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Abstract

Validated both numerically and experimentally, Beam Propagation Method (BPM) has been proven to be a very efficient and

reasonably accurate simulation approach for certain silicon photonics (SiP) devices. This paper clears up some misunderstanding

in SiP community that BPM is not suitable for SiP devices.
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Abstract— Validated both numerically and experimentally, 

Beam Propagation Method (BPM) has been proven to be a very 

efficient and reasonably accurate simulation approach for certain 

silicon photonics (SiP) devices. This paper clears up some 

misunderstanding in SiP community that BPM is not suitable for 

SiP devices.  

 
Index Terms— BPM, FDTD, EME, Silicon photonics, MMI, 

AWG, SSC, directional coupler.  

I. INTRODUCTION 

ector beam propagation method (BPM) has been widely 

used to simulate fiber and waveguide devices efficiently 

since its invention 30 years ago [1,2]. The method makes 

certain approximations in the governing equation, which leads 

to fast simulation times and small memory requirements, while 

still working well under certain conditions, such as slowly-

varying structures with negligible backward reflection. For the 

high index contrast devices of silicon photonics (SiP), vector 

BPM, especially full-vector BPM [3] (FV-BPM), is not 

unconditionally stable, and may experience problems due to 

accumulated and amplified numerical noise if some modal 

parameters are not properly chosen. This created a wrong 

impression that BPM is not suitable for SiP. To correct this 

misunderstanding, we will first explore the suitable scope of 

BPM applications from the theoretical point of view and study 

the characteristics of SiP waveguides.  Then we will apply BPM 

to several common silicon photonics devices and validate it 

against more rigorous numerical methods, such as the Finite-

Difference Time-Domain Method (FDTD) and Eigen Mode 

Expansion (EME). We will also compare the simulation results 

with available experimental results.  

II. THEORETICAL BACKGROUND 

The equation that FV-BPM solves is the slowly-varying 

unidirectional wave equation [3],  

𝑗2𝑛0𝑘
𝜕

𝜕𝑧
(
𝐹𝑥
𝐹𝑦

) = 𝑷�⃗⃗� = (
𝑃𝑥𝑥 𝑃𝑥𝑦

𝑃𝑦𝑥 𝑃𝑦𝑦
) (

𝐹𝑥
𝐹𝑦

)      (1) 
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Here 𝐹𝑥(𝑥, 𝑦) and 𝐹𝑦(𝑥, 𝑦) are the envelopes of the transverse 

electric or magnetic field excluding the fast oscillating phase 

𝑒−𝑗𝑘𝑛0𝑧. The expression of the operators Pxx, Pyy, Pxy, and Pyx, 

are defined in [3].  

The finite difference solution to the above BPM equation is 

�⃗⃗� (𝑧 + 𝛥𝑧) =
1−𝑗2𝑛0𝑘𝛥𝑧(1−𝛼)𝑷

1+𝑗2𝑛0𝑘𝛥𝑧𝛼𝑷
�⃗⃗� (𝑧)         (2) 

where 0 ≤ 𝛼 ≤ 1 α is a scheme parameter, n0 is the reference 

refractive index, and k is the wavenumber in free space. 

The above equation is a full vector equation because any of 

the other four field components can be represented by any pair 

of components, either 𝐸𝑥&𝐸𝑦, or 𝐻𝑥&𝐻𝑦 , or 𝐸𝑧&𝐻𝑧 . Therefore, 

“BPM equation is not full vector” is another misunderstanding 

to be corrected. 

 Surely, the BPM equation is an approximation and it comes 

with the following assumptions: 

(1) The unidirectional wave equation determines that BPM 
can only trace forward waves and any backward 
reflection is ignored.  Hence it is not applicable to 
structures with strong backward reflection, though bi-
directional BPM can handle some limited cases [4]. 

(2) The paraxial approximation limits BPM to modeling 
beams with a relatively small divergence angle and a 
field containing modes with effective indices close to 
the reference index n0. The wide-angle BPM [5,6] can 
relax this limitation with extra computational effort.    

(3) The envelope approximation excludes the fast-
oscillating phase, so it should be applied only to slowly 
varying structures. A dramatically changing structure 
causes scattering with a fast-oscillating envelope and 
some of it going backward.   

Because of these approximations, FV-BPM sometimes suffers 

instability problems due to numerical noise generated by the 

field discontinuity at interfaces and especially singularities at 

corners. It has been proven mathematically that the numerical 

noise excites pairs of complex conjugates modes, even for 

lossless waveguides [7].  The pairs then propagate in opposite 
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directions, the one propagating backward grows exponentially 

as the other propagates forward.  

To make FV-BPM stable, a scheme parameter α>0.5 is 

usually introduced to suppress the noise.  As a drawback, larger 

scheme parameters introduce an artificial loss which can cause 

the total power not conserved.   

In the case of weak polarization coupling, the full-vector 

equation (1) can be separated into two decoupled semi-vector 

equations by assuming 𝑃𝑥𝑦 = 𝑃𝑦𝑥 = 0. 

𝑗2𝑛0𝑘
𝜕

𝜕𝑧
𝐹𝑥 = 𝑃𝑥𝑥𝐹𝑥           (3) 

for TE wave, and  

𝑗2𝑛0𝑘
𝜕

𝜕𝑧
𝐹𝑦 = 𝑃𝑦𝑦𝐹𝑦          (4) 

for TM wave. 

Because only discontinuities are involved, this semi-vector 

BPM (SV-BPM) is much more stable than FV-BPM, and α=0.5 

can be used in most cases to maintain power conservation.  

In the weak polarization case, the two semi-vector equations 

can be further simplified as a single scalar equation by 

assuming 𝑃𝑥𝑥 = 𝑃𝑦𝑦 = 𝑃. 

𝑗2𝑛0𝑘
𝜕

𝜕𝑧
𝜓 = 𝑃𝜓             (5) 

 The scalar BPM (S-BPM) is unconditionally stable and 

power is conserved with α=0.5, in the Crank-Nicolson scheme.       

Naturally, the question is when should full-vector, semi-

vector, or scalar BPM be used, especially for SiP with high 

index contrast? 

III. MODAL CHARACTERISTICS OF SIP WAVEGUIDES 

 To answer the above commonly asked question, let’s first 

investigate the modal characteristics, which is the foundation of 

any kind of waveguide analysis.  

In general, two types of SiP waveguides, large core rib/ridge 

waveguide and small core silicon wire, are widely used. Their 

modes can be calculated by the mode solver built-in to 

BeamPROP BPM [8], which is based on imaginary-distance 

BPM [9] and correlation method [10].  

A. Large core rib/ridge waveguide 

Regardless of its large core, the rib/ridge waveguide is a 

weakly guided waveguide due to its weak confinement in the 

lateral direction. 

 
Fig. 1. Major and minor components of rib/ridge waveguide mode  

Shown in Fig. 1 is the full-vector fundamental mode of a 

rib/ridge waveguide with 3μm width, 4μm height, and 2μm slab 

thickness, at λ=1.55μm. As observed, the mode profile is 

mainly confined inside the silicon core and the minor 

component at the corners is quite small. Therefore, both 

polarization coupling and polarization dependence are weak, as 

confirmed by the comparison among different BPM results 

shown in Fig. 2. The normalized propagation constant is 

defined as: 

𝑏 =
𝑛𝑒𝑓𝑓

2 −𝑛𝑆𝑖𝑂2
2

𝑛𝑆𝑖
2 −𝑛𝑆𝑖𝑂2

2               (6) 

 
Fig. 2. Normalized propagation constant by different BPMs. Inserted 

are modal profiles with slab height of 0.5μm and 3.5μm. 

 As an independent check, the rigorous finite-element method 

(FEM), which is a full-vector solver [11], is also used and the 

results are shown in the same chart. It is observed: 

(1) FV-BPM gives virtually the same results as FEM and 
its accuracy has been validated against exact analytical 
solution [9]. 

(2) SV-BPM yields the similar results as FV-BPM across 
the whole range, because of the weak minor component 
of the modal profile.  

(3) The discrepancy between scalar and vector results is 
bigger for the waveguide with smaller slab height 
because of electric field discontinuities at junctions in 
the lateral direction. The difference becomes smaller as 
the slab height increases and eventual vanishes when 
the rib/ridge becomes a slab. 

To maintain single mode conditions, the slab must be >1.7μm 

for this example. Therefore, semi-vector or even scalar BPM 

should be sufficient for large core rib/ridge waveguide.  

Instead of absolute phase, the performance of a directional 

coupler depends on the phase difference between its symmetric 

and anti-symmetric modes. The coupling length is defined as 

𝐿𝑐 =
𝜆

2(𝑁𝑠−𝑁𝑎)
            (7) 

where Ns and Na are effective indices of the symmetric and anti-

symmetric modes of the coupler, respectively.  

 We calculate the coupling length of a directional coupler 

consisting of two identical waveguides, which were 

investigated earlier, and the scan results over edge-to-edge 

separation are shown in Fig. 3, for different methods.  

Similar behaviors are observed, i.e, the semi-vector result is 



very close to the full-vector results of both FV-BPM and FV-

FEM. Hence, semi-vector simulation is sufficient for 

directional couplers based on large-core silicon waveguide.  At 

small separations, even scalar BPM is good enough.  

 

  
Fig. 3. Coupling length of the directional coupler calculated by 

different algorithms. Inserted are modal profiles of symmetric and 

anti-symmetric modes with separation of 2μm. 

 In addition to phase, accurate modeling of the amplitude is 

equally important for SiP devices because it directly relates to 

insertion loss. One of the major contributors to device insertion 

loss is the waveguide bending loss, which can be calculated 

from the imaginary part of the effective index ni. 

𝐼𝐿(𝑑𝐵) = 20 log10 𝑒−𝑛𝑖𝑘0𝐿        (8) 

 Since the imaginary-distance method cannot calculate the 

complex mode, we have to use the correlation method [10] to 

calculate the loss of a waveguide bend via the conformal 

mapping technique [12].  

 To test the accuracy of this approach, we calculate the loss of 

a 90o bend using 𝐿 = 𝜋𝑅 2⁄  in Eqn. (5). Shown in Fig. 4 are the 

results at different radii using S-BPM, SV-BPM, and FV-FEM.  

Instead of FV-BPM, FV-FEM is used because accurate loss 

calculations require power conservation with scheme parameter 

α=0.5, at which FV-BPM is not stable.   

 
Fig. 4. Bending loss of rib/ridge waveguide calculated by different 

algorithms. Inserted is the modal profile at bending radius of 3mm.  

 Once again, it is observed that the semi-vector result is very 

close to the full-vector result, hence SV-BPM is sufficient to 

accurately model the power in rib/ridge waveguide bends. The 

above loss curves also confirm our earlier claim that large core 

rib/ridge waveguides are weakly guiding, and the bending 

radius cannot be too small. As a result, the device size is usually 

large.   

B. Small core silicon wire waveguide 

Although its dimension is small, typically 500nm x 220nm 

as industry standard,  the silicon wire waveguide has strong 

confinement, as indicated by the calculated bending loss and 

modal profile shown in Fig. 5. The waveguide can be bent at 

radii as small as a few micrometers with little bending loss and 

the field is still strongly confined inside the core even at 

R=1μm.  

 
Fig. 5. Bending loss of silicon wire waveguide calculated by FEM. 

Inserted is the modal profile at bending radius of 1μm. 

Please note that the above bend mode was calculated by FEM 

in cylindrical coordinates because BeamPROP BPM only 

supports conformal mapping, which is valid only when the bend 

radius is much larger than the structure [12].  

Because of its strong confinement, the silicon wire 

waveguide is strongly polarization dependent and polarization 

coupled. As shown in Fig. 6, the E-field discontinuity is clearly 

observed, and the minor component is quite strong.  

  
Fig. 6. Major and minor components of silicon wire waveguide mode  

However, the polarization dependence and polarization 

coupling become weaker as the silicon wire waveguide gets 

wider, as shown in Fig. 7. When the waveguide is wide enough, 

like a slab waveguide, scalar, semi-vector, and full-vector 

results become the same.   



The results imply: 

• SV-BPM is sufficient for phase-insensitive devices, 
such as adiabatic spot size convertors (SSC). 

• For very wide waveguides like star couplers, well-
behaved S-BPM is sufficient. 

 

Fig. 7 Effective indices of the fundamental mode of a silicon wire 

waveguide. Inserted is the modal profile at waveguide width of 2μm. 

It is true that many SiP devices are phase sensitive and accurate 

full-vector simulations may be needed.  For some of them, such 

as directional couplers and MMIs, the performance critically 

depends on the phase difference between the coupled modes, 

rather than their absolute phases [13]. 

To explore the suitability of different BPMs for SiP devices 

built on silicon wire waveguides, we also calculate the 2nd mode 

and plot its effective index difference with the fundamental 

mode in Fig. 8.  

 

Fig. 8 Difference in effective indices of the 1st and 2nd modes. Inserted 

is the modal profile of the 2nd mode at waveguide width of 1.5μm.  

 Once again, it is found that (1) the semi-vector result is very 

close the full-vector one, and (2) the difference gets smaller for 

wider waveguides. Hence, phase-sensitive devices like 

directional couplers and MMIs, can be simulated by the more 

robust semi-vector BPM. For extremely wide devices like 

AWG star couplers, unconditionally stable scalar BPM can be 

used.  

IV. APPLICATION CASES 

A. Directional Coupler 

The directional coupler is a common building block for 

photonic integrated circuits (PICs). With input and output S-

bends, which also contribute to the coupling, it is hard to 

determine the required coupling length with the formula shown 

in equation (7). Therefore, we need to rely on accurate 

simulation to design the coupling length as well as the bend 

length. Taking the large-core rib/ridge waveguide studied in 

previous section as the example, shown in Fig. 9 is the 

comparison of the power remaining in the input branch, 

calculated by different algorithms at different coupler lengths 

for a directional coupler with a 1μm edge-to-edge separation.    

  
Fig. 9 Power remaining in the input waveguide by different algorithms. 

Inserted are the simulated field pattern and monitored powers. 

Please note that a scheme parameter α=0.65 is used for the 

FV-BPM simulation to keep the algorithm stable. To 

compensate the artificial loss and calibrate the simulation 

results, we have done two simulations with exactly the same 

parameters, such as scheme parameter, domain size, mesh size, 

device length, etc., except one is with S-bends and the other one 

with two straight waveguides. In both cases, the artificial loss 

should be similar, and the extra loss for the coupler with S-

bends should be its insertion loss since the straight structure is 

lossless. We re-normalized the simulation result of the bend 

structure to the total power of the straight structure. This trick 

can be applied to other cases for which FV-BPM simulations 

are needed, such as polarization rotators for which full-vector 

simulation is a must.   

As observed, SV-BPM and FV-BPM give the same coupling 

length while S-BPM is off by about 20μm. This has confirmed 

our prediction in the previous section, i.e., SV-BPM is 

sufficient for directional coupler based on large-core rib/ridge 

waveguide.  

We did not compare these results against other algorithms 

like FDTD or Eigen-Mode Expansion (EME) since the 



structure is fairly large to simulate via those methods in a 

reasonable time on regular computers. 

B. Spot-Size Converter 

Spot-size converters (SSCs) [14] are another key PIC 

component, used to transform the beam spot from small silicon 

wires to large core waveguides, which provide better coupling 

to optical fibers.  Because it is adiabatic, an SSC is phase 

insensitive, hence SV-BPM should be sufficient as mentioned 

in the previous section. Shown in Fig. 10 is a comparison of the 

simulated output power by different methods. The SV-BPM 

and FV-BPM simulations were performed at a large number of 

different taper lengths; however, the FDTD and EME 

simulations were performed on fewer taper lengths since they 

are relatively time consuming. 

    

Fig. 10 Simulated output power by different methods. Inserted is the 

schematic diagram of the SSC in Ref [14] with permission from 

IEEE. 

 Please note that the scheme parameter α=0.55 is used for 

FV-BPM simulations to remain stable. The same re-

normalization trick, used for the directional coupler, is used 

here.  

 

Fig. 11 Computation time by different methods. 

As observed, both SV-BPM and FV-BPM give similar 

results as FDTD and EME, but the simulation time is several 

orders of magnitude faster than FDTD, esp. for SV-BPM which 

is 1000+ times faster, as shown in Fig. 11. 

C. MMI  

 The performance of MMIs is based on mode coupling among 

different modes and its coupling length is determined by the 

difference of their effective indices, esp. between the 1st and 2nd 

modes [13]. Shown in Fig. 12 are the simulation results of both 

SV-BPM and FDTD for a 2x2 MMI based on silicon wires.  

  

Fig. 12 Simulated output power by different methods. Inserted is the 

BPM simulated field pattern of the MMI at a length of 14.34μm.  

 As observed, SV-BPM predicts almost the same coupling 

length as FDTD does, 14.34μm vs 14.37μm, but the speed is 

1000x faster for this test case. Please note that wide-angle BPM 

is used in order to gain high accuracy because there are multiple 

modes inside the MMI. As predicted in the previous section, 

FV-BPM also gives the same results  (not shown here) as SV-

BPM because the polarization coupling is very weak for such 

wide waveguides, as shown in Fig. 7 and Fig. 8.  

 

Fig. 13 Total reflected power simulated by FDTD.  



Some discrepancy between BPM and FDTD results is 

observed when the MMI length is off the optimal coupling 

length, especially on the longer MMI side. That is because the 

light focal points are off the port positions and hits silicon-air 

interface, which generates reflection ignored by BPM. Shown 

in Fig. 13 is the total reflected power of the MMI device at 

different MMI length. It shows that the reflection is relatively 

weak around the optimal length and gets strong off the optimal 

length, especially on the longer MMI side.     

In addition, FDTD results show some oscillation, which is 

etalon effect because of the Fabry-Perot cavity formed by two 

MMI junctions.  

As an independent check, EME simulation (not shown here) 

gives the same optimal length (14.37μm) and etalon effect as 

FDTD.  

D. AWG 

AWGs are extremely phase-sensitive and have two critical 

parts, the star coupler and the phase arrays. Because of its large 

width, the star coupler is virtually a slab waveguide, for which 

full-vector, semi-vector, or scalar are the same for TE waves. 

Shown in Fig. 14 are the power outputs from each array 

waveguide, calculated by BPM and FDTD. As observed, they 

are very close.    

 

Fig. 14 Simulated output power by BPM (blue) and FDTD (green). 

Inserted is the BPM simulated field pattern in the input star coupler.   

  

Fig. 15 Comparison between simulation (dashed lines) and 

measurement (solid lines). Insert is the OM image of the AWG. 

Since the effective index of the array waveguides is very 

critical to determining the FSR and channel position, accurate 

full-vector modes should be used to simulate the array.   

With the above tactics, a 4-channel AWG was designed, 

simulated, fabricated, and characterized at ITRI. The 

comparison between simulated and measured results is shown 

in Fig. 15. 

It is observed that the measured spectrum matches the 

simulation very well, for both FSR and channel positions, as 

well as for crosstalk level. 

V. CONCLUSION 

 In summary, BPM has been proven to be an efficient 

algorithm for silicon photonics with reasonable accuracy, 

validated against rigorous FDTD and experimental results. Like 

any other method, BPM has its own limitations, such as not 

handling backward reflection from abruptly varying structures. 

But as long as the assumptions are valid, BPM is suitable for 

fast prototyping with 1000 times the speed of FDTD. Even in 

cases where the accuracy may be less than FDTD, optimized 

designs can be reached quickly, reducing the need for FDTD to 

only the final few simulations. 

REFERENCES 

[1] Huang, Wei-Ping, Chenglin L. Xu, Sai Tak Chu, and Sujeet K. Chaudhuri. 
"Vector beam propagation method based on finite-difference." 
In Integrated Optical Circuits, vol. 1583, pp. 268-270. International 
Society for Optics and Photonics, 1991. 

[2] Liu, P-L., and B-J. Li. "Study of form birefringence in waveguide devices 
using the semivectorial beam propagation method." IEEE photonics 
technology letters 3, no. 10 (1991): 913-915. 

[3] Huang, W. P., and C. L. Xu. "Simulation of three-dimensional optical 
waveguides by a full-vector beam propagation method." IEEE journal of 
quantum electronics 29, no. 10 (1993): 2639-2649. 

[4] Chiou, Yih-Peng, and Hung-chun Chang. "Analysis of optical waveguide 
discontinuities using the Padé approximants." IEEE Photonics 
Technology Letters 9, no. 7 (1997): 964-966. 

[5] Hadley, G. Ronald. "Wide-angle beam propagation using Padé 
approximant operators." Optics Letters 17, no. 20 (1992): 1426-1428. 

[6] Ma, F., C. L. Xu, and W. P. Huang. "Wide-angle full vectorial beam 
propagation method." IEE Proceedings-Optoelectronics 143, no. 2 
(1996): 139-143. 

[7] Xie, Huan, Wangtao Lu, and Ya Yan Lu. "Complex modes and instability 
of full-vectorial beam propagation methods." Optics letters 36, no. 13 
(2011): 2474-2476. 

[8] BeamPROP BPM, https://www.synopsys.com/photonic-solutions/rsoft-
photonic-device-tools/passive-device-beamprop.html.  

[9] Xu, C. L., W. P. Huang, and S. K. Chaudhuri. "Efficient and accurate 
vector mode calculations by beam propagation method." Journal of 
lightwave technology 11, no. 7 (1993): 1209-1215. 

[10] Feit, M. D., and J. A. Fleck. "Computation of mode properties in optical 
fiber waveguides by a propagating beam method." Applied Optics 19, no. 
7 (1980): 1154-1164. 

[11] FemSIM FEM, https://www.synopsys.com/photonic-solutions/rsoft-
photonic-device-tools/passive-device-femsim.html.  

[12] Lui, Wayne W., C-L. Xu, and Wei-Ping Huang. "Full-vectorial wave 
propagation in semiconductor optical bending waveguides and equivalent 
straight waveguide approximations." Journal of lightwave technology 16, 
no. 5 (1998): 910. 

[13] Smit, Meint K., and Cor Van Dam. "PHASAR-based WDM-devices: 
Principles, design and applications." IEEE Journal of selected topics in 
quantum electronics 2, no. 2 (1996): 236-250. 

[14] Tsuchizawa, Tai, Koji Yamada, Hiroshi Fukuda, Toshifumi Watanabe, 
Jun-ichi Takahashi, Mitsutoshi Takahashi, Tetsufumi Shoji, Emi 

https://www.synopsys.com/photonic-solutions/rsoft-photonic-device-tools/passive-device-beamprop.html
https://www.synopsys.com/photonic-solutions/rsoft-photonic-device-tools/passive-device-beamprop.html
https://www.synopsys.com/photonic-solutions/rsoft-photonic-device-tools/passive-device-femsim.html
https://www.synopsys.com/photonic-solutions/rsoft-photonic-device-tools/passive-device-femsim.html


Tamechika, Sei-ichi Itabashi, and Hirofumi Morita. "Microphotonics 
devices based on silicon microfabrication technology." IEEE Journal of 
selected topics in quantum electronics 11, no. 1 (2005): 232-240. 

 

Chenglin Xu (SM’91-M’94) was born in 

March 10, 1963 in China. He received the 

BS and MS degrees in optical engineering 

from Tianjin University, China in 1985 and 

1988, and the PhD degree in electrical 

engineering from University of Waterloo, 

Canada in 1994.  

Currently, Dr. Xu is with Synopsys, Inc. where he is the 

product manager for the RSoft Photonic Device Tools. Before 

joining RSoft, now a part of Synopsys, in 2007, he was an 

optical design engineer at JDS Fitel in Ottawa, Canada from 

1995 to 1996, the chief scientist and co-founder of Apollo 

Photonics Inc from 1997 to 2004, and a professor at Shandong 

University in China from 2005 to 2006. Dr. Xu is the co-

inventor of vector BPM and has co-authored a book chapter and 

published more than 60 journal and conference papers. His 

current research area is application of the photonic device 

simulation software on various fields, such as photonic 

integrated circuit, micro-LED, AR/VR, metamaterials, LiDAR, 

etc.  

 Dr. Xu is a member of IEEE and SPIE. 

 

Evan Heller received his Ph.D degree from University of 

Connecticut in 1998. Currently, he is an R&D Engineer with 

Synopsys, Inc. working on the RSoft Photonic Device Tools.  

 

Mayank Bahl received his BTech from IIT 

Madras and MS and PhD degrees in 

computational photonics from Columbia 

University. Until 2012, he worked at RSoft, 

Inc., where he was the primary developer 

for their commercial photonics design 

software’s, FullWAVE, FDTD and LED 

utility. Currently, he works at Synopsys, Inc. on various aspects 

of their commercial Photonic Device Tools including Photonic 

Device Compiler for silicon photonics based PIC design 

applications and researching mixed-level simulation methods 

combining wave optic based techniques like FDTD and RCWA 

with Monte Carlo ray-based techniques. 

 

Rob Scarmozzino, photograph and biography not available at 

the time of publication. 

 

Kai-Ning Ku received the Ph.D degree in 

institute of photonics technologies from 

National Tsing-Hua University in 2014. He 

joined Industrial Technology Research Institute 

(ITRI) until the present. His interests focus on 

silicon photonics including device design, 

process and testing platform development. His 

work experience includes photonic chip design for high speed 

optical transceiver and frequency modulation continuous wave 

(FMCW) LiDAR system. 

 

Ying Zhou, photograph and biography not available at the 

time of publication.  

 

Tungyu Su, photograph and biography not available at the 

time of publication. 

 

 Po-Chih Chang, photograph and biography not available at 

the time of publication. 

 

Chen-Yu Lin, photograph and biography not available at the 

time of publication. 

 

Shang-Chun Chen, photograph and biography not available 

at the time of publication. 

 

Chih-Lin Wang, photograph and biography not available at 

the time of publication. 

 

Chien-Chung Lin (S’93–M’02–SM’13) 

received the B.S. degree in electrical 

engineering from the National Taiwan 

University in 1993, and the M.S. and 

Ph.D. degrees in electrical engineering 

from Stanford University, Stanford, CA, 

USA, in 1997 and 2002, respectively. His 

thesis work focused on design, modeling, 

and fabrication of micromachined-tunable 

optoelectronic devices. Starting August in 2021, he joined the 

Graduate Institute of Photonics and Optoelectronics of National 

Taiwan University as a full professor. From 2009 to 2021, he 

was with National Chiao Tung University (NCTU), Tainan, 

Taiwan, where he held a position as a Professor. The major 

research efforts in his group are in design and fabrication of 

novel semiconductor optoelectronic devices, including LEDs, 

solar cells, and lasers. Since 2016, he has been jointly appointed 

by the Industrial Technology Research Institute (ITRI), where 

he participates and leads several key projects in the micro 

LEDs, 3DIC, and silicon photonics. Before joining NCTU, he 

worked for different start-ups in the United States. After 

graduating from Stanford in 2002, he joined E2O 

Communications Inc., Calabasas, CA, USA, as a Senior 

Optoelectronic Engineer. His main research interests were in 

long-wavelength vertical cavity surface emitting lasers. In 

2004, he joined Santur Corporation, Fremont, CA, where he had 

worked on various projects such as monolithic multi-

wavelength DFB Laser arrays for data and telecommunications 

applications, yield and reliability analysis of DFB Laser arrays, 

etc. From 2015 to 2017, he was the recipient of the Young 

Investigator Research Grant by Ministry of Science and 

Technology of Taiwan. He has more than 230 journal and 

conference publications and is a Fellow of the Optical Society 

(formerly the Optical Society of America) and a senior member 

of the IEEE Electron Devices Society and Photonics Society. 

 
 

 

 

 


