP1 

(5, 10) 1.31E-1(1.1E-2) - 6.95E-2(1.4E-2) - 4.15E-1(7.4E-1) - 1.36E-2(9.0E-3) - 1.12E-2(8.1E-3) - 1.65E-4(2.0E-5) 
(10, 10) 8.83E-3(5.0E-3) - 3.93E-2(6.2E-3) - 5.09E-2(9.3E-2) - 9.39E-3(4.3E-3) -  8.24E-3(5.3E-3) - 1.34E-4(1.4E-5) 
(20, 10) 7.39E-3(3.2E-3) - 1.88E-2(2.3E-3) - 4.39E-2(8.4E-2) - 7.17E-3(2.7E-3) - 6.54E-3(3.0E-3) - 1.21E-4(1.1E-5) 

 

dMOP2 

(5, 10) 6.87E-1(7.5E-2) - 1.20E-1(2.0E-2) - 1.56E-1(1.8E-2) - 4.91E-1(4.1E-2) -  3.02E-2(3.4E-3) - 2.73E-4(4.5E-5) 
(10, 10) 1.18E-1(9.4E-3) - 7.32E-2(8.9E-3) - 4.28E-1(1.7E-2) - 1.88E-1(1.9E-2) -    1.21E-2(5.7E-4) - 1.77E-4(2.2E-5) 
(20, 10) 1.57E-1(6.70E-4) - 3.46E-2(4.3E-3) - 2.02E-2(2.5E-3) - 5.63E-2(3.9E-3) -  6.32E-3(1.8E-4) - 1.30E-4(1.3E-5) 

 

dMOP3 

(5, 10) 5.62E-1(3.9E-2) - 4.95E-2(4.8E-3) - 1.76E-1(8.0E-2) - 3.42E-1(1.9E-2) - 1.81E-1(9.6E-2) - 8.09E-5(2.9E-5) 
(10, 10) 2.00E-1(1.5E-2) - 2.95E-2(2.4E-3) - 1.13E-1(1.2E-2) - 1.68E-1(1.0E-2) - 1.32E-1(1.3E-2) - 6.80E-5(2.8E-5) 
(20, 10) 1.07E-1(8.5E-3) - 1.63E-2(1.7E-3) - 8.99E-2(6.7E-3) - 6.27E-2(4.4E-3) - 8.15E-2(1.3E-2) - 4.54E-5(1.2E-5) 

+/-/ ≈  0/24/0 0/24/0 0/24/0 0/24/0 0/24/0  

The symbols “+”, “≈” and “−” denote that the performance of the compared algorithm is statistically better than, equivalent 

to, and worse than DB-CSA. 

 

 



Table 11. HVD results (Mean and Standard Deviation) for FDA and dMOP functions 
  Reference: [9]  

DB-CSA Prob. (𝜏𝑡, 𝑛𝑡) DNSGA-II  dCOEA  PPS  MOEA/D  SGEA  
 

FDA1 

(5, 10) 8.70E-1(7.5E-2) - 1.25E-1(2.4E-2) - 3.87E-1(1.0E-1) - 7.70E-1(9.4E-2) - 8.14E-2(2.0E-2)
 - 1.36E-2(2.2E-3) 

(10, 10) 1.36E-1(1.7E-2) - 8.52E-2(2.0E-2) - 2.97E-1(1.6E-2) - 2.88E-1(2.9E-2) - 3.81E-2(1.4E-2) - 9.28E-3(1.4E-3) 
(20, 10) 3.55E-2(1.3E-2) - 5.46E-2(1.6E-2) - 2.84E-1(1.5E-2) - 1.34E-1(9.2E-3) - 2.02E-2(1.2E-2) - 5.29E-3(6.8E-4) 

 

FDA2 

(5, 10) 4.71E-2(1.4E-2) + 1.85E-1(6.4E-2) + 3.21E-1(6.7E-2) + 1.30E-1(2.5E-2) + 2.54E-2(1.3E-2) + 4.25E+0(8.6E+0) 
(10, 10) 2.05E-2(1.4E-2) + 1.24E-1(4.6E-2) + 2.66E-1(1.4E-2) + 6.29E-2(1.8E-2) + 1.67E-2(1.4E-2) + 5.97E+0(1.1E+1) 
(20, 10) 1.33E-2(1.4E-2) + 8.64E-2(7.0E-2) + 2.55E-1(9.4E-3) + 3.24E-2(1.4E-2) + 1.23E-2(1.4E-2) + 6.99E+0(1.3E+1) 

 

FDA3 

 

(5, 10) 1.54E+0(1.6E-1) - 1.45E+0(8.5E-2) - 1.75E+0(1.8E-1) - 1.66E+0(7.8E-2) - 9.80E-1(1.0E-1) - 8.29E-2(3.2E-2) 
(10, 10) 1.09E+0(9.9E-2) - 1.32E+0(7.7E-2) - 1.16E+0(4.6E-2) - 1.12E+0(9.3E-2) - 9.24E-1(8.2E-2) - 5.46E-2(2.1e-2) 
(20, 10) 1.04E+0(7.9E-2) - 1.15E+0(6.6E-2) - 1.03E+0(7.4E-2) - 9.47E-1(2.2E-2) - 9.11E-1(8.1E-2) - 3.20E-2(1.0E-2) 

 

FDA4 

(5, 10) 2.05E+0(2.0E-1) - 3.80E-1(2.6E-2) - 7.77E-1(6.8E-2) - 3.97E+0(1.6E+0) - 1.03E+0(1.3E-1) - 2.59E-1(7.1E-2) 
(10, 10) 1.58E+0(6.6E-2) - 2.70E-1(3.5E-2) - 4.34E-1(7.2E-2) - 1.24E+0(1.3E-1) - 2.74E-1(2.4E-2) - 2.24E-1(4.6E-2) 
(20, 10) 5.48E-1(5.7E-2) - 1.80E-1(2.4E-2) + 3.34E-1(8.3E-3) - 4.34E-1(5.0E-2) - 1.44E-1(2.0E-2) + 1.90E-1(4.5E-2) 

 

FDA5 

(5, 10) 6.75E+0(1.9E-1) - 2.76E+0(2.8E-1) - 3.88E+0(3.1E-1) - 7.08E+0(1.0E+0) - 2.70E+0(2.2E-1) - 1.47E+0(4.9E-1) 
(10, 10) 5.41E+0(1.6E-1) - 2.37E+0(2.7E-1) - 2.19E+0(3.9E-1) - 4.80E+0(2.6E-1) - 1.88E+0(9.3E-2) - 1.17E+0(3.4E-1) 
(20, 10) 2.64E+0(1.1E-1) - 2.02E+0(1.8E-1) - 1.04E+0(1.1E-1) - 2.15E+0(1.0E-1) - 1.78E+0(7.1E-2) - 8.28E-1(1.7E-1) 

 

dMOP1 

(5, 10) 3.93E-2(3.81E-2) - 1.73E-1(3.3E-2) - 2.86E-1(3.6E-1) - 4.64E-2(3.6E-2) - 3.75E-2(2.5E-2) - 8.07E-3(9.2E-4) 
(10, 10) 2.28E-2(2.0E-2) - 1.12E-1(2.0E-2) - 9.27E-2(1.3E-1) - 2.57E-2(1.5E-2) - 1.90E-2(1.4E-2) - 7.03E-3(7.0E-4) 
(20, 10) 1.71E-2(1.4E-2) - 5.65E-2(8.1E-3) - 6.02E-2(8.1E-2) - 1.59E-2(7.9E-3) - 1.80E-2(1.3E-2) - 6.59E-3(5.1E-4) 

 

dMOP2 

(5, 10) 8.06E-1(1.1E-1) - 3.03E-1(4.9E-2) - 3.95E-1(3.9E-2) - 9.04E-1(7.3E-2) - 8.71E-2(1.9E-2) - 1.15E-2(1.5E-3) 
(10, 10) 2.90E-1(2.5E-2) - 2.07E-1(2.4E-2) - 1.17E-1(4.3E-2) - 4.46E-1(4.2E-2) - 3.59E-2(1.1E-2) - 8.62E-3(1.0E-3) 
(20, 10) 4.50E-2(1.2E-2) - 1.09E-1(1.5E-2) - 5.65E-2(6.2E-3) - 1.98E-1(1.4E-2) - 1.85E-2(1.1E-2) - 6.89E-3(6.6E-4) 

 

dMOP3 

(5, 10) 9.51E-1(3.4E-2) + 1.05E-1(1.6E-2) + 4.22E-1(1.5E-2) + 7.61E-1(5.3E-2) + 4.07E-1(2.4E-2) + 3.36E+0(8.3E-1) 
(10, 10) 4.74E-1(2.8E-2) + 6.57E-2(1.3E-2) + 2.79E-1(2.7E-2) + 4.54E-1(2.8E-2) + 3.18E-1(2.9E-2) + 2.75E+0(9.6E-1) 
(20, 10) 2.76E-1(2.5E-2) + 3.63E-2(1.3E-2) + 2.21E-1(1.5E-2) + 2.87E-1(2.0E-2) + 2.15E-1(3.0E-2) + 1.87E+0(8.2E-1) 

+/-/ ≈  6/18/0 7/17/1 6/18/0 6/18/0 7/17/0 - 

The symbols “+”, “≈” and “−” denote that the performance of the compared algorithm is statistically better than, equivalent 

to, and worse than DB-CSA. 

Table 12. IGD results (Mean and Standard Deviation) for UDF and F(ZJZ) functions with ( 𝜏𝑡 =  𝑛𝑡=10). 
 Reference: [9]  

DB-CSA Prob. DNSGA-II  dCOEA  PPS  MOEA/D  SGEA  
UDF1 1.07E-1(2.4E-2) - 2.91E-1(2.3E-2) - 2.67E-1(2.2E-2) - 1.70E-1(5.1E-2) - 1.24E-1(3.3E-2) - 3.16E-4(3.1E-5) 
UDF2 1.12E-1(1.0E-2) -  1.83E-1(2.0E-2) - 2.54E-2(5.0E-3) - 1.16E-1(9.5E-3) - 8.95E-2(1.3E-2) - 3.21E-4(2.1E-5) 
UDF3 6.06E-1(3.3E-6) - 6.51E-1(7.7E-2) - 4.55E+0(1.1E+0) - 6.06E-1(6.3E-5) - 6.06E-1(7.4E-6) - 6.36E-5(4.8E-6) 
UDF4 1.70E-1(4.7E-2) - 2.87E-1(2.8E-2) - 1.85E-1(8.2E-3) - 3.19E-1(1.3E-1) - 1.68E-1(4.4E-2) - 2.76E-5(2.7E-6) 
UDF5 1.18E-1(1.2E-2) - 2.05E-1(3.5E-2) - 2.89E-2(1.3E-2) - 1.61E-1(1.4E-2) - 1.00E-1(1.1E-2) - 3.00E-5(2.5E-6) 
UDF6 4.57E-1(8.7E-2) - 8.04E-1(1.0E-1) - 1.34E+0(7.1E-2) - 5.31E-1(1.6E-1) - 6.68E-1(2.0E-1) - 1.20E-2(3.9E-3) 
UDF7 5.24E-1(2.2E-2) - 8.40E-1(6.4E-2) - 6.68E-1(4.4E-2) - 5.08E-1(1.4E-1) - 5.08E-1(4.2E-2) - 5.04E-5(9.4E-6) 

F5 7.82E-1(3.9E-2) + 8.01E-1(2.2E-1) + 2.69E-1(4.3E-2) + 6.88E-1(4.1E-2) + 4.41E-1(4.5E-2) + 6.54E+0(2.1E+1) 
F6 3.02E-1(2.1E-2) + 6.57E-1(1.3E-1) + 2.60E-1(6.5E-2) + 3.44E-1(5.6E-2) + 2.90E-1(1.3E-2) + 1.36E+1(1.7E+1) 

F7 4.19E-1(6.9E-3) - 1.56E+0(6.0E-1) - 2.63E-1(7.1E-2) + 4.18E-1(6.0E-2) - 4.47E-1(1.0E-2) - 2.70E-1(5.4E-2) 

F8 4.86E-1(1.3E-2) - 4.00E-1(6.7E-2) - 4.56E-1(3.1E-2) - 5.49E-1(2.3E-2) - 2.51E-1(1.4E-1) - 3.76E-3(3.1E-4) 

F9 4.74E-1(2.1E-2) + 8.87E-1(3.3E-1) + 3.59E-1(4.4E-2) + 4.29E-1(2.4E-2) + 3.65E-1(3.4E-2) + 1.18E+0(2.2E-1) 

F10 1.05E+0(1.5E-1) - 5.76E-1(8.1E-2) - 3.79E-1(8.7E-2) - 6.39E-1(8.6E-2) - 3.80E-1(1.3E-2) - 1.42E-1(1.9E-0) 
+/-/ ≈ 3/10/0 3/10/0 4/9/0 3/10/0 3/10/0  

The symbols “+”, “≈” and “−” denote that the performance of the compared algorithm is statistically better than, equivalent 

to, and worse than DB-CSA 
 

Table 13. HVD results (Mean and Standard Deviation) for UDF and F(ZJZ) functions with ( 𝜏𝑡 =  𝑛𝑡=10). 
 Reference: [9]  

DB-CSA Prob. DNSGA-II  dCOEA  PPS  MOEA/D  SGEA  
UDF1 5.14E-1(3.2E-2) -

 7.47E-1(3.8E-2)-
 7.97E-1(5.2E-2)-

 6.12E-1(9.4E-2) - 5.18E-1(5.0E-2) - 2.25E-2(6.3E-3) 
UDF2 5.51E-1(2.4E-2) - 6.13E-1(2.8E-2) - 4.32E-1(1.9E-2) - 5.42E-1(1.7E-2) - 5.10E-1(2.5E-2) - 2.47E-2(6.7E-3) 
UDF3 1.22E+0(1.9E-3) - 1.23E+0(7.0E-2) - 1.73E+0(3.1E-4) - 1.22E+0(2.4E-3) - 1.22E+0(2.4E-3) - 4.59E-3(3.0E-4) 
UDF4 3.47E-1(8.3E-2) - 5.06E-1(3.7E-2) - 3.77E-1(2.1E-2) - 6.41E-1(1.9E-1) - 3.32E-1(7.1E-2) - 6.88E-3(5.4E-4) 
UDF5 2.78E-1(2.5E-2) - 3.98E-1(3.3E-2) - 2.70E-1(1.5E-2) - 3.65E-1(2.7E-2) - 2.72E-1(1.8E-2) - 6.96E-3(3.9E-4) 
UDF6 9.34E-1(1.5E-1) + 1.26E+0(7.2E-2) - 1.83E+0(1.0E-2) - 1.21E+0(1.4E-1) - 9.77E-1(2.0E-1) + 1.10E+0(1.8E+0) 
UDF7 2.40E+0(7.4E-2) - 1.91E+0(1.7E-1) - 2.06E+0(5.4E-2) - 2.32E+0(2.4E-1) - 2.06E+0(1.2E-1) - 1.80E-1(1.2E-1) 
F5 1.25E+0(2.5E-2) + 1.10E+0(1.6E-1) + 4.01E-1(9.9E-2) + 1.19E+0(2.9E-2) + 7.16E-1(8.2E-2) + 2.08E+1(4.1E+1) 
F6 4.76E-1(3.7E-2) + 9.22E-1(1.0E-1) + 4.92E-1(1.5E-1) + 5.75E-1(7.5E-2) + 3.60E-1(2.5E-2) + 4.11E+1(7.6E+1) 
F7 6.49E-1(1.0E-2) + 1.22E+0(1.5E-1) + 4.49E-1(1.4E-1) + 6.50E-1(2.8E-2) + 6.05E-1(1.5E-2) + 1.04E+2(1.9E+1) 
F8 1.06E+0(4.6E-2) - 8.85E-1(1.2E-1) - 1.34E+0(1.0E-1) - 1.06E+0(6.6E-2) - 4.57E-1(3.2E-2) - 1.19E-1(9.7E-2) 
F9 8.87E-1(3.4E-2) + 1.07E+0(1.9E-1) + 6.88E-1(7.7E-2) + 8.58E-1(4.6E-2) + 5.76E-1(7.0E-2) + 3.61E+1(6.3E+1) 
F10 1.22E+0(5.0E-2) + 8.58E-1(8.8E-2) + 5.38E-1(1.2E-1) + 1.05E+0(5.9E-2) + 5.77E-1(2.3E-2) + 2.61E+1(3.4E+1) 

+/-/ ≈ 6/7/0 5/8/0 5/8/0 5/8/0 6/7/0  

The symbols “+”, “≈” and “−” denote that the performance of the compared algorithm is statistically better than, equivalent to, 

and worse than DB-CSA



Table 14. IGD results (Mean and Standard Deviation) of the 13 MOEAs [58] compared to DB-CSA on the 2, 3 and 7 objectives WFG problems. 
MOEAs M WFG1 WFG2 WFG3 WFG4 WFG5 WFG6 WFG7 WFG8 WFG9 +/-/ ≈ 

 

MSOPS-II  

2 2.11E-1(9.19E-2) - 2.68E-2(3.18E-3)- 1.68E-2(9.57E-3) - 1.80E-2(1.16E-3)- 6.61E-2(4.58E-4)- 7.66E-2(2.14E-2)- 1.91E-2(1.42E-3)- 1.13E-1(2.64E-3)- 4.76E-2(7.28E-2)-  

3 3.86E-1(7.13E-2) - 2.73E-1(3.40E-2)- 9.79E-2(244E-2) - 2.60E-1(9.62E-3)- 2.80E-1(9.31E-3)- 3.20E-1(1.71E-2)- 2.71E-1(1.35E-2) - 3.91E-1(1.25E-2)- 2.56E-1(3.01E-2)- 0/27/0 

7 1.17E+0(9.67E-2) - 3.14E+0(7.86E-1)- 1.85E-1(4.01E-2) - 2.78E+0(3.14E-2)- 2.92E+0(8.1E-2)- 2.92E+0(5.6E-2)- 2.92E+0(6.22E-2) - 2.99E+0(4.0E-2)- 2.75E+0(3.9E-2)-  

 

MOEA/D  
2 5.28E-1(5.95E-2) - 1.09E-1(6.86E-2) - 2.68E-2(4.89E-3)- 3.60E-2(4.78E-3)- 7.23E-2(1.45E-3)- 9.55E-2(2.32E-2)- 3.35E-2(3.34E-3)- 1.27E-1(5.63E-3)- 7.41E-2(5.48E-2)-  

3 6.52E-1(9.52E-2) - 1.02E+0(3.31E-2)- 2.05E-1(5.78E-2) - 2.63E-1(5.94E-3) - 2.51E-1(3.69E-3)- 2.99E-1(8.25E-3)- 3.73E-1(4.54E-2) - 3.25E-1(1.10E-2)- 3.03E-1(3.76E-2)- 0/27/0 

7 2.12E+0(2.52E-1) - 1.06E+1(1.18E-1)- 3.05E+0(1.7E-1) - 6.00E+0(1.65E-1)- 5.73E+0(1.3E-1)- 6.18E+0(1.4E-1)- 6.10E+0(1.34E-1) - 5.37E+0(1.5E-1)- 5.57E+0(4.4E-1)-  

 

HypE  

2 7.27E-1(1.53E-1) - 1.08E-2(2.8E-4) + 1.12E-2(3.48E-4) - 1.78E-2(1.24E-3)- 6.69E-2(1.48E-3)- 8.11E-2(2.09E-2)- 1.79E-2(8.14E-4)- 1.11E-1(3.79E-3)- 2.07E-2(1.00E-3)-  

3 1.33E+0(1.22E-1) - 2.71E-1(4.30E-2) - 3.72E-2(3.53E-3)- 3.33E-1(1.48E-2) - 3.62E-1(1.19E-2)- 3.72E-1(2.28E-2)- 3.83E-1(1.44E-2) - 3.72E-1(1.41E-2)- 3.62E-1(1.31E-2)- 1/26/0 

7 2.53E+0(1.31E-1) - 3.89E+0(6.24E-1)- 9.29E-2(9.16E-3) - 4.43E+0(5.97E-1)- 2.91E+0(7.70E-2) 2.95E+0(1.3E-1)- 3.21E+0(2.53E-1) - 3.39E+0(1.9E-1)- 2.89E+0(2.0E-1)-  

 

PICEA-g  
2 2.04E-1(3.63E-2) - 2.59E-2(4.83E-2) - 1.81E-2(1.67E-3)- 1.85E-2(1.97E-3)- 6.59E-2(2.22E-3)- 9.55E-2(1.99E-2)- 1.60E-2(9.18E-4)- 1.20E-1(4.01E-3)- 4.25E-2(5.09E-2)-  

3 9.78E-1(1.07E-1) - 1.54E-1(9.67E-3) - 1.25E-1(1.04E-2) - 2.23E-1(3.05E-3) - 2.28E-1(3.29E-3)- 2.63E-1(2.14E-2)- 2.18E-1(3.58E-3) - 3.09E-1(4.52E-3)- 2.21E-1(1.10E-2)- 0/27/0 

7 2.46E+0(5.1E-2) - 2.04E+0(3.88E-1)- 8.76E-1(8.43E-2) - 2.52E+0(1.51E-1)- 2.46E+0(1.9E-2)- 2.50E+0(1.7E-2)- 2.47E+0(1.69E-2) - 2.70E+0(1.3E-1)- 2.54E+0(4.7E-2)-  

 

SPEA2/SDE  

2 1.93E-1(4.81E-2) - 1.25E-2(7.4E-4) + 1.37E-2(3.66E-4)- 3.18E-2(5.11E-3)- 7.82E-2(4.69E-3)- 9.44E-2(1.88E-2)- 3.54E-2(5.56E-3)- 1.18E-1(3.46E-3)- 3.55E-2(5.90E-3)-  

3 2.94E-1(5.17E-2) - 2.47E-1(5.53E-2) - 6.64E-2(5.31E-3) - 3.28E-1(1.37E-2) - 3.34E-1(1.60E-2)- 3.55E-1(1.97E-2)- 3.27E-1(1.41E-2) - 3.61E-1(1.11E-2)- 3.12E-1(1.39E-2)- 1/26/0 

7 1.13E+0(9.70E-2) - 6.15E+0(1.3E+0)- 1.25E+0(4.5E-1) - 2.76E+0(3.53E-2)- 2.75E+0(4.2E-2)- 2.87E+0(4.9E-2)- 2.79E+0(4.18E-2) - 2.83E+0(3.6E-2)- 2.67E+0(3.1E-2)-  

 

GrEA  
2 1.92E-1(9.01E-2) - 3.14E-2(2.06E-3) - 2.38E-2(3.33E-4) - 2.60E-2(1.42E-3)- 7.41E-2(2.13E-3)- 8.08E-2(2.56E-2)- 2.98E-2(1.90E-3)- 1.12E-1(9.73E-4)- 3.03E-2(2.65E-3)-  

3 3.04E-1(4.41E-2) - 2.61E-1(2.64E-2)- 9.10E-2(8.78E-3) - 2.41E-1(2.99E-3) - 2.61E-1(4.44E-3)- 2.72E-1(9.51E-3)- 2.55E-1(9.13E-3) - 3.02E-1(8.89E-3)- 2.39E-1(5.39E-3)- 0/27/0 

7 1.31E+0(1.90E-1) - 3.00E+0(6.88E-1)- 8.82E-1(1.37E-1) - 2.47E+0(1.66E-2)- 2.47E+0(2.1E-2)- 2.52E+0(2.3E-2)- 2.51E+0(1.22E-2) - 2.59E+0(2.5E-2)- 2.43E+0(1.5E-2)-  

 

NSGA-III  

2 2.70E-1(5.03E-2) - 1.52E-2(6.3E-4) + 1.35E-2(8.46E-4)- 1.39E-2(1.13E-3)- 6.44E-2(1.01E-3)- 8.64E-2(2.42E-2)- 1.27E-2(2.4E-4) + 1.13E-1(1.70E-3)- 2.30E-2(1.97E-3)-  

3 5.55E-1(7.70E-2) - 1.82E-1(5.38E-3)- 1.19E-1(8.98E-3) - 2.22E-1(9.79E-4) - 2.13E-1(4.39E-4)- 2.51E-1(1.27E-2)- 2.22E-1(4.19E-4) - 2.95E-1(5.07E-3)- 2.35E-1(3.10E-2)- 2/25/0 

7 1.58E+0(1.43E-1) - 3.35E+0(2.2E+0)- 1.21E+0(2.9E-1) - 2.66E+0(4.57E-2)- 2.60E+0(7.9E-3)- 2.66E+0(1.9E-2)- 2.66E+0(9.73E-3) - 2.68E+0(1.67E-1)- 2.54E+0(1.9E-2)-  

 

KnEA  
2 2.88E-1(1.39E-1) - 9.19E-1(2.70E-1) - 1.79E-2(8.33E-4)- 2.52E-2(4.50E-3)- 7.86E-2(9.41E-3)- 3.09E-1(6.94E-2)- 1.41E-1(5.41E-2)- 5.02E-1(7.25E-2) - 3.74E-2(4.19E-2) -  

3 3.79E-1(5.38E-2) - 2.36E-1(4.36E-2)- 1.36E-1(5.76E-2) - 2.54E-1(1.04E-2) - 2.68E-1(1.54E-2)- 3.02E-1(1.45E-2)- 2.52E-1(1.36E-2) - 3.38E-1(1.29E-2)- 2.29E-1(5.63E-3)- 0/27/0 

7 1.29E+0(1.32E-1) - 2.16E+0(3.84E-1)- 1.56E+0(5.8E-1) - 2.83E+0(3.81E-2)- 2.85E+0(3.7E-2)- 3.04E+0(8.7E-2)- 2.90E+0(5.22E-2) - 2.87E+0(7.35E-2)- 2.66E+0(4.7E-2)-  

 

RVEA 

2 5.81E-1(4.75E-2) - 7.72E-2(1.07E-2) - 5.79E-2(1.04E-2)- 9.44E-2(1.59E-2)- 1.01E-1(1.40E-2)- 1.69E-1(2.42E-2)- 6.65E-2(1.26E-2) - 2.06E-1(1.51E-2) - 6.04E-2(5.71E-3)-  

3 6.54E-1(6.52E-2) - 2.17E-1(2.05E-2)- 2.30E-1(1.96E-2) - 2.43E-1(5.85E-3) - 2.37E-1(2.78E-3)- 2.72E-1(1.72E-2)- 2.39E-1(5.28E-3) - 3.28E-1(1.62E-2)- 2.36E-1(6.77E-3)- 0/27/0 

7 1.37E+0(1.27E-1) - 5.39E+0(1.1E+0)- 1.93E+0(5.3E-1) - 2.63E+0(1.09E-2)- 2.62E+0(8.8E-3)- 2.64E+0(3.4E-2)- 2.65E+0(1.85E-2) - 2.68E+0(4.91E-2)- 2.57E+0(3.1E-2)-  

 

Two-Arch2  

2 2.57E-1(9.01E-2) - 1.29E-2(1.9E-3) + 1.47E-2(1.46E-3)- 1.62E-2(8.82E-4)- 6.59E-2(2.36E-3)- 7.38E-2(2.00E-2)- 1.62E-2(2.69E-4) - 1.18E-1(8.79E-3) - 2.02E-2(2.34E-3)-  

3 4.58E-1(1.14E-1) - 1.53E-1(3.41E-3)- 8.74E-2(6.22E-3) - 2.27E-1(5.49E-3) - 2.37E-1(3.98E-3)- 2.53E-1(1.38E-2)- 2.25E-1(4.51E-3) - 3.11E-1(5.61E-3)- 2.22E-1(3.75E-3)- 1/26/0 

7 1.62E+0(1.57E-1) - 2.02E+0(4.16E-1)- 9.56E-1(1.15E-1) - 2.59E+0(2.16E-2)- 2.54E+0(2.4E-2)- 2.61E+0(3.2E-2)- 2.56E+0(2.17E-2)- 2.87E+0(3.88E-2)- 2.58E+0(3.7E-2)-  

 

𝜽-DEA  

2 2.70E-1(8.29E-2) - 3.02E-2(4.77E-2) - 1.29E-2(5.23E-4)- 1.40E-2(1.21E-3)- 6.52E-2(2.14E-3)- 8.09E-2(1.42E-2)- 1.27E-2(1.9E-4) + 1.15E-1(3.42E-3) - 2.18E-2(2.34E-3)-  

3 4.75E-1(6.57E-2) - 2.10E-1(2.24E-2)- 1.34E-1(1.84E-2) - 2.22E-1(5.44E-4) - 2.30E-1(8.14E-4)- 2.46E-1(1.13E-2)-  2.22E-1(4.77E-4) - 2.93E-1(4.59E-3)- 2.32E-1(3.04E-2)- 1/26/0 

7 1.29E+0(2.93E-1)- 3.60E+0(1.7E+0)- 1.22E+0(2.0E-1) - 2.65E+0(1.08E-2)- 2.61E+0(7.9E-3)- 2.65E+0(1.6E-2)- 2.66E+0(1.14E-2) - 2.61E+0(1.21E-2)- 2.54E+0(7.8E-3)-  

 

MOEA/DD  

2 3.11E-1(3.60E-2) - 2.48E-2(1.68E-3) - 1.58E-2(1.21E-3)- 1.43E-2(4.79E-4)- 6.71E-2(2.75E-3)- 8.35E-2(1.87E-2)- 1.39E-2(3.5E-4) + 1.10E-1(1.98E-3) - 2.21E-2(2.23E-3)-  

3 1.02E+0(1.49E-1)- 4.85E-1(1.11E-1)- 2.61E-1(1.01E-1) - 2.41E-1(9.34E-4) - 2.46E-1(1.68E-3)- 2.61E-1(1.29E-2)- 2.44E-1(1.85E-3) - 3.05E-1(3.66E-3)- 2.39E-1(1.92E-3)- 1/26/0 

7 1.86E+0(1.17E-1) - 8.91E+0(2.73E-1)- 1.78E+0(1.4E-1) - 2.93E+0(7.84E-2)- 3.05E+0(1.1E-1)- 2.98E+0(9.4E-2)- 2.93E+0(1.13E-1) - 2.83E+0(2.01E-2)- 3.11E+0(1.2E-1)-  

 

AnD  

2 2.84E-1(2.60E-2) - 3.03E-2(3.96E-3) - 1.90E-2(1.64E-3)- 1.98E-2(2.00E-3)- 6.69E-2(1.91E-3)- 8.42E-2(1.87E-2)- 1.97E-2(1.68E-3) - 1.18E-1(2.65E-3) - 2.89E-2(3.46E-3)-  

3 4.79E-1(4.94E-2) - 2.49E-1(2.26E-2)- 1.54E-1(1.87E-2) - 2.28E-1(6.08E-3) - 2.38E-1(4.09E-3)- 2.55E-1(1.69E-2)- 2.29E-1(4.27E-3) - 3.28E-1(9.38E-3)- 2.26E-1(9.73E-3)- 0/27/0 

7 1.26E+0(1.07E-1)- 3.29E+0(1.0E+0)- 1.15E+0(1.7E-1) - 2.57E+0(2.35E-2)- 2.56E+0(1.9E-2)- 2.63E+0(3.3E-2)- 2.63E+0(3.41E-2) - 2.63E+0(2.59E-2)- 2.48E+0(2.4E-2)-  

 

DB-CSA 

2 7.47E-4(4.10E-5)  1.92E-2(1.80E-3) 1.10E-2(1.20E-3) 1.01E-2(8.10E-4) 2.46E-4(3.50E-5) 2.50E-4(4.30E-5) 1.46E-2(2.20E-3) 1.56E-2(2.40E-3) 3.85E-4(5.10E-5)  

3 3.13E-4(3.40E-5) 7.68E-3(3.70E-4) 2.37E-4(7.10E-6) 5.08E-3(2.70E-4) 1.38E-4(2.30E-6) 1.53E-4(4.40E-6) 6.61E-3(4.40E-4) 6.26E-3(2.80E-4) 5.51E-4(3.10E-5)  

7 2.42E-4(1.60E-5) 3.70E-4(1.70E-5) 5.87E-5(7.50E-7) 1.08E-3(2.00E-5) 1.65E-4(5.00E-6) 6.97E-4(6.40E-5) 2.20E-3(6.90E-5) 1.91E-3(4.40E-5) 7.93E-4(3.70E-5)  

The symbols “+”, “≈” and “−” denote that the performance of the compared algorithm is statistically better than, equivalent to, and worse than DB-CSA. 

 

 

 

 
 



Table 15. IGD results (Mean and Standard Deviation) of the 13 MOEAs [58] compared to DB-CSA on the 2, 3 and 7 objectives MaF problems. 
Prob. M MaF1 MaF 2 MaF 3 MaF 4 MaF5 MaF6 MaF7 +/-/ ≈ 

 

MSOPS-II 

2 5.68E-3(2.82E-4) - 3.03E-3(1.52E-4) - 1.83E+0(2.4E+0) - 2.92E-1(3.55E-1) - 5.49E-1(9.11E-1) - 7.55E-2(5.84E-2) - 7.76E-2(1.52E-1) -  

0/21/0 3 5.40E-2(5.31E-3) - 3.72E-2(1.18E-3) - 5.48E+0(7.03E+0)- 2.14E+0(1.5E+0) - 7.77E-1(6.97E-1) - 2.70E-2(5.22E-2) - 1.40E-1(1.21E-2) - 

7 2.39E-1(1.83E-2) -  1.70E-1(4.50E-3) - 2.39E+1(5.1E+1) - 1.56E+2(1.3E+2) - 2.08E+1(8.71E+0) - 1.45E-2(2.29E-3) - 9.27E-1(2.52E-1) - 

 

MOEA/D 

2 3.57E-3(1.21E-7) - 2.58E-3(1.54E-4) - 6.66E-1(1.32E+0) - 7.41E-1(6.20E-1) - 1.46E-1(5.15E-1) - 4.14E-3(1.52E-4) - 7.03E-2(1.53E-1) -  

0/21/0 3 7.05E-2(1.70E-5) - 4.14E-2(1.20E-3) - 9.03E-1(1.18E+0) - 2.27E+0(1.1E+0) - 1.58E+0(1.22E+0) - 9.94E-2(1.48E-1) - 1.54E-1(1.74E-3) - 

7 4.77E-1(3.74E-2) - 2.09E-1(2.95E-3) - 4.64E-1(4.54E-1) - 7.24E+1(5.3E+0) - 4.47E+1(2.70E+0) - 4.14E-1(2.02E-1) - 1.36E+0(1.75E-1) - 

 

HypE 

2 3.68E-3(1.28E-5) - 2.06E-3(1.27E-5) - 1.66E+0(2.7E+0) - 2.12E-1(3.69E-1) - 6.28E-1(8.89E-1) - 9.56E-3(3.88E-3) - 3.26E-1(2.01E-1) -  

0/21/0 3 8.51E-2(5.82E-3) - 4.56E-2(1.71E-3) - 3.71E+0(5.4E+0) - 2.68E+0(2.5E+0) - 1.64E+0(1.09E+0) - 1.96E-1(2.54E-2) - 8.22E-1(5.03E-3) - 

7 2.99E-1(6.63E-3) - 4.29E-1(2.29E-2) - 1.09E+5(1.6E+5) - 7.59E+1(5.9E+1) - 1.97E+1(3.79E+0) - 2.01E-1(3.26E-2) - 3.28E+0(2.32E-1) - 

 

PICEA-g 

2 3.82E-3(3.90E-5) - 2.21E-3(3.00E-5) - 2.18E+2(1.4E+2) - 9.79E-1(1.05E+0) - 1.46E-1(5.15E-1) - 4.57E-3(3.10E-4) - 3.47E+2(1.14E-1)-  

0/21/0 3 4.16E-2(4.72E-4) - 3.04E-2(7.07E-4) - 2.63E+1(1.8E+1) - 6.26E+0(5.5E+0) - 7.78E-1(6.90E-1) - 4.58E-3(3.02E-4) - 3.77E-1(2.65E-1) - 

7 2.16E-1(3.34E-3) - 2.16E-1(4.08E-2) - 1.31E+9(1.3E+9) - 2.95E+2(3.4E+2) - 1.07E+1(3.50E+0) - 4.38E+3(1.77E-4) - 3.03E+0(8.23E-1) - 

 

SPEA2/SDE 

2 3.99E-3(6.27E-5) - 2.38E-3(6.38E-5) - 7.44E-1(1.20E+0) - 3.47E-1(4.34E-1) - 1.63E-1(5.10E-1) - 1.08E-2(1.32E-3) - 5.22E-3(2.02E-4) -  

0/21/0 3 4.20E-2(6.20E-4) - 3.09E-2(7.86E-4) - 5.51E-1(9.40E-1) - 1.89E+0(1.9E+0) - 6.60E-1(6.28E-1) - 9.57E-3(1.19E-3) - 5.86E-2(2.56E-3) - 

7 2.05E-1(2.51E-3) - 1.60E-1(7.08E-3) - 2.09E+0(5.6E+0) - 2.44E+1(1.4E+1) - 1.09E+1(2.47E+0) - 1.03E-2(1.33E-3) - 5.40E-1(9.29E-3) - 

GrEA 2 7.83E-3(6.05E-5) - 3.99E-3(8.78E-5) - 1.07E+0(2.1E+0) - 7.02E-1(6.75E-1) - 3.20E-2(1.18E-3) - 9.85E-3(6.53E-4) - 2.98E-2(7.39E-3) -  

0/21/0 3 4.03E-2(9.01E-4) - 3.13E-2(6.19E-4) - 2.37E+0(3.1E+0) - 3.02E+0(3.2E+0) - 5.39E-1(5.10E-1) - 2.09E-2(5.31E-4) - 8.29E-2(4.07E-3) - 

7 2.21E-1(4.66E-3) - 1.66E-1(3.06E-3) - 2.79E+5(6.6E+5) - 6.41E+1(6.7E+1) - 8.60E+0(2.44E-1) - 8.24E-2(1.54E-1) - 7.13E-1(7.15E-2) - 

 

NSGA-III 

2 3.57E-3(2.33E-6) - 2.05E-3(7.13E-5) - 3.12E+0(7.7E+0) - 7.50E-1(9.42E-1) - 1.45E-1(5.15E-1) - 4.02E-3(3.97E-5) - 6.85E-3(1.74E-4) -  

0/21/0 3 6.16E-2(1.91E-3) - 3.67E-2(8.54E-4) - 4.09E+0(3.5E+0) - 4.64E+0(3.3E+0) - 4.95E-1(6.22E-1) - 1.49E-2(1.56E-3) - 7.67E-2(2.96E-3) - 

7 2.56E-1(1.70E-2) - 1.96E-1(1.60E-2) - 4.46E+2(5.9E+2) - 1.30E+2(1.4E+2) - 1.21E+1(9.47E-1) - 2.08E-1(2.67E-1) - 7.25E-1(3.74E-2) - 

 

KnEA 

2 5.06E-3(2.14E-4) - 2.15E-2(7.69E-3) - 9.27E-1(1.16E+0) - 4.63E-1(3.83E-1) - 5.71E-1(8.97E-1) - 1.48E-1(1.80E-2) - 3.40E-2(1.48E-2) -  

0/21/0 3 4.84E-2(7.05E-3) - 3.42E-2(1.66E-3) - 2.33E+0(5.1E+0) - 1.54E+0(1.6E+0) - 3.11E-1(9.91E-3) - 4.74E-2(3.94E-2) - 6.81E-2(6.14E-3) - 

7 2.05E-1(5.09E-3) - 1.63E-1(7.03E-3) - 6.37E+6(1.7E+7) - 3.03E+2(2.7E+2) - 1.29E+1(5.11E-1) - 4.50E-1(1.62E+0) - 5.07E-1(1.38E-2) - 

 

RVEA 

2 3.60E-3(3.29E-5) - 2.76E-3(1.61E-4) - 1.98E+2(2.8E+2) - 2.33E+0(1.8E+0) - 1.37E-2(1.25E-3) - 7.55E-3(8.55E-4) - 2.91E-2(4.64E-3) -  

0/21/0 3 8.23E-2(2.56E-4) - 4.22E-2(1.36E-3) - 8.04E+2(1.3E+3) - 7.71E+0(5.8E+0) - 2.60E-1(9.96E-4) - 5.11E-2(2.43E-2) - 1.08E-1(2.83E-3) - 

7 4.99E-1(7.00E-2) - 4.58E-1(1.47E-1) - 5.75E+1(5.0E+1) - 4.09E+1(1.9E+1) - 1.51E+1(3.26E+0) - 1.31E-1(2.53E-2) - 1.24E+0(2.41E-1) - 

 

Two-Arch2 

2 4.00E-3(3.10E-6) - 2.24E-3(2.06E-5) - 2.09E+1(2.4E+1) - 2.10E+0(2.6E+0) - 1.61E+0(8.25E-1) - 5.18E-3(1.66E-4) - 6.33E-2(1.54E-1) -  

0/21/0 

 
3 4.15E-2(4.28E-4) - 2.91E-2(4.68E-4) - 1.25E+1(1.3E+1) - 5.49E+0(3.6E+0) - 2.54E-1(6.40E-3) - 5.84E-3(2.83E-4) - 9.69E-2(1.03E-1) - 

7 2.07E-1(4.22E-3) - 1.62E-1(3.64E-3) - 2.09E+5(7.0E+5) - 1.50E+2(1.3E+2) - 8.95E+0(2.39E-1) - 7.65E-3(7.45E-4) - 5.56E-1(3.59E-2) - 

 

𝜽-DEA 

2 3.57E-3(4.88E-7) - 2.01E-3(7.51E-6) - 1.09E+1(3.2E+1) - 2.12E-1(3.12E-1) - 4.11E-1(8.26E-1) - 4.01E-3(6.45E-5) - 5.11E-3(7.25E-5) -  

0/21/0 

 
3 8.04E-2(9.64E-4) - 3.65E-2(4.26E-4) - 3.81E+0(4.8E+0) - 1.79E+0(2.7E+0) - 6.66E-1(7.11E-1) - 3.34E-2(2.28E-3) - 1.10E-1(6.96E-2) - 

7 2.63E-1(5.71E-3) - 2.03E-1(1.32E-2) - 2.09E+1(1.8E+1) - 4.99E+1(4.0E+1) - 1.18E+1(5.89E-1) - 1.46E-1(5.93E-2) - 7.14E-1(7.91E-2) - 

 

MOEA/DD 

2 3.57E-3(9.24E-8) - 4.44E-3(1.38E-4) - 4.14E+1(3.7E+1) - 2.18E+0(1.8E+0) - 1.31E-2(1.20E-6) - 4.06E-3(4.73E-5) - 2.01E-2(1.15E-3) -  

0/21/0 3 7.82E-2(1.97E-3) - 5.58E-2(2.08E-3) - 2.66E+1(2.7E+1) - 2.01E+0(2.4E+0) - 2.97E-1(1.89E-4) - 3.05E-2(1.45E-3) - 5.06E-1(2.54E-1) - 

7 3.34E-1(3.01E-2) - 2.28E-1(2.34E-2) - 2.04E+2(1.6E+2) - 4.56E+1(1.0E+1) - 3.94E+1(2.30E+0) - 1.29E-1(1.10E-2) - 2.09E+0(5.77E-1) - 

 

AnD 

2 4.18E-3(2.25E-4) - 2.52E-3(9.47E-5) - 1.24E+4(1.9E+4) - 2.95E+0(1.5E+0) - 1.59E-2(1.23E-3) - 2.23E-3(7.01E-4) - 9.38E-3(8.54E-4) -  

0/21/0 3 4.38E-2(6.16E-4) - 3.03E-2(4.94E-4) - 7.97E+3(9.7E+3) - 8.69E+0(5.1E+0) - 2.63E-1(5.32E-3) - 6.26E-2(1.53E-2) - 8.54E-2(3.08E-3) - 

7 2.17E-1(1.24E-3) - 1.57E-1(5.08E-3) - 7.43E+3(1.4E+4) - 9.23E+1(8.0E+1) - 9.57E+0(4.03E-1) - 3.12E-1(6.39E-2) - 5.66E-1(2.63E-2) - 

 

DB-CSA 

2 4.86E-4(2.40E-5) 6.16E-5(2.5E-7) 2.88E-4(5.60E-6) 2.16E-4(6.20E-7) 3.89E-4(2.80E-5) 3.17E-5(1.20E-7) 7.13E-4(5.30E-6)  

 3 1.72E-2(1.60E-3) 6.16E-5(2.60E-7) 2.96E-4(3.40E-6) 2.12E-4(6.30E-7) 3.72E-4(3.30E-5) 3.16E-5(1.10E-7) 7.14E-4(5.70E-6) 

7 2.10E-2(1.50E-3) 6.17E-5(2.30E-7) 2.77E-4(3.90E-6) 2.15E-4(7.90E-7) 3.84E-4(3.10E-5) 3.26E-5(1.30E-7) 7.13E-4(4.90E-6) 

The symbols “+”, “≈” and “−” denote that the performance of the compared algorithm is statistically better than, equivalent to, and worse than DB-CSA. 



 

Table 16. IGD results (Mean and Standard Deviation) of the 8 MOEAs on the WFG test suite. 
   Reference : [57]  

DB-CSA Prob. M D PMEA-MA  PMEA*-MA   SPEA2/SDE  NSGA-II+SDR  MaOEA/IGD  VaEA  SPEAR  

 

 

WFG1 

3 12 6.38E-1(6.61E-2)- 3.42E-1(4.42E-2) - 2.37E-1(2.90E-2) - 2.79E-1(4.02E-2) - 2.04E+0(3.9E-1) - 2.34E-1(2.91E-2) - 2.63E-1(4.78E-2) - 4.24E-3(1.6E-3) 

5 14 9.24E-1(1.33E-1)- 6.07E-1(5.13E-2) - 4.31E-1(2.50E-2) - 6.49E-1(5.68E-2) - 3.52E+0(1.56E+0)- 7.12E-1(7.52E-2) - 4.56E-1(7.98E-2) - 1.98E-3(7.3E-4) 

8 17 1.55E+0(9.4E-2) - 1.31E+0(9.67E-2) - 1.04E+0(3.85E-2)- 1.52E+0(1.44E-1) - 5.57E+0(2.43E+0)- 1.55E+0(1.44E-1) - 1.45E+0(1.14E-1)- 1.82E-3(6.5E-4) 

10 19 1.65E+0(1.0E-1)- 1.48E+0(7.64E-2)- 1.09E+0(2.59E-2)- 1.71E+0(1.20E-1)- 9.49E+0(3.40E+0)- 1.93E+0(2.13E-1) - 1.49E+0(9.24E-2) - 1.53E-3(3.6E-4) 

15 24 2.07E+0(9.8E-2)- 2.44E+0(1.56E-1)- 1.97E+0(8.29E-2)- 2.48E+0(4.01E-2)- 4.35E+0(2.52E+0)- 2.73E+0(2.19E-1) - 2.47E+0(1.57E-1)- 1.47E-3(2.3E-4) 

 

 

WFG2 

3 12 1.70E-1(4.62E-3)- 1.68E-1(3.82E-3) - 2.18E-1(1.10E-2) - 2.03E-1(1.45E-2) - 1.32E+0(3.25E-1)- 1.72E-1(4.75E-3) - 1.71E-1(2.95E-3) - 7.22E-3(7.3E-4) 

5 14 8.66E-1(1.28E-1)- 4.01E-1(7.17E-3) - 4.98E-1(2.14E-2) - 4.95E-1(5.28E-2) - 1.16E+0(2.65E-1)- 3.91E-1(4.48E-3) - 3.94E-1(2.38E-3) - 3.82E-3(2.9E-4) 

8 17 1.85E+0(1.0E-1)- 1.07E+0(3.55E-2)- 1.08E+0(3.65E-2)- 1.47E+0(1.67E-1)- 2.12E+0(3.91E-1)- 9.35E-1(1.27E-2) - 9.65E-1(1.84E-2) - 4.27E-3(6.8E-4) 

10 19 1.94E+0(3.1E-2) - 1.18E+0(3.62E-2)- 1.14E+0(3.81E-2)- 1.62E+0(1.38E-1)- 2.28E+0(5.57E-1)- 1.01E+0(1.17E-2) - 1.08E+0(1.08E-2)- 2.75E-3(5.5E-4) 

15 24 2.52E+0(4.0E-2)- 1.89E+0(4.72E-2)- 1.88E+0(5.98E-2)- 2.42E+0(4.94E-2)- 3.15E+0(1.38E+0)- 1.76E+0(4.39E-2) - 1.87E+0(7.38E-2)- 5.06E-3(1.1E-3) 

 

 

WFG3 

3 12 1.16E-1(1.29E-2)- 1.12E-1(8.45E-3) - 7.16E-2(6.18E-3) - 1.15E-1(6.24E-2) - 3.19E+0(3.23E-2)- 1.36E-1(1.22E-2) - 1.46E-1(1.27E-2) - 1.28E-3(6.8E-5) 

5 14 5.02E-1(4.61E-2)- 5.09E-1(6.16E-2) - 4.86E-1(1.56E-1) - 3.59E-1(3.76E-2) - 4.73E+0(1.83E+0)- 5.38E-1(4.57E-2) - 4.65E-1(5.11E-2) - 7.90E-4(5.1E-5) 

8 17 1.49E+0(1.6E-1)- 1.45E+0(1.74E-1)- 1.44E+0(5.51E-1)- 1.13E+0(8.43E-1)- 6.08E+0(3.76E+0)- 1.50E+0(1.53E-1) - 1.78E+0(2.00E-1)- 6.10E-4(5.8E-5) 

10 19 1.97E+0(1.8E-1)- 2.00E+0(2.34E-1)- 1.66E+0(7.33E-1)- 1.63E+0(6.21E-1)- 4.76E+0(4.49E+0)- 1.79E+0(2.11E-1) - 1.94E+0(1.63E-1)- 4.81E-4(5.7E-5) 

15 24 3.77E+0(4.3E-1)- 3.51E+0(5.24E-1)- 7.13E+0(2.08E+0)- 4.53E+0(1.35E+0)- 7.55E+0(4.55E+0)- 3.82E+0(4.41E-1) - 4.39E+0(5.34E-1)- 9.57E-4(1.0E-4) 

 

 

WFG4 

3 12 2.24E-1(4.05E-3)- 2.29E-1(4.17E-3) - 3.36E-1(1.97E-2) - 2.55E-1(8.55E-3) - 3.82E+0(5.07E-1)- 2.31E-1(4.01E-3) - 2.27E-1(3.06E-3) - 5.28E-3(3.9E-4) 

5 14 9.35E-1(6.44E-3)- 9.54E-1(6.05E-3) - 1.39E+0(1.42E-2)- 9.89E-1(7.86E-3) - 6.39E+0(1.17E+0)- 9.47E-1(5.63E-3) - 9.75E-1(3.62E-3) - 2.23E-3(6.9E-5) 

8 17 2.92E+0(2.2E-2)- 3.06E+0(2.38E-2)- 3.24E+0(3.89E-2)- 3.21E+0(3.16E-2)- 9.55E+0(1.25E+0)- 3.00E+0(3.17E-2) - 2.98E+0(1.05E-2)- 2.19E-3(7.4E-5) 

10 19 3.97E+0(2.5E-2)- 4.19E+0(3.08E-2)- 4.44E+0(5.25E-2)- 4.38E+0(3.72E-2)- 1.13E+1(2.11E+0)- 4.03E+0(2.45E-2) - 4.56E+0(1.08E-2)- 1.45E-3(3.9E-5) 

15 24 8.27E+0(9.1E-2)- 8.81E+0(9.68E-2)- 9.98E+0(7.35E-1)- 9.39E+0(5.28E-1)- 1.69E+1(9.10E+0)- 8.26E+0(7.86E-2) - 9.41E+0(3.17E-2)- 2.01E-3(4.6E-5) 

 

 

WFG5 

3 12 2.33E-1(3.46E-3)- 2.40E-1(3.60E-3) - 3.44E-1(1.57E-2) - 2.60E-1(5.91E-3) - 2.16E+0(1.30E+0)- 2.39E-1(2.59E-3) - 2.37E-1(3.25E-3) - 7.94E-4(7.0E-5) 

5 14 9.29E-1(6.58E-3)- 9.57E-1(6.75E-3) - 1.15E+0(1.60E-2)- 9.87E-1(1.35E-2) - 2.11E+0(1.38E+0)- 9.42E-1(6.17E-3) - 9.66E-1(3.79E-3) - 1.06E-3(2.9E-5) 

8 17 2.94E+0(2.2E-2)- 3.13E+0(3.12E-2)- 3.24E+0(4.37E-2)- 3.25E+0(3.30E-2)- 7.09E+0(4.97E+0)- 3.04E+0(3.93E-2) - 2.95E+0(8.36E-3)- 1.64E-3(3.2E-5) 

10 19 3.91E+0(2.6E-2)- 4.23E+0(4.61E-2)- 4.43E+0(3.62E-2)- 4.42E+0(5.99E-2)- 9.18E+0(6.57E+0)- 4.00E+0(2.50E-2) - 4.54E+0(8.28E-3)- 1.57E-3(1.3E-5) 

15 24 8.04E+0(8.9E-2)- 8.87E+0(4.42E-2)- 1.13E+1(5.60E-1)- 9.39E+0(2.86E-1)- 1.85E+1(1.11E+1)- 7.98E+0(6.16E-2) - 9.27E+0(2.42E-2)- 1.99E-3(3.1E-5) 

 

 

WFG6 

3 12 2.47E-1(1.22E-2)- 2.54E-1(1.23E-2) - 3.53E-1(1.47E-2) - 2.69E-1(1.04E-2) - 2.33E+0(1.21E+0)- 2.56E-1(1.03E-2) - 2.46E-1(8.54E-3) - 1.21E-3(2.8E-4) 

5 14 9.44E-1(7.53E-3)- 9.77E-1(8.15E-3) - 1.19E+0(1.81E-2)- 9.99E-1(1.13E-2) - 1.05E+0(1.49E-2)- 5.5E+0(1.21E+0) - 9.69E-1(3.67E-3) - 1.92E-3(2.0E-4) 

8 17 3.02E+0(3.4E-2)- 3.22E+0(3.37E-2)- 3.34E+0(5.37E-2)- 3.34E+0(3.90E-2)- 9.22E+0(4.16E+0)- 3.12E+0(4.26E-2) - 2.99E+0(1.80E-2)- 3.33E-3(2.6E-4) 

10 19 3.98E+0(3.1E-2)- 4.35E+0(4.86E-2)- 4.56E+0(4.35E-2)- 4.53E+0(7.34E-2)- 9.16E+0(5.32E+0)- 4.09E+0(3.27E-2) - 4.58E+0(1.07E-2)- 2.82E-3(1.1E-4) 

15 24 7.96E+0(9.1E-2)- 8.97E+0(5.20E-2)- 1.05E+1(7.98E-1)- 1.03E+1(1.27E+0)- 2.07E+1(8.74E+0)- 7.92E+0(7.55E-2) - 9.44E+0(9.96E-2)- 3.83E-3(1.5E-4) 

 

 

WFG7 

3 12 2.24E-1(2.77E-3)- 2.29E-1(4.00E-3) - 3.43E-1(1.46E-2) - 2.50E-1(4.85E-3) - 2.57E+0(1.18E+0)- 2.33E-1(3.94E-3) - 2.28E-1(3.63E-3) - 6.40E-3(3.8E-4) 

5 14 9.37E-1(7.57E-3)- 9.66E-1(6.15E-3) - 1.17E+0(2.05E-2)- 9.93E-1(1.13E-2) - 3.89E+0(1.66E+0)- 9.51E-1(7.33E-3) - 9.71E-1(2.05E-3) - 3.42E-3(1.2E-4) 

8 17 2.94E+0(2.4E-2)- 3.14E+0(3.66E-2)- 3.18E+0(3.76E-2)- 3.29E+0(4.93E-2)- 8.39E+0(3.76E+0)- 3.07E+0(4.85E-2) - 2.98E+0(1.01E-2)- 3.82E-3(1.1E-4) 

10 19 3.93E+0(2.7E-2)- 4.23E+0(3.26E-2)- 4.40E+0(4.95E-2)- 4.43E+0(6.35E-2)- 7.61E+0(3.31E+0)- 4.01E+3(2.21E-2) - 4.55E+0(2.81E-2)- 2.72E-3(1.0E-4) 

15 24 8.14E+0(1.1E-1)- 8.68E+0(6.56E-2)- 9.23E+0(4.17E-1)- 1.11E+1(1.24E+0)- 1.85E+1(8.66E+0)- 8.08E+0(7.35E-2) - 9.36E+0(4.33E-2)- 4.08E-3(1.7E-4) 

 

 

WFG8 

3 12 2.76E-1(3.48E-3)- 2.95E-1(4.12E-3) - 3.76E-1(1.08E-2) - 3.31E-1(7.75E-3) - 3.65E+0(4.00E-1)- 3.06E-1(5.90E-3) - 2.74E-1(2.41E-3) - 6.92E-3(3.1E-4) 

5 14 9.68E-1(4.84E-3)- 1.02E+0(6.57E-3)- 1.16E+0(1.61E-2)- 1.05E+0(1.31E-2)- 4.57E+0(9.65E-1)- 1.07E+0(1.28E-2) - 9.89E-1(3.03E-3) - 2.89E-3(9.3E-5) 

8 17 3.06E+0(4.9E-2)- 3.23E+0(4.12E-2)- 3.39E+0(3.62E-2)- 3.32E+0(4.09E-2)- 9.09E+0(2.85E+0)- 3.28E+0(3.03E-2) - 3.09E+0(3.27E-2)- 3.71E-3(9.1E-5) 

10 19 3.99E+0(6.9E-2)- 4.39E+0(5.12E-2)- 4.55E+0(3.82E-2)- 4.52E+0(5.66E-2)- 1.31E+1(2.37E+0)- 4.32E+0(5.20E-2) - 4.65E+0(1.97E-2)- 2.70E-3(7.3E-5) 

15 24 8.52E+0(1.4E-1)- 8.71E+0(7.50E-2)- 9.04E+0(1.26E-1)- 9.83E+0(9.41E-1)- 2.46E+1(2.95E+0)- 8.59E+0(1.57E-1) - 9.39E+0(5.40E-2)- 3.92E-3(1.7E-4) 

 

 

WFG9 

3 12 2.18E-1(2.70E-3)- 2.25E-1(3.27E-3) - 3.27E-1(1.94E-2) - 2.51E-1(7.00E-3) - 2.07E+0(7.20E-1)- 2.33E-1(2.35E-2) - 2.24E-1(1.50E-3) - 2.11E-3(2.5E-4) 

5 14 9.14E-1(5.30E-3)- 9.27E-1(5.68E-3) - 1.09E+0(1.82E-2)- 9.77E-1(1.12E-2) - 3.71E+0(1.60E+0)- 9.30E-1(6.40E-3) - 9.44E-1(2.86E-3) - 2.55E-3(8.6E-5) 

8 17 2.95E+0(1.7E-2)- 3.03E+0(3.18E-2)- 3.22E+0(3.34E-2)- 3.18E+0(4.37E-2)- 4.77E+0(2.08E+0)- 3.02E+0(2.65E-2) - 2.94E+0(8.74E-3)- 3.56E-3(1.1E-4) 

10 19 3.94E+0(3.2E-2)- 4.09E+0(3.35E-2)- 4.64E+0(2.54E-1)- 4.43E+0(1.05E-1)- 4.38E+0(4.74E-2)- 3.98E+0(2.75E-2) - 4.52E+0(1.56E-2)- 2.96E-3(5.7E-5) 

15 24 7.92E+0(1.4E-1)- 8.47E+0(1.07E-1)- 8.88E+0(3.66E-1)- 8.89E+0(4.25E-1)- 9.02E+0(7.35E-1)- 7.79E+0(7.89E-2) - 9.12E+0(2.73E-2)- 4.24E-3(8.1E-5) 

  +/-/ ≈ 0/45/0 0/45/0 0/45/0 0/45/0 0/45/0 0/45/0 0/45/0  

The symbols “+”, “≈” and “−” denote that the performance of the compared algorithm is statistically better than, equivalent to, and worse than DB-CSA. 



 

 

 

 

Table 17.  IGD results (Mean and Standard Deviation) of the 8 MOEAs on the DTLZ test suite. 
   Reference : [57]  

DB-CSA Prob. M D PMEA-MA PMEA*-MA SPEA2/SDE NSGA-II+SDR MaOEA/IGD VaEA SPEAR 

 

 

DTLZ1 

3 7 2.58E-2(1.71E-3)- 2.20E-2(3.79E-4) - 2.16E-2(3.45E-4) - 3.43E-2(8.40E-3) - 7.48E-1(4.05E-1) - 3.62E-2(2.38E-2) - 2.58E-2(1.59E-2) - 1.19E-2(1.4E-3) 

5 9 5.29E-2(9.08E-4) - 5.29E-2(4.77E-4) - 5.00E-2(2.76E-4) - 7.38E-2(9.06E-3) - 3.33E-1(2.69E-1) - 1.06E-1(3.24E-2) - 8.07E-2(2.33E-2) - 1.47E-2(1.3E-3) 

8 12 1.15E-1(2.57E-3) - 1.04E-1(1.19E-3) - 9.61E-2(5.25E-4) - 1.61E-1(1.18E-2) - 4.78E-1(4.28E-1) - 1.99E-1(2.25E-2) - 1.26E-1(1.48E-2) - 1.52e-2(2.8e-3) 

10 14 1.15E-1(1.31E-3) - 1.08E-1(1.50E-3) - 1.01E-1(5.01E-4) - 1.68E-1(1.29E-2) - 1.40E-1(1.02E-1) - 1.92E-1(1.83E-2) - 1.52E-1(2.87E-2) - 2.20e-2(3.3e-3) 

15 19 1.39E-1(1.41E-3) - 2.62E-1(6.19E-2) - 1.34E-1(1.17E-3) - 2.00E-1(2.76E-2) - 6.09E-1(9.50E-1) - 2.48E-1(8.41E-2) - 3.11E-1(1.53E-1) - 2.80e-2(4.6e-3) 

 

 

DTLZ 2 

3 12 5.59E-2(5.74E-4) - 5.72E-2(5.53E-4) - 7.92E-2(2.61E-3) - 4.70E-1(1.99E-2) - 1.81E-1(4.98E-2) - 5.78E-2(6.49E-4) - 5.77E-2(1.81E-3) - 9.52E-3(1.8E-3) 

5 14 1.63E-1(1.00E-3) - 1.66E-1(6.93E-4) - 1.90E-1(1.68E-3) - 1.65E-1(3.04E-5) - 1.69E-1(6.53E-4) - 1.68E-1(9.78E-4) - 1.69E-1(1.18E-3) - 4.54E-3(2.0E-4) 

8 17 3.51E-1(2.36E-3) - 3.56E-1(2.03E-3) - 3.60E-1(1.68E-3) - 4.18E-1(8.53E-2) - 3.44E-1(2.07E-2) - 3.66E-1(2.34E-3) - 3.25E-1(2.07E-3) - 3.98e-3(1.8e-4) 

10 19 3.98E-1(2.08E-3) - 4.15E-1(1.90E-3) - 4.23E-1(2.19E-3) - 4.35E-1(6.45E-3) - 4.33E-1(3.30E-3) - 4.28E-1(4.66E-3) - 4.31E-1(2.60E-3) - 2.32e-3(7.3e-5) 

15 24 5.77E-1(7.07E-3) - 6.12E-1(2.09E-3) - 6.03E-1(2.70E-3) - 6.71E-1(6.17E-2) - 7.83E-1(7.52E-2) - 6.29E-1(2.09E-2) - 6.63E-1(1.10E-2) - 2.52e-3(4.7e-5) 

 

 

DTLZ 3 

3 12 5.73E-2(1.05E-3) - 6.41E-2(2.73E-2) - 7.84E-2(3.16E-3) - 4.42E-1(3.39E-2) - 1.64E+1(7.51E+0)- 5.92E-2(6.55E-3) - 2.14E-1(7.45E-2) - 1.41E-2(1.4E-3) 

5 14 1.66E-1(1.91E-3) - 2.45E-1(9.39E-2) - 1.89E-1(1.65E-3) - 1.82E-1(3.49E-3) - 1.15E+1(3.85E+0)- 3.35E-1(7.89E-2) - 5.06E-1(1.78E-1) - 4.52E-3(2.0E-4) 

8 17 3.56E-1(4.14E-3) - 4.84E-1(5.03E-2) - 3.69E-1(1.44E-2) - 4.55E-1(1.19E-1) - 1.03E+1(6.52E+0)- 2.25E+0(1.44E+0)- 6.42E+0(3.37E+0)- 1.89e-3(4.5e-5) 

10 19 4.00E-1(2.94E-3) - 6.09E-1(3.87E-2) - 4.27E-1(5.62E-3) - 4.37E-1(5.48E-3) - 4.98E+0(3.15E+0)- 3.99E+0(2.30E+0)- 1.31E+1(8.98E+0)- 1.17e-3(2.0e-5) 

15 24 5.81E-1(6.33E-3) - 1.42E+0(8.27E-1) - 6.22E-1(8.34E-3) - 8.01E-1(8.22E-2) - 6.46E+0(6.28E+0)- 9.22E+0(5.83E+0)- 4.91E+1(1.91E+1)- 8.90e-4(2.2e-5) 

 

 

DTLZ 4 

3 12 5.61E-2(6.58E-4) - 5.73E-2(6.68E-4) - 2.45E-1(2.74E-1) - 5.17E-1(9.85E-2) - 3.64E-1(1.80E-1) - 5.78E-2(7.26E-4) - 5.78E-2(1.33E-3) - 5.07E-2(1.1E-2) 

5 14 1.64E-1(1.04E-3) - 1.66E-1(5.25E-4) - 1.98E-1(4.08E-2) - 6.45E-1(8.57E-2) - 2.61E-1(1.43E-1) - 1.70E-1(1.24E-3) - 1.69E-1(1.19E-3) - 7.12E-3(8.5E-4) 

8 17 3.52E-1(1.46E-3) - 3.53E-1(1.20E-3) - 3.63E-1(1.62E-2) - 7.72E-1(9.05E-2) - 3.79E-1(5.66E-2) - 3.69E-1(4.46E-3) - 3.46E-1(3.71E-3) - 7.13e-3(4.8e-4) 

10 19 3.99E-1(1.08E-3) - 4.11E-1(1.29E-3) - 4.17E-1(1.30E-3) - 7.65E-1(8.29E-2) - 4.49E-1(2.43E-2) - 4.39E-1(8.96E-3) - 4.62E-1(4.10E-3) - 2.57e-3(1.3e-4) 

15 24 5.72E-1(2.01E-3) - 6.05E-1(3.25E-3) - 6.03E-1(1.06E-2) - 8.19E-1(2.38E-2) - 6.57E-1(2.57E-2) - 6.21E-1(1.23E-2) - 6.59E-1(9.19E-3) - 6.77e-4(2.9e-5) 

 

 

DTLZ 5 

3 12 4.89E-3(1.28E-4) + 5.03E-3(9.89E-5) + 1.09E-2(1.27E-3) - 3.13E-2(5.2E-3) + 5.12E-1(2.12E-1) - 5.44E-3(2.21E-4) + 2.99E-2(3.46E-3) - 8.54E-3(6.6E-4) 

5 14 9.02E-2(1.69E-2) - 9.72E-2(1.98E-2) - 6.08E-2(1.09E-2) - 6.25E-2(1.39E-2) - 3.77E-1(1.54E-1) - 1.13E-1(2.67E-2) - 2.02E-1(4.24E-2) - 3.21E-4(1.6E-5) 

8 17 1.75E-1(2.36E-2) - 2.71E-1(4.95E-2) - 1.21E-1(2.18E-2) - 1.23E-1(2.09E-2) - 5.57E-1(1.89E-1) - 3.13E-1(7.07E-2) - 4.43E-1(8.34E-2) - 2.49e-4(6.7e-6) 

10 19 2.04E-1(3.23E-2) - 3.36E-1(5.81E-2) - 1.48E-1(3.15E-2) - 1.63E-1(3.13E-2) - 4.91E-1(1.94E-1) - 3.97E-1(9.26E-2) - 6.75E-1(1.55E-1) - 1.79e-4(2.6e-6) 

15 24 3.53E-1(7.07E-2) - 4.97E-1(9.04E-2) - 1.64E-1(3.22E-2) - 1.02E-1(2.00E-2) - 6.58E-1(1.69E-1) - 5.29E-1(1.15E-1) - 9.39E-1(2.96E-1) - 2.71e-4(2.9e-6) 

 

 

DTLZ 6 

3 12 4.84E-3(1.09E-4) - 4.92E-3(1.04E-4) - 1.07E-2(1.25E-3) - 5.98E-2(1.52E-2) - 6.45E-1(1.18E-1) - 5.08E-3(1.50E-4) - 3.91E-2(8.74E-3) - 2.82E-4(5.9E-5) 

5 14 1.47E-1(4.03E-2) - 1.49E-1(4.74E-2) - 7.14E-2(1.18E-2) - 9.32E-2(1.99E-2) - 6.19E-1(8.32E-2) - 2.65E-1(4.63E-2) - 2.95E-1(9.84E-2) - 3.08E-4(3.7E-5) 

8 17 2.77E-1(7.58E-2) - 4.07E-1(1.47E-1) - 2.14E-1(4.37E-2) - 2.27E-1(5.24E-2) - 8.40E-1(4.31E-1) - 1.16E+0(6.51E-1) - 8.82E-1(2.01E-1) - 6.02e-4(6.1e-5) 

10 19 3.07E-1(7.55E-2) - 4.69E-1(1.37E-1) - 2.09E-1(3.64E-2) - 2.52E-1(7.25E-2) - 6.65E-1(1.18E-1) - 1.43E+0(5.42E-1) - 1.12E+0(1.84E-1) - 5.50e-4(3.0e-5) 

15 24 4.86E-1(1.51E-1) - 5.85E-1(2.00E-1) - 3.38E-1(2.59E-2) - 1.24E-1(2.70E-2) - 7.07E-1(7.32E-2) - 5.71E-1(3.50E-1) - 9.02E+0(6.38E-1) - 9.69e-4(7.6e-5) 

 

 

DTLZ 7 

3 22 5.98E-2(1.48E-3) - 6.95E-2(5.27E-2) - 8.24E-2(7.77E-2) - 9.15E-2(6.18E-3) - 8.03E-1(4.39E-1) - 7.42E-2(5.20E-2) - 9.53E-2(1.96E-3) - 1.40E-3(2.9E-4) 

5 24 2.71E-1(1.19E-2) - 2.51E-1(5.56E-3) - 2.71E-1(2.65E-2) - 3.15E-1(2.61E-2) - 6.64E-1(4.04E-2) - 2.74E-1(5.88E-3) - 3.56E-1(5.13E-3) - 1.53E-3(1.2E-4) 

8 27 9.87E-1(1.00E-1) - 1.06E+0(1.77E-1) - 7.42E-1(2.00E-2) - 9.76E-1(1.22E-1) - 1.23E+0(3.81E-2) - 7.32E-1(1.98E-2) - 1.24E+0(5.22E-2) - 2.17e-3(9.9e-5) 

10 29 1.20E+0(1.38E-1) - 1.22E+0(1.88E-1) - 8.79E-1(5.94E-2) - 1.57E+0(2.8E-1) - 1.47E+0(4.08E-2) - 1.07E+0(2.98E-2) - 2.16E+0(5.17E-2) - 1.97e-3(6.1e-5) 

15 34 3.51E+0(3.90E-1) - 6.95E+0(2.03E+0)- 1.55E+0(3.47E-2) - 4.66E+0(6.6E-1) - 2.65E+0(1.43E-1) - 2.74E+0(2.72E-1) - 8.97E+0(6.69E-2) - 2.99e-3(7.2e-5) 

  +/-/ ≈ 1/34/0 1/34/0 0/35/0 1/34/0 0/35/0 1/34/0 0/35/0  

The symbols “+”, “≈” and “−” denote that the performance of the compared algorithm is statistically better than, equivalent to, and worse than DB-CSA.
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