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Abstract

Knee cartilage and bone segmentation is critical for physicians to analyze and diagnose articular damage and knee osteoarthritis

(OA). Deep learning (DL) methods for medical image segmentation have largely outperformed traditional methods, but they

often need large amounts of annotated data for model training, which is very costly and time-consuming for medical experts,

especially on 3D images. In this paper, we report a new knee cartilage and bone segmentation framework, KCB-Net, for 3D

MR images based on sparse annotation. KCB-Net selects a small subset of slices from 3D images for annotation, and seeks to

bridge the performance gap between sparse annotation and full annotation. Specifically, it first identifies a subset of the most

effective and representative slices with an unsupervised scheme; it then trains an ensemble model using the annotated slices;

next, it self-trains the model using 3D images containing pseudo-labels generated by the ensemble method and improved by a

bi-directional hierarchical earth mover’s distance (bi-HEMD) algorithm; finally, it fine-tunes the segmentation results using the

primal-dual Internal Point Method (IPM). Experiments on two 3D MR knee joint datasets (the Iowa dataset and iMorphics

dataset) show that our new framework outperforms state-of-the-art methods on full annotation, and yields high quality results

even for annotation ratios as low as 5%.
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Abstract— Knee cartilage and bone segmentation is crit-
ical for physicians to analyze and diagnose articular dam-
age and knee osteoarthritis (OA). Deep learning (DL) meth-
ods for medical image segmentation have largely out-
performed traditional methods, but they often need large
amounts of annotated data for model training, which is very
costly and time-consuming for medical experts, especially
on 3D images. In this paper, we report a new knee carti-
lage and bone segmentation framework, KCB-Net, for 3D
MR images based on sparse annotation. KCB-Net selects
a small subset of slices from 3D images for annotation,
and seeks to bridge the performance gap between sparse
annotation and full annotation. Specifically, it first identifies
a subset of the most effective and representative slices with
an unsupervised scheme; it then trains an ensemble model
using the annotated slices; next, it self-trains the model
using 3D images containing pseudo-labels generated by
the ensemble method and improved by a bi-directional
hierarchical earth mover’s distance (bi-HEMD) algorithm;
finally, it fine-tunes the segmentation results using the
primal-dual Internal Point Method (IPM). Experiments on
two 3D MR knee joint datasets (the Iowa dataset and iMor-
phics dataset) show that our new framework outperforms
state-of-the-art methods on full annotation, and yields high
quality results even for annotation ratios as low as 5%.

Index Terms— Knee cartilage and bone segmentation;
Sparse annotation; Ensemble learning; 3D MR images.

I. INTRODUCTION

Osteoarthritis (OA) is a prevalent chronic disease caused
by the damage and degeneration of cartilages. It is estimated
that 20% of Americans may suffer from various levels of OA
by 2030. Magnetic resonance imaging (MRI) has become a
common technique for studying and assessing changes within
the knee joint, including cartilages and bones. Fig. 1 illustrates
the anatomical structure of the knee joint.

Considering the knee joint anatomy, the femoral cartilage
(FC), tibial cartilage (TC), patellar cartilage (PC), and menisci
(M) are the main tissues affecting the knee joint health. To
quantitatively measure the thickness of the knee cartilages
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Fig. 1: Knee joint. (a) Anatomy of the knee joint (adopted
from [1]). (b)-(d) Sagittal, coronal, and transverse MR image
planes, showing the femur bone (FB), femoral cartilage (FC),
tibia bone (TB), tibial cartilage (TC), patella bone (PB),
patellar cartilage (PC), and meniscus (M).

and identify the bone-cartilage interface, accurate cartilage and
bone segmentation is needed.

To capture the detailed structure of the knee anatomy, 3D
MR images are commonly scanned at high in-plane resolution.
However, labeling 3D MR images is very time-consuming.

The best current methods for knee-joint segmentation, as to
be discussed in Section II, depend on large-sized training data
to learn segmentation parameters. But, forming large enough
annotated datasets is difficult in medical image analysis. In
this paper, we propose a new framework, KCB-Net, for 3D
cartilage and bone segmentation with sparse annotation, and
demonstrate its performance on a knee-joint segmentation task.

II. RELATED WORK

Automated and semi-automated methods for knee joint seg-
mentation have been investigated for several decades. Shape
models, graph optimization approaches, and deep learning
(DL) methods exhibited high performance in recent years.
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3D graph based methods are well suited for knee cartilage
segmentation. Yin et al. [2] proposed a layered optimal graph
image segmentation for multiple objects and surfaces (LOGIS-
MOS) framework to simultaneously segment multiple interact-
ing surfaces of objects by incorporating multiple spatial inter-
relationships of surfaces in a D-dimensional graph. Kashyap et
al. [3] extended the LOGISMOS framework to simultaneously
segment 3D knee objects for multiple follow-up visits of the
same patient – effectively performing optimal 4D (3D+time)
segmentation. Xie et al. [4] proposed a primal-dual Internal
Point Method (IPM) to first learn the parameters of the surface
cost functions for the LOGISMOS algorithm and then solve
an optimization problem for the final segmentation.

Several deep convolutional neural network (CNN) ap-
proaches showed close-to-human level performance. Liu et al.
[5] proposed a fully automatic musculoskeletal tissue segmen-
tation method that integrates CNN and 3D simplex deformable
approaches to improve the accuracy and efficiency. Ambellan
et al. [6] combined the strengths of statistical shape models and
CNN to successfully segment knee bones/cartilages. Tan et al.
[7] proposed a method to first extract the regions of interest
(ROIs) for three cartilage areas and then fuse the three ROIs
to generate fine-grained segmentation results.

Zheng et al. [8] proposed a 3D segmentation method that
ensembles three 2D models and one 3D model (called base-
learners). It first trains the base-learners using labeled data,
and ensembles the base-learners by training a meta-learner
[9]. It then re-trains the base-learners and meta-learner with
pseudo-labels to obtain a 3D segmentation model. However,
such base-learners still rely on fully annotated 3D data. In
[10], Zheng et al. proposed a sparse annotation strategy to
select the most representative 2D slices for annotation. It
first encodes each slice into a low-dimensional vector, and
prioritizes the slices based on their representativeness in a set
of 3D images. Next, three 2D modules and one 3D module (3D
FCN [11]) are trained, and pseudo-labels of the unlabeled data
are generated using the base-learners. A Y-shape DenseVoxNet
[9] is used to train a meta-learner, which ensembles the 2D
and 3D modules. Zheng et al. [12] further extended this sparse
annotation strategy, and designed a K-head FCN to compute
the pseudo-label uncertainty of each slice and rule out highly
uncertain pixels in the subsequent training process.

III. METHOD

A. Overview
Our KCB-Net combines and extends previously reported

ensemble learning [8] and sparse annotation [10] methods for
3D segmentation. Fig. 2 shows its main steps. (1) Repre-
sentative slice selection: As in [10], each 2D slice in every
major xy, yz, or xz orientation in the entire set W of 3D
training images is encoded as a low-dimensional latent vector,
and all slices are prioritized by their representativeness. The
top-ranked k slices are selected as the ones, in which to
perform expert annotations. (2) Base-learner training and
pseudo-label generation: As in [8], three 2D modules, one
for each xy, yz, or xz orientations, are trained on the selected
and annotated slices. Once 2D modules are trained, pseudo-
labels are assigned to all remaining un-annotated slices in

W and a 3D module is trained. KU-Net mechanism [13]
is newly used to extract multi-scale features. Each module
extracts information across different scales to support fine-
scale feature extraction. Instead of using a sparse 3D FCN
[11] as in [10], a DenseVoxNet [9] uses labels of the expert-
annotated slices and pseudo-labels of the un-annotated slices.
As in [14], an edge-aware branch is added to the 3D module to
increase the weights of cartilage and bone surface locations. To
explore the appearance consistency among consecutive slices
and further improve the quality of the pseudo-labels generated,
the H-EMD method [15] is newly enhanced by incorporating a
bi-directional hierarchical earth mover’s distance (bi-HEMD)
when generating pseudo-labels of the un-annotated slices. Our
bi-HEMD method first produces object candidates by applying
multiple threshold values on the probability maps, and then
selects object instances by minimizing the earth mover’s
distance based on a reference set of the object instances. (3)
Ensembling and self-training: Following the pseudo-label gen-
eration, 2D and 3D modules are ensembled by training a 3D
Y-shape DenseVoxNet [8] as a meta-learner using the original
input images and pseudo-labels, which learns the target object
segmentation from the labels/pseudo-labels. The output of the
ensemble model is utilized to iteratively re-train the modules
in Step (2) and the ensemble model in Step (3), repeated
until convergence. (4) Post-processing: We newly add a post-
processing step exploiting the task-specific characteristics that
knee bones and cartilages are anatomically adjacent with one
other. A fine-tuning network [4] that incorporates the surface
interrelationships between adjacent bones and cartilages is
trained by taking the probability maps generated in Step (3)
as input and the pseudo-labels as the learning targets. The
fine-tuning network is optimized using the IPM algorithm [4].

B. Representative Slice Selection

Identifying a small-enough set of the most representative
2D slices for annotation that subsequently facilitates the seg-
mentation method training is critical for the success of our
proposed approach. This section presents our slice selection
scheme, called representative annotation (RA).

Medical experts often annotate a 3D image by choosing one
orthogonal plane (xy, yz, or xz) and labeling the corresponding
slices one by one. It may, however, be beneficial to annotate
2D slices along each of the three orthogonal planes. Fig. 3
illustrates the slice selection method.

1) Slice Representation: For a specified annotation ratio
(e.g., 10% of all slices), to select the most representative
slices to label, we first need to efficiently represent the slices.
Medical image slices can commonly be represented as latent
feature vectors of a much smaller size compared to the original
2D image matrix. By comparing slices using their latent
vectors, not only can we reduce the computation cost but also
extract their most useful information.

We utilize an auto-encoder as the representation extractor
for the slices in our 3D training image set W , which learns
efficient features in an unsupervised manner and conducts a
lossy compression in the encoding process. It learns to store
relevant information and disregard noise. This auto-encoder
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Fig. 2: The pipeline of our proposed KCB-Net framework.

consists of two parts: An encoder produces a compressed
knowledge representation x for an input image (or slice) I;
a decoder takes the representation x as input and outputs x̂
as a reconstruction of the original image. The entire auto-
encoder model is optimized by minimizing the sum of the
reconstruction error L(x, x̂), which measures the differences
between the original image and the reconstruction produced,
and a regularization term for alleviating overfitting. This can
be formulated as:

φ∗, ψ∗ = argmin
φ,ψ

(L(x, x̂) + λ1 ×
M∑
i=1

w2
i ), (1)

where L is the reconstruction loss between x and x̂, λ1 is
a scaling parameter for the regularization term

∑M
i=1 w

2
i to

adjust the trade-off between the sensitivity to the input and
overfitting, wi is the i-th parameter of the auto-encoder, and
φ and ψ are the parameters of the encoder and decoder,
respectively.

To facilitate a fast training and convergence of the auto-
encoder, we use a ResNet-101 [16] pre-trained on ImageNet
[17] as the encoder backbone. A light-weight decoder (ResNet-
50 [16]) is added to map the latent vectors to the original
input space. Since slices along each orthogonal plane will be
selected, we train the auto-encoder using all the slices of the
3D training set W along the three orthogonal planes.

2) Prioritizing the Slices: After training the auto-encoder,
we measure the representativeness of each slice in the 3D
training image set W as in [10]. First, we feed a 2D slice I
to the encoder, and take the generated latent vector f as the
representation of the slice I . Second, we define and compute
the similarity between two slices Ii and Ij as Sim(Ii, Ij) =
cosine(fi, fj), where fi and fj are the latent vectors of Ii
and Ij respectively, and cosine denotes cosine similarity.

Next, a subset S of slices is selected from all the slices
S(W ) of the set W (for an annotation ratio or a given size of
S). The representativeness of S with respect to W is defined
as:

F (S,W ) =
∑

I∈S(W )

max
Is∈S

(Sim(Is, I)). (2)

Finding an optimal slice subset S was formulated as a
maximum cover problem in [10], which is NP-hard, and a
polynomial time approximation solution was obtained using a
greedy method. Suppose a subset S′ is the most representative
for the images in W . The next choice (if needed) is a slice I∗

in the remaining slice set S(W )−S′ that maximally increases
the representativeness of the new subset S′ ∪ {I∗}, i.e.,

I∗ = arg max
I∈(S(W )−S′)

(F (S′ ∪ {I},W )− F (S′,W )). (3)

This selection process puts all the slices in W in decreasing
order based on their representativeness. The slices with better
representativeness have higher priorities for annotation.

Prioritize 

A A A A

...

Lmse

A Add

... ...

Conv
Batch
Relu

DeConv

Fig. 3: Illustrating the representative slice selection method.
Lmse denotes the mean square error.

C. Base-learner Training and Pseudo-label Generation
After the representative slice selection, the selected slices

are labeled by experts, which we denote as SL =
{Sl1 , Sl2 , . . . , SlN }, where lN is the number of slices selected.
Due to the limited training data, we apply the bottleneck struc-
ture in [18], which can achieve better performance compared
to a common U-Net since it has fewer parameters and thus
can alleviate overfitting.

To better exploit multi-scale features of the objects in our
3D knee images, we apply the KU-Net design in [13] to our
backbone network to build a K-FCN network, which consists
of K FCN submodules connected sequentially as in [13]. K-
FCN first extracts information at different scales sequentially
and then feeds the extracted information to the subsequent
FCN submodules to assist feature extraction in finer scales. We
apply the FCN structure in [18] as the backbone (with fewer
parameters than U-Net). The first submodule of K-FCN is
used to extract coarser-scale features, which are fed to the next
submodule to extract features in a finer scale. The structure of
our K-FCN is shown in Fig. 4 (with K = 2).

A 2D segmentation model can use a relatively large re-
ceptive field, but it does not utilize the interactions between
consecutive slices well, which may result in spatial slice-to-
slice inconsistency. Hence, we follow the ensemble method
in [8] and train a 3D module, which produces smoother 3D
results. We choose DenseVoxNet [9] as the backbone for our
3D module, since it has better parameter efficiency and thus
a smaller chance to incur overfitting, especially with limited
training data. Likewise, we use the KU-Net design and build a
K-DenseVoxNet to exploit 3D multi-scale features. The coarse
features extracted by the first DenseVoxNet submodule are fed
to the second submodule to obtain fine-grained features.

For knee joint segmentation, the bone and cartilage bound-
aries are more important than other areas, since they usually
serve as the main criteria to measure whether a cartilage is
damaged. Hence, adding an edge-aware regulation can force
the network to focus more on the boundary areas. Fig. 5 shows
the structure of our edge-aware K-DenseVoxNet. The edge
gate FLρG is defined as:

FLρG(I) = kG ∗ ρ(kL ∗ I), (4)

where kG and kL represent the Gaussian smoothing kernel
and Laplacian kernel respectively, ∗ denotes convolution, and
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Fig. 4: The structure of our K-FCN (K = 2).

ρ is an activation function.
The loss function of our 3D module is defined as:

L = Lregion + λ2Ledge, (5)

where Lregion and Ledge are the cross entropy losses of the
region branch and edge branch respectively, and λ2 is a scaling
parameter to regularize the edge branch.

We first train our three 2D segmentation modules using the
selected labeled slices for each of the three orthogonal planes,
and generate the probability maps of the unlabeled slices using
the three trained 2D modules. We then train our 3D edge-aware
K-DenseVoxNet using the 3D images in W that contain both
the labeled slices and unlabeled slices that are now “labeled”.
Specifically, the pseudo-labels produced by the three 2D
modules are first improved by the bi-HEMD algorithm in
Section III-D. Then, the probability maps attained by the three
2D modules are averaged to generate the pseudo-labels used
for training our 3D module. These four trained segmentation
modules generate their pseudo-labels respectively for all the
unlabeled slices. For simplicity, we average the results of these
four modules as the probability map for each 3D image in W .

D. Bi-directional Hierarchical Earth Mover’s Distance

After training our three 2D modules, probability maps of
all the unlabeled slices in W are obtained. One observation
on the 3D knee images is that the appearances of bones
and cartilages between consecutive slices are often similar
in size and shape. Exploring such appearance similarity can
help improve the pseudo-label quality. Hence, we apply the
hierarchical earth mover’s distance (H-EMD) method [15]
that uses many threshold values of the probability map for
each unannotated slice and exploits the appearance consistency
between consecutive slices to optimize the pseudo-labels.

The H-EMD method [15] takes two key steps. (i) Candidate
instance generation: For a set of v threshold values, {th}vh=1,
from the probability map of a slice Si in a 3D image,
produce a set ICi of possible object instance candidates. These

object candidates can be organized into a forest structure Fi.
Also, a reference set Ri−1 of object instances is built on
the slice Si−1 (obtained iteratively). (ii) Candidate instance
selection: For each pair of an instance candidate in Fi and
a reference instance in Ri−1, compute their matching score
as the cosine distance between their instance feature vectors.
The goal is to maximize the sum of the weighted matching
scores between the candidate set ICi and reference set Ri−1
to select the “best” object instances for the slice Si. This can
be solved by integer linear programming. For a dataset with n
different classes, a feature vector for each instance candidate
is defined as (x, y, z, v1, . . . , vn), whose first three items are
the coordinates of its center pixel and the last n items are for
an n-D one-hot vector denoting the category of the instance.

Rather than using the Euclidean distance as in [15], our
method applies cosine distance, since our vectors contain two
different types of information, which make the L2 distance
unsuitable to measure the differences between these vectors.
Similar to bi-directional RNN [13], we perform the H-EMD
process in two opposite directions (bi-HEMD). That is, for
any two labeled slices Si and Sj in a 3D image, i < j, we
apply H-EMD along the direction of Si+1, Si+2, . . . , Sj−1,
and along Sj−1, Sj−2, . . . , Si+1. With the bi-HEMD process,
the pseudo-labels generated by the 2D modules are improved,
which are then used to train the 3D module in Section III-C.

E. Tuning the Final 3D Model Using Pseudo-labels
We now have three 2D K-FCNs and one 3D K-FCN trained

with labeled or pseudo-labeled slices along the xy, yz, and
xz planes. Next, we produce the probability maps of each
3D image M in W using these four FCN modules, denoted
as mxy,myz,mxz , and m3D, respectively. These probability
maps are averaged, and the results are used to train our 3D
meta-learner. This meta-learner is a Y-shaped K-DenseVoxNet
that is aware of the raw images and their pseudo-labels so as
to ease overfitting. Fig. 6 shows our meta-learner.

After training our 3D meta-learner, we apply the self-
training strategy in [8] to further improve the model perfor-
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Fig. 6: The structure of our meta-learner.

mance. In this self-training process, the segmentation results of
the meta-learner are regarded as pseudo “ground truth” of the
unlabeled slices, which are used to re-train the 2D/3D base-
learners (the three 2D base-learners are re-trained with the
“labeled” slices along the three orthogonal planes). Note that
the base-learners are first trained in the step of Section III-C.
Here, we apply the SGD optimizer and a smaller learning rate
to ensure the robustness and convergence of the entire training
process. The loss function LCE of the 3D meta-learner (see
Fig. 6) is defined as the cross-entropy between the predictions
and input pseudo-labels. The base-learners are re-trained, and
generate four versions of pseudo-labels for each 3D image
in W , which are averaged and used to train the meta-learner
again. We repeat this self-training process for a few iterations,
until the meta-learner performance no longer improves, giving
rise to our final 3D model.

F. Post-processing Using IPM
Instead of applying the softmax function to the final prob-

ability maps, we further perform some post-processing to
fine-tune the probability maps. One observation is that the
surfaces of bones and cartilages are mutually “coupled” in
some areas, within which the topology and relative positions of
the bones and cartilages are known and the distances between
them are within specific ranges. Furthermore, physicians care
more about the “coupled” areas since osteoarthritis is usually
caused by damages of the knee cartilages in such areas. Thus,
we apply the IPM method [4] by incorporating the surface
interrelationships between the bones and cartilages into the
segmentation process to further improve the segmentation
performance. An advantage of the IPM method over traditional

graph based methods is that it parameterizes the surface cost
functions in the graph model and leverages DL to learn the
parameters rather than relying on hand-crafted features.

Instead of using ground truth to train the surface segmenta-
tion network of IPM [4], we use the pseudo-labels generated
by our meta-learner to optimize this network in the first
iteration. Afterwards, the pseudo-labels are updated by IPM
and used to re-train the network. Such operations are repeated
several times until convergence. The details of the above
training process are shown in Fig. 8 [4].

Since the bone and cartilage surfaces are not terrain-like, we
need to first unfold the knee joint into seven parts following
the practice in [19], i.e., the front, back, top, center, bottom,
left and right parts, respectively, as shown in Fig. 7.

(a) (b)

(c)

(d)

(e)
(f) (g)

Fig. 7: Illustrating the seven unfolded parts of the knee joint.
The corresponding parts in the sagittal view are: (a) front;
(b) back; (c) top; (d) center; (e) bottom; (f) left; (g) right.

Specifically, for the center part (see Fig. 7(d)), we replace
U-Net used in the original IPM method [4] with the proba-
bility maps generated by our final fine-tuned ensemble model.
Finally, we patch its 6 junction areas (i.e., the junction areas
between center and front, center and back, center and top,
center and bottom, center and left, and center and right), and
average the center area and its corresponding junction areas
processed by IPM to smooth the final results.
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Fig. 8: The process of the post-processing step [4].

IV. EXPERIMENTS AND ANALYSIS

To demonstrate the capabilities of our KCB-Net approach,
its performance was compared with state-of-the-art knee seg-
mentation methods using full annotations as well as com-
pared with two state-of-the-art slice selection strategies: equal-
interval annotation (EIA) and random slice selection (RSS).
Furthermore, the effect of each component in our KCB-Net
framework was assessed and the robustness of the method was
quantified for different sparse annotation ratios.

A. Datasets and Implementation Details

The performance of our KCB-Net model was evaluated on
knee joint images from the Osteoarthritis Initiative database
(OAI, http://www.oai.ucsf.edu/). The image size is 384×384×
160, with voxel size of 0.36mm × 0.36mm × 0.7mm. Two
subsets with ground truth are available: (1) A University of
Iowa annotated portion of the OAI that was first segmented by
the LOGISMOS method [3] and the automated segmentations
then corrected by the just-enough-interaction (JEI) approach in
4D (3D+time) [20]. This Iowa dataset consists of 1462 double
echo steady state (DESS) 3D MR images from 248 subjects.
Four compartments are annotated: femur bone (FB), femoral
cartilage (FC), tibia bone (TB), and tibial cartilage (TC).
(2) The iMorphics dataset, available directly from the OAI
database, includes 176 3D MR knee images acquired with 3T
Siemens MAGNETOM Trio scanners and quadrature transmit-
receive knee coils (USA Instruments, Aurora, OH, USA).
The annotated compartments are femoral cartilage (FC), tibia
cartilage (TC), patellar cartilage (PC), and menisci (M).

We implemented all the networks using PyTorch [21]. For
our auto-encoder, ResNet-101 [16] is used as the backbone
of its encoder and ResNet-50 [16] as the backbone of its
decoder. The encoder is initialized with a model pre-trained
on ImageNet [17]. All the other parameters are initialized as
in [16], and λ1 in Eq. (1) is set to 5e-5. The network was
optimized using the Adam optimizer (learning rate = 1e− 4,
β1 = 0.9, β2 = 0.999). The 3D images were first cropped
so as to remove the background clearly outside of the knee
area. Each slice or 3D image was normalized to zero mean and
unit standard variance. In the data augmentation for 3D model
training, starting points are randomly selected in a 3D image,
and a patch of size 80× 192× 160 is cropped at each starting
point. Afterwards, common spatial transforms (e.g., rotation,

scaling, and mirroring) are applied. In 2D model training, each
slice is augmented with common spatial transforms.

We set K = 2 for the K-FCNs and K-DenseVoxNet with
edge-aware branches (for larger K, the model costs increase
largely but the accuracy improves little [13]). We use mean
square error as the auto-encoder’s loss. We set the parameter
of the edge regularizer in the edge-aware K-DenseVoxNet as
λ2 = 1e− 4 (see Eq. (5)).

B. Evaluation Metrics
Dice similarity coefficient (DSC) and average symmetric

surface distance (ASSD, in mm) between the labeled and
segmented surfaces are used as our evaluation metrics.

1) Dice Similarity Coefficient: Dice similarity coefficient
(DSC) is calculated as:

DSC =
2× V (GT ∩ Pred)
V (GT ) + V (Pred)

, (6)

where GT is the ground truth, Pred is the prediction, and
V (X) denotes the volume of a 3D object X .

2) Average Symmetric Surface Distance: Average symmet-
ric surface distance (ASSD) focuses on the absolute distances
between surfaces of the segmented objects and their ground
truths, calculated as:

ASSD =
1

n∂A+ n∂B
(
∑
a∈∂A

d(a, ∂B) +
∑
b∈∂B

d(b, ∂A)),

(7)
where ∂A and ∂B denote the surfaces of objects A and B
respectively, n∂A and n∂B denote the numbers of voxels on
∂A and ∂B respectively, and d(x, ∂S) denotes the nearest
Euclidean distance of a point x to a surface ∂S.

C. Experimental Results on Full Annotation
To obtain robust results, we conduct 5-fold cross validation

on the Iowa and iMorphics knee datasets. For the Iowa dataset,
1170 3D images (out of 1462) are for training and 292 3D
images for testing in each fold. For the iMorphics dataset,
140 3D images are for training and 36 3D images for testing.

Table I shows the performance comparison of KCB-Net
and other methods trained on fully annotated Iowa dataset.
The Iowa dataset was also used for other comparisons as
follows: (i) 4D LOGISMOS [3]: utilizing a hierarchical set
of random forest classifiers to learn the cartilage appearance
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and simultaneously segment multiple interacting surfaces of
objects based on an algorithmic incorporation of multiple
spatial interrelationships in an n-dimensional graph. (ii) The
ensemble learning method [10]: Ensembling four 2D/3D FCNs
and self-training with fully labeled 3D data.

From Table I, one can see that our KCB-Net outperforms
LOGISMOS-4D on both the bone and cartilage segmenta-
tions. KCB-Net also outperforms the ensemble method [10],
which demonstrates that the KU-Net design, edge-aware
DenseVoxNet, bi-HEMD method, and IPM post-processing
method that we use help improve the segmentation perfor-
mance.

Table II presents the results achieved on the fully annotated
iMorphics dataset. We compare with three recent methods:
(i) UDA [22]: utilizing mixup and adversarial unsupervised
domain adaptation to improve the robustness of DL-based
knee cartilage segmentation in new MRI acquisition settings;
(ii) CML [7]: detecting the regions of interest and fusing the
cartilages by a fusion layer; (iii) the ensemble method [10].
Our method attains better DSC scores on FC, TC, PC, and
M compared to the UDA method. We also outperform the
CML and ensemble methods in both DSC and surface errors of
FC, TC, and PC, suggesting that our method can obtain more
quantitatively accurate knee cartilage/bone segmentation.

Performance improvement of our new method over the
original ensemble method [10] was evaluated on the Iowa and
iMorphics datasets, using paired t-tests. Tables I and II show
that in most compared cases, our new approach significantly
outperforms the earlier approach [10] (with p < 0.05).

D. Experimental Results on Sparse Annotation
To evaluate the performance of our method on sparsely

annotated data, we compare its performances on data with
changing sparse annotation ratios vs. those achieved using
different slice selection schemes. Specifically, we compare the
representative annotation (RA) scheme used in our KCB-Net
pipeline with two common slice selection schemes: equal-
interval annotation (EIA) and random slice selection (RSS).
Suppose for an annotation ratio, Sk slices are to be selected.
The EIA scheme selects Sk/3 slices at equal distance along
each axis, and the RSS scheme randomly selects Sk/3 slices
along each axis. We repeat the RSS process 10 times, and take
the average of the results as the RSS base performance. Figs. 9
and 10 show the performance comparison with various anno-
tation ratios on the Iowa and iMorphics datasets, respectively.

From Figs. 9 and 10, one can see that our RA outperforms
the EIA and RSS schemes on both the cartilage and bone
segmentations. Our method can notably alleviate performance
degradation, especially for annotation ratios ≤ 5%. This is
because EIA selects the locationally same slice indices in
each 3D image, which might make the trained model overfit
on the selected slices and cause segmentation errors on the
remaining slices. RSS performs better than EIA in very sparse
annotation ratios (< %10) but worse than EIA in less sparse
annotation ratios (> %40), since RSS can select different
slices in different 3D images, likely incurring less overfitting.

Another observation from Figs. 9 and 10 is that the perfor-
mance drops drastically when the annotation ratios are < 5%,

suggesting that this annotation ratio may be the “lower limit”
for a satisfactory performance on knee segmentation.

To examine the statistical significance of the improvements
of RA over EIA and RA over RSS, we computed the p-values
for RA over EIA, and RA over RSS at different annotation
ratios. We observed that the improvements of RA over EIA and
RA over RSS are typically statistically significant (p-values
< 0.05) when the annotation ratios are quite small (≤ 20%);
for larger annotation ratios (> 20%), the p-values tend to be
≥ 0.05. We think the reason for this trend is that for dense
annotations, the chance of selecting the same or similar slices
by different selection schemes increases quickly. Figs. 11 and
12 illustrate this trend on the Iowa and iMorphics datasets
using the range 0%–30% of annotation ratios.

E. Ablation Study
To examine the contribution of each component in our

KCB-Net, we conducted the ablation study to compare the
performances of its components, denoted as follows. (1) S1:
2D xy module; (2) S2: 2D yz module; (3) S3: 2D xz module;
(4) S4: 3D module; (5) S5: ensembling of the three 2D
modules and the 3D module; (6) S6: bi-HEMD; (7) S7: self-
training; (8) S8: IPM post-processing.

Performance of each individual component in S1, S2, S3,
and S4 is given first, followed by the ensemble performance
(S5) that combines all these four components. For S6–S8,
components were repeatedly added to the framework each
time; the more the performance increases, the more important
the corresponding component (in S6–S8) is. Thus, note that
S8 actually reflects the performance of the entire framework
including all its components.

Tables III and IV present the ablation study results on the
Iowa and iMorphics datasets, respectively. We observe that
the ensemble of the 2D and 3D modules can substantially
improve the performance over the individual modules. The 3D
module often attains better performance than the 2D modules
since it exploits the inter-relations among consecutive slices.
The ensemble strategy can benefit from both the 2D modules
(with a large receptive field) and the 3D module (exploiting the
interactions among consecutive slices). Since some cartilages
are very thin along the sagittal plane, it is quite difficult for
DL models to detect them along such a plane, especially with
very sparse annotation. Utilizing other 2D modules can help
address this issue. Both Table III and Table IV show that the
ensemble strategy and the self-training mechanism play more
important roles than the other components. Figs. 13 and 14
qualitatively compare results in the sagittal view on the Iowa
and iMorphics datasets.

F. Discussion
From Figs. 9 and 10, one can see that our representative

annotation (RA) scheme substantially reduces the performance
gap between different annotation ratios, meaning that our
framework can achieve comparatively good results while using
much less annotated data than required for full annotation.
Our ensemble method and the self-training using pseudo-
labels improved by the bi-HEMD method largely improve the
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TABLE I: Comparison with state-of-the-art methods using full annotation on the Iowa dataset. Here, “–” denotes that the
corresponding results were not reported in the original paper. Paired t-test values indicate the significance status of the
improved performance of our method vs. the ensemble method [10] (statistically significant improvements are in bold).

Femur Bone Femoral Cartilage Tibia Bone Tibial Cartilage
DSC ASSD DSC ASSD DSC ASSD DSC ASSD

LOGISMOS-4D [3] – – – 0.55±0.11 – – – 0.60±0.14
Ensemble method [10] 0.940±0.011 0.551±0.017 0.830±0.020 0.541±0.010 0.930±0.131 0.557±0.156 0.812±0.034 0.590±0.177
Our method 0.961±0.006 0.515±0.020 0.835±0.027 0.522±0.009 0.957±0.102 0.521±0.143 0.817±0.039 0.565±0.132
p-value 0.043 0.001 0.047 0.066 0.071 0.009 0.032 0.044

TABLE II: Comparison with state-of-the-art methods using full annotation on the iMorphics dataset. Here, “–” denotes that
the corresponding results were not reported in the original paper. Paired t-test values indicate the significance status of the
improved performance of our method vs. the ensemble method [10] (statistically significant improvements are in bold).

Femoral Cartilage Tibial Cartilage Patellar Cartilage Menisci
DSC ASSD DSC ASSD DSC ASSD DSC ASSD

UDA [22] 0.907±0.019 – 0.897±0.028 – 0.871±0.046 – 0.863±0.034 –
CML [7] 0.900±0.037 – 0.889±0.038 – 0.880±0.043 – – –
Ensemble method [10] 0.908±0.019 0.218±0.054 0.903±0.030 0.187±0.065 0.887±0.018 0.360±0.422 0.880±0.021 0.305±0.221
Our method 0.919±0.020 0.212±0.096 0.909±0.025 0.184±0.068 0.900±0.026 0.348±0.409 0.889±0.024 0.295±0.210
p-value � 0.001 0.233 0.001 0.002 � 0.001 0.312 � 0.001 0.002
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Fig. 9: Comparison of three slice selection schemes (RA, EIA, RSS) on the Iowa dataset.
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Fig. 10: Comparison of three slice selection schemes (RA, EIA, RSS) on the iMorphics dataset.

TABLE III: Ablation study of our method on the Iowa dataset.

Femur Bone Femoral Cartilage Tibia Bone Tibial Cartilage
DSC ASSD DSC ASSD DSC ASSD DSC ASSD

S1 (xy) 0.938±0.025 0.550±0.027 0.815±0.037 0.557±0.015 0.924±0.187 0.562±0.109 0.796±0.040 0.603±0.192
S2 (yz) 0.931±0.016 0.562±0.020 0.811±0.025 0.566±0.016 0.916±0.129 0.573±0.217 0.790±0.086 0.599±0.210
S3 (xz) 0.936±0.019 0.558±0.023 0.812±0.024 0.564±0.009 0.918±0.163 0.571±0.156 0.792±0.069 0.602±0.191
S4 (3D) 0.940±0.023 0.550±0.016 0.817±0.012 0.556±0.011 0.926±0.125 0.560±0.147 0.796±0.094 0.601±0.221
S5 (ensemble) 0.947±0.007 0.540±0.014 0.820±0.039 0.552±0.019 0.933±0.109 0.552±0.233 0.804±0.033 0.613±0.219
S6 (bi-HEMD) 0.949±0.006 0.545±0.018 0.822±0.021 0.548±0.015 0.937±0.133 0.553±0.164 0.805±0.086 0.609±0.126
S7 (self-training) 0.957±0.007 0.517±0.012 0.831±0.035 0.528±0.010 0.950±0.082 0.524±0.143 0.814±0.036 0.572±0.138
S8 (IPM) 0.961±0.006 0.515±0.020 0.835±0.027 0.522±0.009 0.957±0.102 0.521±0.143 0.817±0.039 0.565±0.132
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Fig. 11: Significance of performance improvements of employing our RA scheme vs. the EIA and RSS schemes on the Iowa
dataset. The performance improvement is statistically significant if the charted p-value is below the red dashed line
(p < 0.05). Experiments were performed in annotation ratio steps of 2%. To allow the very small (highly significant)
p-values (e.g., p < 0.01) to be visible, the y-axes are piece-wisely adjusted and labeled to help improve the readability.
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Fig. 12: Significance of performance improvements of employing our RA scheme vs. the EIA and RSS schemes on the
iMorphics dataset. The performance improvement is statistically significant if the charted p-value is below the red dashed
line (p < 0.05). Experiments were performed in annotation ratio steps of 2%. To allow the very small (highly significant)
p-values (e.g., p < 0.01) to be visible, the y-axes are piece-wisely adjusted and labeled to help improve the readability.

TABLE IV: Ablation study of our method on the iMorphics dataset.

Femoral Cartilage Tibial Cartilage Patellar Bone Menisci
DSC ASSD DSC ASSD DSC ASSD DSC ASSD

S1 (xy) 0.890±0.022 0.251±0.051 0.876±0.021 0.227±0.074 0.854±0.072 0.378±0.439 0.847±0.025 0.348±0.086
S2 (yz) 0.885±0.020 0.258±0.045 0.873±0.022 0.231±0.048 0.848±0.060 0.382±0.107 0.850±0.027 0.352±0.077
S3 (xz) 0.889±0.020 0.252±0.071 0.873±0.021 0.230±0.045 0.850±0.168 0.382±0.280 0.848±0.023 0.351±0.207
S4 (3D) 0.891±0.020 0.250±0.055 0.877±0.025 0.224±0.067 0.854±0.157 0.376±0.240 0.851±0.024 0.343±0.100
S5 (ensemble) 0.901±0.022 0.238±0.050 0.882±0.048 0.219±0.068 0.871±0.155 0.362±0.252 0.858±0.025 0.314±0.200
S6 (bi-HEMD) 0.902±0.020 0.236±0.082 0.887±0.020 0.213±0.072 0.877±0.051 0.360±0.402 0.864±0.024 0.317±0.201
S7 (self-training) 0.913±0.022 0.215±0.050 0.905±0.024 0.189±0.065 0.896±0.070 0.348±0.033 0.886±0.027 0.297±0.155
S8 (IPM) 0.919±0.020 0.212±0.096 0.909±0.025 0.184±0.068 0.900±0.026 0.348±0.409 0.889±0.024 0.295±0.210

segmentation performance, because the training data we use
contribute new information in a more efficient way. Figs. 13
and 14 show that our ensemble and self-training strategies
allow detection of small objects and thin boundary areas,
despite the annotation sparsity. Our IPM post-processing helps
further fine-tune the boundary areas, making the segmentation
results more accurate and reliable overall.

V. CONCLUSIONS

We reported a new framework, KCB-Net, for segmenting
cartilage and bone surfaces in 3D knee joint MR images.
Our method efficiently selects subsets of diverse image slices

for expert annotations in a way that the most information-
contributing slices are ranked most highly, allowing to train
image segmentation models from high-sparsity ratio annota-
tions. In the KCB-Net, three 2D segmentation modules and
one 3D module integrating features across multiple scales with
edge-aware branches are ensembled to generate pseudo-labels
of the un-annotated slices, which are then used to re-train the
3D model. An IPM process is employed to post-process the
probability maps generated by the 3D model. Experiments
on two large knee datasets show that our new approach
outperforms state-of-the-art methods on fully annotated data,
and can notably improve segmentation performance when
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(a) (b) (c) (d)

(e) (f) (g)
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(h)
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Fig. 13: Visual comparison of component-specific
contributions (S1–S8) in our method in the sagittal view on
the Iowa dataset. (a) An input 2D slice from a 3D image; (b)
ground truth; (c) segmentation obtained by the ensemble
method [10]; (d)-(k) segmentations obtained using the S1–S8
components, respectively. Note that our method successfully
segments even thin cartilage areas. Arrows point to some
spots of interest.

annotating only small data subsets.
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[11] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,
“3D U-Net: Learning dense volumetric segmentation from sparse anno-
tation,” in International Conference on Medical Image Computing and
Computer-assisted Intervention, 2016, pp. 424–432.

(a) (b) (c)

(e) (f) (g)

(i) (j) (k) (l)

(d)

(h)

Fig. 14: Visual comparison of component-specific
contributions (S1–S8) in our method with the UAD and
ensemble [10] methods in the sagittal view on the iMorphics
dataset. (a) An input 2D slice from a 3D image; (b) ground
truth; (c) segmentation obtained by the ensemble method
[10]; (d) segmentation obtained by UAD; (e)-(l)
segmentations obtained using our S1–S8 components,
respectively. Note that our method can segment the
meniscus. Arrows point to some spots of interest.

[12] H. Zheng, S. M. M. Perrine, M. K. Pitirri, K. Kawasaki, C. Wang,
J. T. Richtsmeier, and D. Z. Chen, “Cartilage segmentation in high-
resolution 3D micro-CT images via uncertainty-guided self-training with
very sparse annotation,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention, 2020, pp. 802–812.

[13] J. Chen, L. Yang, Y. Zhang, M. Alber, and D. Z. Chen, “Combining fully
convolutional and recurrent neural networks for 3D biomedical image
segmentation,” Conference on Neural Information Processing Systems,
pp. 3036–3044, 2016.

[14] Z. Guo, H. Zhang, Z. Chen, E. van der Plas, L. Gutmann, D. The-
dens, P. Nopoulos, and M. Sonka, “Fully automated 3D segmentation
of MR-imaged calf muscle compartments: Neighborhood relationship
enhanced fully convolutional network,” Computerized Medical Imaging
and Graphics, vol. 87, p. 101835, 2021.

[15] P. Liang, Y. Zhang, Y. Ding, J. Chen, C. S. Madukoma, T. Weninger,
J. D. Shrout, and D. Z. Chen, “H-EMD: A hierarchical earth mover’s
distance method for instance segmentation,” submitted, 2021.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
recognition, 2016, pp. 770–778.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, “ImageNet:
A large-scale hierarchical image database,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[18] L. Yang, Y. Zhang, J. Chen, S. Zhang, and D. Z. Chen, “Suggestive
annotation: A deep active learning framework for biomedical image seg-
mentation,” in International Conference on Medical Image Computing
and Computer-Assisted Intervention, 2017, pp. 399–407.

[19] L. Zhou, Z. Zhong, A. Shah, B. Qiu, J. Buatti, and X. Wu, “Deep neural
networks for surface segmentation meet conditional random fields,”
arXiv e-prints, pp. arXiv–1906, 2019.

[20] S. Sun, M. Sonka, and R. R. Beichel, “Graph-based IVUS segmenta-
tion with efficient computer-aided refinement,” IEEE Transactions on
Medical Imaging, vol. 32, no. 8, pp. 1536–1549, 2013.

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch: An
imperative style, high-performance deep learning library,” arXiv preprint
arXiv:1912.01703, 2019.

[22] E. Panfilov, A. Tiulpin, S. Klein, M. T. Nieminen, and S. Saarakkala,
“Improving robustness of deep learning based knee MRI segmentation:
Mixup and adversarial domain adaptation,” in IEEE/CVF International
Conference on Computer Vision Workshops, 2019, pp. 450–459.


	Introduction
	Related Work
	Method
	Overview
	Representative Slice Selection
	Slice Representation
	Prioritizing the Slices

	Base-learner Training and Pseudo-label Generation
	Bi-directional Hierarchical Earth Mover's Distance
	Tuning the Final 3D Model Using Pseudo-labels
	Post-processing Using IPM

	Experiments and Analysis
	Datasets and Implementation Details
	Evaluation Metrics
	Dice Similarity Coefficient
	Average Symmetric Surface Distance

	Experimental Results on Full Annotation
	Experimental Results on Sparse Annotation
	Ablation Study
	Discussion

	Conclusions
	References

