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Abstract

Single-channel speech enhancement algorithms have seen great improvements over the past few years. Despite these improve-
ments, they still lack the efficiency of the auditory system in extracting attended auditory information in the presence of
competing speakers. Recently, it has been shown that the attended auditory information can be decoded from the brain ac-
tivity of the listener. In this paper, we propose two novel deep learning methods referred to as the Brain Enhanced Speech
Denoiser (BESD) and the U-shaped Brain Enhanced Speech Denoiser (U-BESD) respectively, that take advantage of this fact
to denoise a multi-talker speech mixture. We use a Feature-wise Linear Modulation (FiLM) between the brain activity and
the sound mixture, to better extract the features of the attended speaker to perform speech enhancement. We show, using
electroencephalography (EEG) signals recorded from the listener, that U-BESD outperforms a current autoencoder approach
in enhancing a speech mixture as well as a speech separation approach that uses brain activity. Moreover, we show that both
BESD and U-BESD successfully extract the attended speaker without any prior information about this speaker. This makes
both algorithms great candidates for realistic applications where no prior information about the attended speaker is available,
such as hearing aids, cellphones, or noise cancelling headphones. All procedures were performed in accordance with the Decla-
ration of Helsinki and were approved by the Ethics Committees of the School of Psychology at Trinity College Dublin, and the
Health Sciences Faculty at Trinity College Dublin.
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Abstract—Single-channel speech enhancement algorithms have
seen great improvements over the past few years. Despite these
improvements, they still lack the efficiency of the auditory system
in extracting attended auditory information in the presence of
competing speakers. Recently, it has been shown that the attended
auditory information can be decoded from the brain activity of
the listener. In this paper, we propose two novel deep learning
methods referred to as the Brain Enhanced Speech Denoiser
(BESD) and the U-shaped Brain Enhanced Speech Denoiser (U-
BESD) respectively, that take advantage of this fact to denoise
a multi-talker speech mixture. We use a Feature-wise Linear
Modulation (FiLM) between the brain activity and the sound
mixture, to better extract the features of the attended speaker to
perform speech enhancement. We show, using electroencephalog-
raphy (EEG) signals recorded from the listener, that U-BESD
outperforms a current autoencoder approach in enhancing a
speech mixture as well as a speech separation approach that
uses brain activity. Moreover, we show that both BESD and U-
BESD successfully extract the attended speaker without any prior
information about this speaker. This makes both algorithms great
candidates for realistic applications where no prior information
about the attended speaker is available, such as hearing aids,
cellphones, or noise cancelling headphones.

Index Terms—Deep learning, EEG signals, Speech enhance-
ment.

I. INTRODUCTION

HE auditory system is extremely efficient in extracting

attended auditory information in real-world speech com-
munication, where multiple competing speakers are present.
This efficiency is especially important for applications such
as speech recognition [1], speech processing for hearing aids
and cochlear implants [2] as well as speaker verification [3].
However, current speech enhancement algorithms, aimed at
increasing the quality and intelligibility of a degraded speech
signal, lack this efficacy. There is thus a need to improve the
performance of these algorithms in such conditions [4].

The speech enhancement problem has been extensively
studied in the past decades. The first algorithms proposed,
such as spectral subtraction [5], Wiener filtering [6] and the
Bayesian minimum mean square error (MMSE) [7] used a
filter to reduce noise components from the noisy speech sig-
nals. Other algorithms like principal component analysis [8],
singular value decomposition [9] and the generalized subspace
approach [10] used a subspace to separate the clean sound and
noise components from the noisy signal and then reconstruct
the clean signal from the clean components. Whereas these
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algorithms perform well under stationary noise conditions,
they are less successful at accurately estimating noise com-
ponents under nonstationary noise conditions leading to bad
intelligibility and quality.

In recent years, speech enhancement algorithms, and more
specifically speaker separation algorithms, have benefited from
deep learning approaches, with a significant improvement
in efficiency compared to traditional methods. Methods like
Time-domain Audio Separation Net (TasNet) [11], Permuta-
tion Invariant Training (PIT) [12], Deep Attractor Network
(DAN) [13] and Deep Clustering [14], have been particularly
successful in speaker separation tasks, where the background
noise is composed of different simultaneous speakers. How-
ever, most speaker separation algorithms require some kind
of prior knowledge about the auditory scene either during
training or inference, such as the number of speakers or more
specifically the target speaker if the goal is to extract one
specific speaker [11], [12], [13], [14]. In real world situations,
the number of speakers can change as the auditory scene
changes. Moreover, the need to know the target speaker neces-
sitates prior knowledge about the identity of speakers in the
scene. These greatly limit the real-world applicability of these
algorithms. Furthermore, these methods are mostly formulated
in the time-frequency domain and aim at reconstructing the
time domain signal thus requiring an estimation of the signal’s
phase. Possible errors in this estimation therefore impose an
upper bound on the performance of these systems.

As mentioned, speech enhancement and speaker separation
in the presence of non-stationary noise and for applications
such as hearing aids is hard to perform without prior in-
formation about the target speaker. Recently, it has been
shown that the attended speaker can be decoded from the
brain waves of the listener [15], [16], [17]. This has led to
the improvement of speech perception in hearing aids. In
these applications, the envelope of the attended speaker is
first extracted from the brain waves of the listener. Next,
a speech separation is performed on the speech mixture to
separate the speech sources and the estimated envelope is
compared to each of these sources to find the most probable
speaker. The speaker separation is typically implemented using
either multichannel approaches such as beamforming [17] or
single channel approaches using neural networks [16]. The
attended speaker is the one that has the highest similarity to
the extracted envelope. This estimated speaker is then added
back to the mixture to increase the relative intensity of this
speaker [16], [18]. One major drawback in these methods is the
need for source separation, which increases the computational
cost. Moreover, in a real-world application, separating all the



sources seems unnecessary as the listener is interested in only
one speaker.

To address this problem, Ceolini et al. [19] designed a deep
learning network, refered to as the Brain-inspired speech sepa-
ration (BISS) model, that extracts the envelope of the attended
speaker from the electroencephalography (EEG) of the listener
to jointly perform speech extraction and separation. However,
this approach requires training two networks separately, the
guiding network and the speaker extraction network, which
increases the complexity. This method also uses the time-
frequency representation of the speech mixture, which might
cause possible errors and inaccuracies.

In this paper we specifically address the problem of speech
enhancement in a noisy environment without any prior knowl-
edge about the target speaker, to which we refer as speaker-
independent denoising '. We first introduce a simple network,
the Brain Enhanced Speech Denoiser (BESD) [20], that takes
advantage of the attended auditory information present in
the brain activity of the listener to denoise a multi-talker
speech. We use a Feature-wise Linear Modulation (FiLM)
between the brain activity and the sound mixture, to better
extract the features of the attended speaker to perform speech
enhancement. We build upon this network and propose a deep
learning technique for speech enhancement and denoising in
a noisy environment that performs much better than BESD.
We refer to the proposed approach as a U-shaped Brain
Enhanced Speech Denoiser (U-BESD). We also show that our
algorithm surpasses the performance of the approach proposed
by Ceolini et al. [19]. Moreover, compared to [19], these
proposed networks are end to end speech enhancement and de-
noising approaches performed entirely in the time domain, thus
avoiding the limitations encountered with a spectro-temporal
representation. Furthermore, all the modules of the proposed
approaches are trained in a single neural architecture, lowering
the complexity of the algorithm. These proposed networks
could be used in applications where no prior information about
the attended speaker is present, such as hearing aids, cell
phones, or noise cancelling headphones.

II. PROPOSED APPROACHES

In this section, we present two algorithms to perform speech
enhancement using brain activity. First, we present the Brain
Enhanced Speech Denoiser (BESD) followed by the U-shaped
Brain Enhanced Speech Denoiser (U-BESD) which builds on
the BESD.

A. Proposed Brain Enhanced Speech Denoiser (BESD)

The proposed BESD shown in Fig. 1a, has an autoencoder
structure with two encoders, one for extracting the features
of the brain signal and one for extracting the features of the
sound mixture. There is also a decoder that reconstructs the
enhanced speech. In the following, we describe in detail each
block of Fig. la.

IPart of this work has been published in [20]. This previous work has been
substantially improved here by proposing a new enhancement algorithm (U-
BESD) that significantly performs better than that of [20]. Moreover, we also
added a more detailed analysis as well as bonified the experimental validation.

As can be seen in Fig. la, the encoders contain Conv
blocks with a Feature-wise Linear Modulation (FiLM) block,
explained further, between the two pipelines.

All convolutional blocks detailed in Fig. 1b, have a sim-
ilar structure. Each block is constructed by chaining a 1
dimensional (1D) causal convolution with the Glorot weight
initialization [21], followed by a Post Conv block (Fig. 1c)
consisting of layer normalization, a leaky ReLU nonlinearity
and a dropout layer. The only difference between each con-
volutional block is the filter size, which is decreasing as the
network deepens.

To guide the algorithm to better extract the features of
the sound mixture and the brain signal, we use a general
class of fusion methods called conditional normalization (CN)
[22], [23], [24]. These methods use the learned functions of
some input to condition the learned features of another input.
Here, the fusion algorithm modulates the learned features of
the sound mixture using brain signals and vice versa. There
are various highly effective methods of CN with different
functionalities. Our network can be viewed as a development
on FiLM [25]. Here we learn to adaptively affect the output
of each layer of the network by applying a normalization
function, based on the features extracted from the brain signals
and the sound mixture at each layer. As has been shown before,
manipulating the intermediate layers of networks can improve
their performance [22], [25]. In the FILM block, the network
learns four functions of the inputs, i.e., the sound mixture
representation s and the EEG representation e:

ﬁs,c = hl,c(s) (1)
ﬂe,c = h2,c(e) (2)

where c is the feature number. In (1) and (2), ¥, . and f3. . are
the functions that modulate the sound mixture representation
and vs. and (. are the functions that modulate the EEG
signal representation, via a feature-wise linear transformation,
as follows:

Vs,e = fl,c(s)
Ye,e = f2,c(e)

Oe,c = Vs,e X € + Bs,c (3)
Os,c = Ye,e X S + ﬂe,c (4)

where O; . and O, . are the outputs of the FILM block and
the input to the sound and EEG pipeline respectively. Here,
fi,es hi,c, f2,c and hg . are all 1D convolutional layers, with
a Glorot weight initializer [21], and a number of filters equal
to the last dimension of the input to the FiLM block. The
FiLM block is applied after every Conv block of the encoder
except for the last block. The output of both encoders are
concatenated in the latent space in what we call Concatenation
in Fig. la.

The decoder is composed of 3 1D causal convolutions with
a Glorot weight initializer. The last 1D convolution has a filter
size of 1 followed by a hyperbolic tangent to reconstruct the
enhanced speech of the attended speaker.

B. Proposed U-shaped Brain Enhanced Speech Denoiser (U-
BESD)

Apart from BESD, we also propose a second network, U-
BESD, that has U-shaped structure (Fig. 1d). Similar to BESD,
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Fig. 1: Illustration of the proposed networks: a) Brain Enhanced Speech Denoiser (BESD) architecture. b) The convolutional
block. ¢) The Post-Conv block. d) U-shaped Brain Enhanced Speech Denoiser (U-BESD) architecture.

U-BESD has two encoders, one for extracting the features of
the brain signal and one for extracting the features of the sound
mixture. It also has a decoder that reconstructs the enhanced
speech. In the following, we describe in detail each block of
Fig. 1d and the differences between BESD and U-BESD.

One of the differences between BESD and U-BESD is the
use of skip connections in the sound encoder. In fact, as can be
seen in Fig. 1d, each skip connection passes over one Conv
block and is then added to the output of the second Conv
block. These skip connections improve the flow of information



to deeper layers by allowing the network to learn small
differences with respect to the previous layer and alleviate the
problem of vanishing gradients, i.e., when the gradient tends to
get very close to zero in the back propagation from the output
to the input. The addition of skip connections has been proven
effective for image classification [26] and we include them in
the network assuming they should improve the performance.
The encoder for EEG signals has no skip connections and
includes four Conv blocks.

All convolutional blocks are similar to those used in BESD.
However, U-BESD uses dilated convolutions instead of normal
convolutions as in BESD. The only difference between each
Conv block is the dilation rate which increases by a factor of
2 for each convolution as the network deepens. The use of
dilated convolutions is the second difference between BESD
and U-BESD. In a dilated convolution, the kernel is stretched
over a larger area by inserting holes in between its elements,
hence the name convolution a trous or convolution with holes.
The dilation rate indicates the factor by which the kernel is
stretched. Using a dilated convolution is similar to pooling
or strided convolutions, but the output dimension remains the
same. Dilated convolution with dilation 1 is the same as a
normal convolution [27], [28].

U-BESD also uses FILM blocks between the two encoders,
similar to BESD. The modulation is done at several layers
along the encoders. The output of both encoders is concate-
nated in the latent space in what we call Concatenation in
Fig. 1d.

The decoder is built up of 6 1D causal convolutions with a
Glorot weight initializer. Except the last convolution, the out-
put of each convolution is concatenated by a skip connection
from the corresponding layer of the encoder, which was not
the case in BESD. The output of this concatenation is then
passed to a Post Conv block shown in Fig. 1c. The last layer
is a 1D causal convolution with filter size of 1 followed by a
hyperbolic tangent to reconstruct the enhanced speech of the
attended speaker. Several variants of this structure have been
studied, which are further detailed in Subsection IV.D.

III. MATERIALS AND METHODS

In this section, we first summarize the data acquisition, the
stimuli used in the experiments, and their preprocessing. We
then present an algorithm to estimate the multi-unit neural
activity from EEG signal that we further use as an input to
the proposed networks. We also present the loss function and
the optimizer. Finally, we summarize the evaluation metrics
used.

A. Data acquisition

The data from all subjects used in this study have been
obtained from the authors of [29]%. All procedures were
performed in accordance with the Declaration of Helsinki and
were approved by the Ethics Committees of the School of
Psychology at Trinity College Dublin, and the Health Sciences
Faculty at Trinity College Dublin. All subjects were native
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English speakers, reported normal hearing and no history of
neurological diseases. A total of 34 subjects (28 males) with a
mean age of 27.3 £ 3.2 years participated in the experiments.
The data from subject no. 6 were excluded due to noisy
recordings.

The subjects undertook 30 trials, of 60 seconds each. During
each trial, they were presented with two stories, one to the left
ear and the other to the right ear. Each story was read by a
different male speaker. Subjects were divided in two groups
and each group was instructed to pay attention to either the left
(17) or the right ear (16 + 1 excluded subject). After each trial,
subjects were required to answer multiple choice questions on
each story to test their attention. The story line was preserved,
such that for each trial, the story began where the last trial
ended.

In order not to bias the attention towards one stimulus,
the stimuli amplitudes were normalized to have the same
root mean square (RMS) level and silent gaps were cut
short to a maximum of 0.5 s. Stimuli were presented using
Sennheiser HD650 headphones and a presentation software
from Neurobehavioral Systems at a sampling rate of 44.1 kHz.
Subjects were asked to maintain a visual fixation on a cross
hair centered on the screen and to minimize eye blinking and
other motor activities.

EEG data were recorded using a 128-channel (plus two
mastoids) EEG cap, at a rate of 512 Hz using a BioSemi
ActiveTwo system and further downsampled to 128 Hz. For
more details regarding the experimental procedure, please refer
to [29].

To lower the amount of memory needed, we downsampled
the sound stimuli to a sampling rate of 14.7 kHz. We divided
the data into the following three groups. First, we randomly
kept 5 trials from all subjects as the test data and 2 trials as
the validation data. The rest of the data were considered as
the training data. For the training and validation sets, each
trial of 60 seconds were then cut into 2-seconds signals. For
the testing set, each trial was cut into 20-seconds long signals.

B. EEG preprocessing

The EEG data were first band-pass filtered between 0.1 and
45 Hz. This was done to only keep the relevant frequency
bands and to remove electrical noise (50 or 60 Hz) or very
low frequency noise that is a sign of a drift in the recording
environment. To identify channels with excessive noise, the
standard deviation (SD) of each channel was compared to the
SD of the surrounding channels and each channel was visually
inspected. Channels with excessive noise were recalculated by
spline interpolation of the surrounding channels.

The EEGs were re-referenced to the average of the mastoid
channels to avoid introducing noise from the reference site.
When the number of electrodes is dense enough, converting
data to an average reference is particularly important. The
advantage of re-referencing is that the sum of the outward
positive and negative currents across the entire head will be
zero [30]. To remove artefacts created by eye blinking and
other muscle movements, we performed independent compo-
nent analysis (ICA). For each subject, any trial that contained



too much noise was excluded from the study. All analysis
were performed in EEGLAB [31]. As the sampling rate of the
sound is 14.7 kHz (after downsampling the original signal of
44.5 kHz by a factor of 3) and the sampling rate of the EEG
signal is 128 Hz, we finally upsample the EEG signal by a
ratio of 114.

C. Frequency-band coupling model

EEG signals are a noisy mixture of several underlying
sources. Therefore, instead of using directly the EEG signal as
the input to the proposed BESD and U-BESD approaches, it
would be best to directly record the underlying neural activity,
which contains more relevant information about the stimuli,
and use this activity as the input to the network. However,
recording the neural activity directly is an invasive procedure,
which therefore strongly restricts its use in human experi-
ments. As a result, we propose to use instead a frequency-band
coupling (FBC) model that estimates the cortical multiunit
neural activity (MUA) from EEG signals and has been shown
to be a good estimate of the neural activity in the visual and
auditory systems [32], [30]. This model is presented as a linear
combination of the amplitude of the gamma band (30-45 Hz)
and the phase of the delta band (2-4 Hz) of the EEG signals:

N(t) = ay x Py(t) + a5 x Z6(t) %)

where t = 1,...,T is the time index, N(t) is the estimated
neural activity at ¢, P,(t) and Z6(t) are the amplitude of the
gamma band and the phase of the delta band respectively and
a~ and as are their respective coefficients.

For the amplitude of the gamma band, we first band-pass
filtered EEG signals between 30-45 Hz, and then we used
the magnitude of the Hilbert transform of these signals. Next,
we band-pass filtered EEG signals between 2-4 Hz and we
extracted the phase of the delta band from the angle of the
Hilbert transform of these signals. The values of the a, and
as were both fixed to 0.5 as per [32], [30]. The output of the
FBC model is referred to as multiunit activity (MUA) from
here on, and the approaches that use the MUA and EEG signals
as the input brain activity are referred to as BESD/U-BESD
MUA and BESD/U-BESD EEG respectively in the following.

D. Loss function and optimizer

A scale-invariant signal-to-distortion ratio (SI-SDR) [33]
loss function is used, which has been shown to perform well
as a general-purpose loss function for time-domain speech
enhancement [34]. SI-SDR can be calculated as follows:

2
SI-SDR = 101ogy, W ©6)
where T
g
Ctarget = Wg @)
€res = €target — T (8)

in which g and r are the target speaker and reconstruction
of the target speaker in the time domain. e;qge: is the scaled

target speaker and e,.., is the residual noise. Scaling the target
speaker insures that the SI-SDR is invariant to the scale of
the reconstruction. This is specially desirable in applications
where the processing does not necessarily preserve the scale
of the target speaker. Moreover, both speech quality and
intelligibility are invariant to scaling to a large extent [35].
A higher SI-SDR value indicates a better reconstruction.
As a result, the objective of the training is to minimize the
following loss:
Loss = — SI-SDR 9)

The Adablief optimizer is used which has been shown to
have a fast training, good generalization and training stability
[36] with a learning rate set to 10~° and weight decay of 0.1.
The learning rate was reduced by a factor of 0.1 if there was
no change in the loss value for 10 epochs.

E. Evaluation metrics

We evaluated and compared the performance of the pro-
posed algorithms through three objective metrics. First, we
used the SI-SDR [33], which is proposed as an alternative to
the SDR measure from the BSS-eval toolbox [37]. Unlike the
SDR, the SI-SDR is invariant to the scale of the processed
signal. This metric is defined in (6) and can range from —oo
to +0o0. We measured the quality of the enhanced speech using
the Perceptual Evaluation of Speech Quality (PESQ) [38] and
the intelligibility using the Short-Time Objective Intelligibility
(STOI) measure [39]. PESQ was developed to estimate the
quality perceived by humans in subjective tests such as the
Mean Opinion Score (MOS) and it can range from -0.5 to 4.5.
STOI predictions have shown a good correspondence with the
measured intelligibility of noisy/processed speech in a large
range of acoustic scenarios and it has a range of O to 1. It
should be mentioned that for all these objective metrics, the
greater the metric value, the better is the performance of the
algorithm.

IV. RESULTS

We evaluated the approaches, i.e. BESD and U-BESD,
in two different settings. We first trained the networks to
extract the first speaker using only the data where the subjects
attended to the first speaker (subjects 1-17), and we then
tested the trained network only on this part of the data. We
refer to this setting as speaker-specific denoising. Secondly,
we studied the performance of BESD and U-BESD in a
speaker-independent setting, i.e., where no prior information
is available about the attended speaker when performing the
enhancement.

In the speaker-specific setting, we compared BESD and
U-BESD to a denoising autoencoder [40] with a structure
similar to U-BESD. For both settings, we also investigated
whether using the FBC model would increase the performance
by training BESD and U-BESD with MUA as the input. In
the speaker-independent setting, we compared the performance
of U-BESD EEG to a similar model by Ceolini et al. [19]
by training the U-BESD with the dataset used in their study.
Finally, we evaluated the network performance as a function
of different parameters and structures.
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Fig. 2: Speech enhancement performance distributions for
speaker-specific denoising using a) SI-SDR, b) STOI and
¢) PESQ metrics. We show the performance for the noisy
mixture, BESD EEG, BESD MUA, denoising autoencoder,
U-BESD EEG and U-BESD MUA. Medians are shown on
top. The distribution of the values of the metrics are shown
in the form of violin plots. The white dot in each plot
shows the median. The black bar in the center of the violins
shows the interquartile range (IQR). The thin black lines
stretched from the bar show first quartile —1.5 x IQR and
third quartile +1.5 x IQR respectively. Different colors are
used to make distinction between each network easier. With
either EEG or MUA, U-BESD significantly increases the
performance compared to the BESD network and the noisy
mixture ( p < 0.001, Mann - Whitney U test). The denoising
autoencoder has a similar structure to U-BESD leading to a
better performance compared to BESD.

As mentioned in subsection III-E, we used the SI-SDR,
STOI, and PESQ as objective metrics to evaluate the per-
formance of the proposed approaches. We report the results
in the form of violin plots, which represent the distribution
of the performance over all the test segments for a given
metric. In a violin plot, we can find the same information
as the box plots. The white dot in the middle shows the
median of the distribution. The black bars in the center of
the violins show the interquartile range (IQR). The thin black

lines stretched from the bar show first quartile —1.5 X IQR
and third quartile +1.5 x IQR respectively. The advantage of
using violin plots over box plots is that they also show the
entire distribution of the data. This is useful especially when
the data are multimodal, i.e., they have a distribution with
more than one peak.

A. Speaker-specific denoising

In this section we present the results for the speaker-specific
setting, where the attended speaker is known. The aim of this
experiment is to study if using the U-BESD network increases
the performance compared to the BESD and the denoising
autoencoder network, even if the speaker is known to the
algorithm. The results are shown in Fig. 2. For most subjects,
we tested the performance for 15 nonoverlapping segments of
20 seconds leading to 220 estimation segments in total.

As can be seen, U-BESD has significantly less distortion
(SI-SDR), better quality (PESQ), and higher intelligibility
(STOI) than the speech mixture, BESD and the autoencoder
(p < 0.001, Mann-Whitney U-test). Moreover, comparing the
results obtained with U-BESD, with either EEG or MUA as
the brain activity input, shows a significant improvement in
the performance for the SI-SDR, STOI and PESQ metrics
(p < 0.001, Mann - Whitney U test). The same can be said
about the comparison between BESD EEG and BESD MUA
(p < 0.002, Mann - Whitney U test).

In order to assess the possible performance difference be-
tween each subject, we also compared the overall performance
of the network for each subject individually, in terms of SI-
SDR, STOI, and PESQ. We observed (results not shown)
that both BESD and U-BESD approaches had very similar
performances for all subjects and all metrics (p > 0.05, Mann -
Whitney U test). In fact, for the BESD network, the differences
in metric medians between the best and worst subjects for SI-
SDR, STOI, and PESQ are 0.22 dB, 0.03 and 0.07 respectively.
For the U-BESD network, the differences in performance
medians between the best and worst subjects for SI-SDR,
STOI, and PESQ are 0.2 dB, 0.02 and 0.04 respectively.

B. Speaker-independent denoising

Next, we investigated the situation where no prior in-
formation about the target speaker is available during the
enhancement. We trained the U-BESD to automatically extract
the attended speaker, using the information present in the
EEG signal or MUA, and to further perform the denoising.
We compare the performance for both BESD and U-BESD
and further analyze the performance differences between the
speaker-specific and speaker-independent settings in Section
V.

The results are shown in Fig. 3. For each subject, we
evaluated the performance for 15 nonoverlapping segments
of 20 seconds, leading to 441 estimation segments. As can
be seen in Fig. 3, for all metrics, U-BESD has significantly
less distortions (SI-SDR), better quality (PESQ), and intelligi-
bility (STOI) than both the noisy speech mixture and BESD
(p < 0.03, Mann - Whitney U test). Moreover, U-BESD MUA
shows a significant improvement in performance (p < 0.001,
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Fig. 3: Speech enhancement performance distributions for
speaker-independent denoising using a) SI-SDR, b) STOI and
¢) PESQ metrics. We show the performance for the noisy
mixture, BESD EEG, BESD MUA, U-BESD EEG and U-
BESD MUA. Medians are shown on top. With either EEG
or MUA, U-BESD significantly increases the performance
compared to the BESD network and the noisy mixture (
p < 0.03, Mann - Whitney U test).

Mann - Whitney U test) compared to U-BESD EEG. The same
can be said about the comparison between BESD MUA and
BESD EEG (p < 0.001, Mann - Whitney U test).

We also looked at the overall performance of the network for
each subject individually, in terms of the SI-SDR, STOI, and
PESQ metrics. The results are shown in Fig. 4 for BESD with
MUA and Fig. 5 for U-BESD with MUA. For both BESD and
U-BESD networks, it can be seen that generally, subjects 18-
33, i.e., subjects who attended the right ear, performed better
than subjects 1-17, i.e., subjects who attended the left ear.

Finally, we also compared the performance of the proposed
network to that of [19]. To do so, we trained the proposed
network using the same data as in [19], i.e., that of [41]. For
details regarding the recording and preprocessing of the data
please refer to [41]. The results are shown in Fig. 6. Please
note that the results shown for [19] are taken directly from the
paper. The results are shown for 27 test samples per subject. As
can be seen from this figure, U-BESD performs significantly

better than the BISS model proposed in [19].

C. Causal vs non-causal configuration

We also studied the performance of U-BESD MUA in the
speaker-independent setting under a causal vs a non-causal
configuration. Causal convolutions make sure that the model
does not violate the order of the data. Meaning, the sample
estimated at time step ¢ does not depend on samples at time
steps ¢ + 1,t + 2,...,t + T [27]. Studying the difference
between causal and non-causal convolutions are important
because non-causal systems can only be used in applications
that do not require real-time processing or low latency. To
study the network in a non-causal setting, we used non-causal
convolutions. It can be seen in Fig. 7 for all metrics, that using
a causal setting significantly decreases the performance of the
network (p < 0.007, Mann - Whitney U test).

D. Optimizing the network parameters

We further evaluated the effect of different network pa-
rameters and structures on the performance of U-BESD in
the speaker-independent setting. We first evaluated several
possible variations of the FILM layer and the Concatenation
block. We refer here to the structure presented in subsection
II-B as Conv-Concat in which we use 1D convolutions in
the FiLM block and the concatenation of sound mixture and
brain activity input in the Concatenation layer. Firstly, instead
of concatenating the sound and brain activity, we pass only
sound to the decoder. Secondly, we use fully connected layers
in the FiLM block instead of 1D convolutions. The combi-
nation of the 1D convolution without concatenation is called
Conv-nConcat, fully connected layers with concatenation FC-
Concat, and fully connected layers with no concatenation
is called FC-nConcat. We also show the performance for
networks with no dilated convolutions, Orthogonal weight
initialization [42] instead of Glorot weight initialization, and
Adam optimizer [43] instead of Adablief as well as a smaller
network with 32 filters instead of 64. Furthermore, we also
investigated changing the order of layers in the Conv Block
from 1D convolution, Layer Norm, Leaky Relu, and dropout
(CNRD) to 1D convolution, Leaky Relu, Layer Norm and
dropout (CRND).

Table I shows the performance of the network for each of
these parameters and structures in terms of the medians of
SI-SDR, STOI, and PESQ distributions for the 441 segments
of the speaker-independent setting. It also presents the total
number of parameters in the network for each case (Model
size). The first row of the table corresponds to the U-BESD
used for the previous results (U-BESD MUA), which shows
the higher performance for the causal settings.

We can make the following observations from Table 1:

(i) When a convolution layer is used in the FILM block
(Conv-Concat and Conv-nConcat), the performance of
the model is generally better compared to when a fully
connected layer (FC-Concat and FC-nConcat) is used.
This is due to the fact that the 1D Convolutions have
a kernel size of 3, while the fully connected layer is
equivalent to a 1D Convolution with kernel size of
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Fig. 4: Speech enhancement performance distributions for
speaker-independent denoising for each subject using a)
SI-SDR, b) STOI and c¢) PESQ metrics. We show the
performance for BESD MUA. Medians are shown on
top for each subject. Each subject was tested on 15 non-
overlapping utterances of 20 seconds.
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Fig. 5: Speech enhancement performance distributions for
speaker-independent denoising for each subject using a)
SI-SDR, b) STOI and c¢) PESQ metrics. We show the
performance for U-BESD MUA. Medians are shown on
top for each subject. Each subject was tested on 15 non-
overlapping utterances of 20 seconds.

TABLE I: The effect of different configurations on the U-BSED performance in the speaker-independent setting.

P . __ e —— e

Fusion Weight Optimizer | Dilation | Order | Nb of | Model size § SI-SDR | STOI | PESQ
type initialization filters

— ____
Conv-Concat Glorot Adablief Y CNRD 64 1.84 M 8.53 0.83 1.97
Conv-nConcat Glorot Adablief Y CNRD 64 1.716 M 8.49 0.83 1.94
FC-Concat Glorot Adablief Y CNRD 64 1.712 M 7.62 0.81 1.84
FC-nConcat Glorot Adablief Y CNRD 64 1.6 M 7.48 0.8 1.84
Conv-Concat Orthogonal Adablief Y CNRD 64 1.84 M 8.42 0.82 1.92
Conv-Concat Glorot Adam Y CNRD 64 1.84 M 8.06 0.82 1.92
Conv-Concat Glorot Adablief N CNRD 64 1.84 M 6.58 0.8 1.82
Conv-Concat Glorot Adablief Y CRND 64 1.84 M 8.35 0.82 1.92
Conv-Concat Glorot Adablief Y CNRD 32 0.514 M 7.01 0.79 1.81

1. Therefore, besides having more trainable parameters,
Conv-Concat and Conv-nConcat can learn local features
of time signals, while the fully connected version con-
structs only instantaneous features.

(ii)) When we concatenate the features learned from the brain

activity and the sound mixture in the Concatenation layer
(Conv-Concat and FC-Concat) the performance of the

network is slightly better than when we pass only the
features learned from the sound mixture to the decoder
(Conv-nConcat and FC-nConcat). This could be due to
the fact that when we pass both of the inputs to the
decoder, we provide additional information to the network
which increases the ability to extract the attended speaker
and denoise the speech mixture. It should be mentioned
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Fig. 7: Speech enhancement performance distributions for
speaker-independent denoising for each subject using a) SI-
SDR, b) STOI and c) PESQ metrics. We compare the perfor-
mance for U-BESD MUA for causal vs. non-causal convolu-

tions. Medians are shown on top for each condition.

that to keep other parameters in the network constant,
Conv-Concat should be compared to Conv-nConcat and
FC-Concat should be compared to FC-nConcat.

(iii) Using Glorot uniform [21] weight initialization improves
the performance compared to an Orthogonal weight ini-
tialization [42]. Glorot uniform initialization draws sam-

ples from a uniform distribution with a variance scaled
by the number of each layer’s inputs and outputs. This
helps the weights to maintain a reasonable range and
avoid weight (and gradient) diminishing or exploding.
On the other hand, Orthogonal initializer draws samples
from a Gaussian distribution and creates an orthogonal
weight matrix. The choice of weight initializer is very
task dependent and theoretically, there is no reason why
using the Glorot uniform initialization produces better
results than using the Orthogonal initialization. Whether
choosing another type of initializer leads to a better
performance needs further investigation.

Using the Adablief optimizer compared to the Adam
optimizer improves the performance of the network. The
Adablief optimizer has been shown to have as fast a
convergence as Adam, while having both a better gener-
alization and a better training stability compared to Adam
[36].

Using dilated convolutions improves the performance of
the network. The use of dilated convolutions allows the
network’s receptive field to grow exponentially without
much computational cost. In this way, the network is
able to model the long term temporal dependencies in
the audio signals [27], [28].

Using Layer Normalization before Leaky Relu nonlin-
earity (CNRD) generally leads to a better performance
compared to using Leaky Relu before Layer Normaliza-
tion (CRND). The reason for this improvement however
is not clear.

Increasing the number of filters improves the performance
of the network. A larger number of filters lets the network
learn more feature maps from the input, which leads
to better estimations. However, increasing the number
of filters drastically increases the number of parameters
(0.541 M compared to 1.84 M) which could lead to
overfitting. By using regularization and dropout layers,
we aim to decrease the chance of overfitting in the
network.

(iv)

v)

(vi)

(vii)

V. DISCUSSION AND CONCLUSION

It has been shown previously that the attended speaker
can be decoded from the brain waves of the listener [15],
[18]. In this paper, we proposed two networks called Brain
Enhanced Speech Denoiser (BESD) and U-shaped Brain En-
hanced Speech Denoiser (U-BESD), that use the brain signals
of a listener in a noisy environment to perform speech en-
hancement and denoise a speech mixture. In a speaker-specific
setting where the attended speaker is known, we show that U-
BESD surpasses BESD as well as a denoising autoencoder
with a similar structure. However, the denoising autoencoder
performs better than the BESD for SI-SDR and STOI metrics.
This is surprising as in this situation, all information about
the attended speaker is available to the networks. The fact
that the denoising autoencoder and U-BESD perform better
than BESD could be due to factors such as:

o Whereas BESD has no skip connections, U-BESD and
autoencoder have skip connections, both in the encoder



itself, similar to Resnet [26] and from the encoder to
the decoder, similar to Unet [44]. Having both short
and long skip connections has been shown to improve
performance in deep neural networks for applications
such as biomedical image segmentation [45].

« U-BESD and autoencoder both use dilated convolutions.
As discussed in Table I, the use of dilated convolutions
allows the network’s receptive field to grow and model
the long-term temporal dependencies in the audio signals
[27], [28] and a network with no dilated convolutions, as
BESD is, performs significantly worse.

As we just mentioned, the denoising autoencoder used
here has a structure similar to the U-BESD, i.e, it uses
skip connections and dilated convolutions, and this is why it
performs better than BESD. However, if the autoencoder had
a structure similar to BESD, then BESD would have produced
better results than the denoisng autoencoder, as shown in
[20]. The fact that both U-BESD and BESD have a better
performance than an autoencoder with a similar structure to
theirs indicates that providing the network with additional
information, such as the brain activity, is always beneficial
and increases the intelligibility and quality and decreases the
distortions of the network estimations. By using the brain
activity to modulate features learned from sound and vice
versa, through FiLM blocks, the network is able to build more
meaningful representations of the two inputs and thus performs
better at extracting the attended speaker and denoising the
speech mixture.

Moreover, the performance of the BESD and U-BESD
networks for the speaker-specific task is similar for different
subjects. This could be due to the fact that speaker-specific
denoising is an easy task since the attended speaker is already
known. As a result, the variation of EEG signal over different
subjects is not affecting the performance of the network to a
significant degree. On the other hand, for the task of speaker-
independent denosing, which is admittedly a difficult task, we
see significantly different variations over different subjects, as
seen in Fig. 4 and Fig. 5. This indicates that for a speaker-
independent setting, the performance of the network is affected
by the EEG data recorded from each subject, in terms of either
the distortions created by the subjects or their attention level.
As a result, the network might need subject-specific training
and, for a given application to be used by a specific subject, it
would probably benefit from further training for that subject.

Although subjects do not perform similarly in the speaker-
independent setting, we can see a trend where subjects that
listened to the right ear perform better than the ones that
listened to the left ear. The speaker for the left ear had a
British accent and the speaker for the right had an American
accent. Since the experiments were recorded in Ireland, where
the accent is somewhat more similar to the British accent
than to the American accent, we can speculate that it was
easier for the participants to attend to the speaker with the
British accent than to the speaker with the American accent
and hence the recorded EEG had a better quality leading to
a better network performance. Whether people listening to a
speaker with different accents affects the EEG signals would
however need further investigation.

In a speaker-independent setting where no prior information
is available about the attended speaker, we show that U-BESD
surpasses BESD as well as the noisy mixture. Additionally,
it also surpasses a similar model by Ceolini et al. [19]
when trained on the same dataset. Moreover, by comparing
Fig. 2 and Fig. 3, we observe that the performance of the U-
BESD MUA in the speaker-independent setting, while being
slightly lower, is comparable to the speaker-specific setting.
This shows that in the absence of any information about the
attended speaker, U-BESD is able to use the brain signals
to successfully extract the attended speaker with 100 percent
accuracy, and to denoise the speech mixture.

Interestingly, using the MUA as opposed to the EEG as the
input to the network increases the performance. This is because
the EEG signals are a noisy mixture of several underlying
sources. By using the FBC model to estimate MUASs instead
of using directly the EEGs, the representation of the brain
signal given to the network would be more meaningful and
the network would then better extract the attended speaker
[30].

In addition, we evaluated the difference in performance of
the U-BESD MUA for a causal vs. a non-causal convolution
setting. It can be seen from Fig. 7, that a non-causal setting has
generally a higher performance. This is because the non-causal
setting has information available from future input samples.
This could make the non-causal setting unsuitable for real
world applications since it introduces additional delays in the
network. However, in the current setting and since the filters
are only 25 samples long (corresponding to 1 ms at a sampling
frequency of 14.7 kHz), the added samples from the future
would only imply a 17 ms delay which could be suitable for
many applications.

In conclusion, the best of the two proposed approaches,
U-BESD, represents a significant step towards speaker-
independent speech enhancement and denoising. U-BESD is
an end-to-end approach where all modules of the algorithm
are trained simultaneously in a single neural architecture,
thus lowering the complexity of the algorithm. Moreover,
the processing is performed completely in the time domain.
Most importantly, given enough training data, no prior in-
formation about the attended speaker (i.e., the number of
speakers or the target speaker) is needed. The combination
of high accuracy, short latency, and small model size makes
U-BESD a suitable choice for both offline and real-time, low-
latency speech processing applications such as hearing aids
and telecommunication devices, where no prior information
about the attended speaker is available.
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