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Abstract

We have improved an article called ‘Multi-key FHE from LWE, revisited’ in TCC’16 and proposed a Dynamic multi-key FHE

in asymmetric key setting from LWE. Can you give me some suggestions for modification? thanks very much!
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Dynamic multi-key FHE in asymmetric key setting
from LWE

Yuling Chen, Sen Dong, Tao Li, Yilei Wang and Huiyu Zhou

Abstract—Multi-key Fully homomorphic encryption (MFHE)
schemes allow computation on the encrypted data under different
keys. However, traditional multi-key FHE schemes based on
Learning with errors (LWE) have the undesirable property that
is the number of keys has to be fixed in advance. A dynamic
multi-key FHE scheme is the most versatile variant which the
information about the participants is not required before key
generation. To support further homomorphic computation on
extended ciphertexts and ciphertexts encrypted under additional
keys, Peikert and Shiehian (TCC ’16) proposed a leveled dynamic
multi-key FHE scheme. Nevertheless, it introduces the circular-
security assumption for the LWE parameters to ensure its
security, which provides weaker security to a certain extent. The
problem of how to construct a LWE-based dynamic multi-key
FHE scheme is still open. To address the above problem, in
this work, we present a dynamic multi-key FHE scheme based
on the LWE assumption in public key setting. The ciphertext
can be extended and performed homomorphic evaluation with
the ciphertexts encrypted under additional keys. Compared
with current constructions, our proposed method requires fewer
“local” memory and the process of ciphertext extension is dis-
tributed. Our proposed method provides a new way to extend the
ciphertext such that the ciphertext homomorphism computation
is more efficient. Our scheme is proven to be secure under
standard LWE assumptions without using the circular-security
assumption.

Index Terms—multi-key, Fully homomorphic encryption,
Learning with errors, public key setting, ciphertext extension,
distributed, circular-security, Peikert, Shiehian, dynamic.

I. INTRODUCTION

FULLY homomorphic encryption (FHE) scheme allows
arbitrary computation on the encrypted data and fully-

homomorphic encryption is one of the holy grails of modern
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cryptography. Rivest, Adleman and Dertouzos [1] firstly pro-
posed that adopting homomorphic encryption to protect data
privacy, and then it became an open problem. Later, more
and more researchers show strong interests to this challenge.
Particularly, since Gentry made a breakthrough realization
and constructed the first FHE scheme based on ideal lat-
tice [2][3], several improved variants have been proposed
[4][5][6][7][8][9][10][11]. Based on the circuit depth of homo-
morphic evaluation, fully homomorphic encryption schemes
can be divided into two categories: pure fully homomorphic
encryption and leveled fully homomorphic encryption. A
“pure” FHE scheme allows the circuits of unlimited depths to
be evaluated, while a leveled FHE scheme allows an evaluator
to evaluate the circuit of the limited depth L , and the
parameters of the scheme depends on L. Although a leveled
FHE scheme may not meet the requirements of an arbitrary
depth circuit, a leveled FHE scheme using a polynomial depth
circuit is more efficient in practical applications.

Gentry, Sahai and Waters [12] presented a simpler and more
elegant leveled FHE scheme using an approximate eigenvector
method called GSW13. The security of GSW13 is based on
the Learning with Errors (LWE) problem, introduced by Regev
in 2005 [13]. A multi-key FHE scheme is more practical than
that of single-key. To overcome the limitation of the single-
key FHE schemes, Lopez-Alt et al. [14] developed a multi-key
FHE scheme based on a variant of the NTRU cryptosystem.
However, its security is based on a new and somewhat
nonstandard assumption [15], which is not the commonly
seemed LWE problem. Later, Clear and McGoldrick [16]
proposed a LWE-based multi-key FHE scheme based on the
variant of GSW13. Subsequently, Mukherjee and Wichs [17]
proposed a new multi-key FHE scheme based on the Clear-
McGoldrick work and constructed a two-round MPC protocol
upon their work. However, it is known that the construction
of these two works and the other variants [18][19][20][21]
is only static (i.e., single-hop for keys), which means that
no further homomorphic computation can be carried out on
the evaluated ciphertexts when the evaluation is completed.
Specifically, in addition to ensuring the security of encryption
scheme based on mathematical theory, the encrypter usually
updates the secret keys to prevent them from being leaked from
inside. Supposing there is a fresh ciphertext that encrypted
under the additional keys when the update operation occurs,
the homomorphic computation of the fresh ciphertext and
the processed ciphertexts (extended or evaluated) cannot be
excuted properly. Therefore, compared with the static multi-
key FHE scheme, the dynamic multi-key FHE scheme is more
practical and available in applications.
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Dynamic multi-key FHE. Compared to static multi-key
FHE schemes, a dynamic (i.e. multi-hop) multi-key scheme
should satify following properties:

1) It allows one to execute the homomorphic evaluation on
the ciphertexts encrypted under multiple keys.

2) It can extend a (fresh, extended or evaluated) ciphertext
to concatenation keys including additional keys.

3) It Supports the resulting ciphertext to perform the fur-
ther homomorphic computation with the ciphertexts encrypted
under additional keys.

Currently, there also exist many schemes about multi-hop
and multi-key FHE. For example, Brakerski and Perlman [22]
construct a (unbounded) dynamic multi-key FHE scheme and
focus on minimizing the size of ciphertexts (Note that the
ciphertexts are LWE vectors). However, it has a restriction
of performing an expensive bootstrapping technique in the
process of extending ciphertexts and the homomorphic multi-
plication/NAND operation, which results the encrypted secret
keys much larger. Later, Peikert and Shiehian put forward
a (leveled) dynamic multi-key FHE scheme [23], which can
also be an unbound dynamic multi-key FHE scheme using
the bootstrapping technique. Besides, the ciphertexts grow
quadratically in the number of the associated keys, requiring
more “local” memory. In addition, it uses the circular-security
assumption for the LWE parameters, thereby providing weaker
security. Recently, Biswas and Dutta [24] proposed a LWE-
based construction of a dynamic multi-key FHE scheme based
on Peikert and Shiehian’s work without the circular-security
assumption. Moreover, their scheme gave a different cipher-
text structure. However, the special structure of the extended
ciphertexts can be decrypted without the participation of the
key holder of the additional keys.

As we mentioned above, the dynamic multi-key FHE
scheme is more desirable. The existing schemes, however,
extend the ciphertexts on the cloud, which requires the cloud
to have higher computing capabilities. This will cause the
ciphertexts provider to pay more to the cloud service provider.
Specifically, in traditional dynamic multi-key FHE schemes,
ciphertext extension is executed on the cloud, which means
that the cloud not only needs to do homomorphic computation
on ciphertexts, but also needs to extend the ciphertexts to
additional keys. If there is a dynamic multi-key FHE scheme
that all the secret key holders can take participate in for
the extension of ciphertexts (all participants complete this
work interactively) while ensuring the security of the scheme.
Although it may bring extra overhead in communication, it can
effectively reduce the work of the cloud, so that the resources
are more concentrated on homomorphic computation. When
the participants fix their computing resources and costs, it will
reduce the costs paid by the participants to the cloud service
providers. Obviously, it also make the ciphertext extension
faster since the ciphertext extension is distributed to multiple
participants instead of only excuting on the cloud individually.
In summary, existing dynamic multi-key FHE schemes mainly
focus on basic functionality of ciphertexts extension without
considering other costs. The dynamic multi-key FHE schemes
that only perform homomorphic computation on the cloud will
be more desirable.

A. Technical Overview

The scheme #2 in [23] is a (leveled) dynamic multi-key
FHE scheme in the symmetric key setting. The fresh ciphertext
C ∈ Zn×m

q is a GSW ciphertext encrypted under secret key t ∈
χn and the extended ciphertexts also are GSW ciphertexts with
no extra components, so the standard multiplication/NAND
homomorphic operations can be performed normally.

Suppose there exists a (fresh, evaluated or extended) cipher-
text C ∈ Znk×nkl

q that has been encrypted under a concatenation
key t ∈ χnk. In order to preserve the GSW relation for
the concatenation of the secret keys when the additional key
t∗ ∈ χn occurs, they extend the ciphertext to another GSW
ciphertext

Ĉ =

[
C X
O X∗

]
∈ Zn(k+1)×n(k+1)l

q

that is encrypted under the new concatenation key (t, t∗) ∈
χn(k+1) for the same message. Although the extended ciphertext
has no extra components, other public parameters are needed
in the process of ciphertext extension and the security of these
public parameters are based on the circular-security assump-
tion for LWE. Essentially, in order to ensure the invisibility
of the plaintext u to other encryption participants, there also
exists an extra “junk” term b · (Ik⊗R) where R← {0, 1}m×n2l

is a uniformly random matrix, unlike the one introduced by
decrypting a ciphertext with a wrong secret key in the other
works. Particularly, the extra “junk” term is also included in
the public parameters and will be cancelled when decrypting
the ciphertext with the new concatenation key.

We pointed out that, however, their encryption scheme is
in symmetric key setting in the above scheme. Although the
setting of public parameters will result in a smaller ciphertext,
the public parameters require more ”local” memory. Besides,
in a symmetric encryption scheme, if the key is hijacked
by an adversary, the scheme is no longer secure. On the
contrary, in asymmetric encryption scheme, even if the public
key is obtained, the adversary cannot decrypt the ciphertext to
obtain any information. Therefore, compared to the symmet-
ric encryption scheme, the encryption scheme in public-key
setting is more secure. In addition, they use circular-security
assumptions to ensure the security of public parameters. Note
that the circular -security is a strong assumption which makes
the scheme weaker from the security point of view.

B. Our Contributions

To overcome the above difficulties, we make the contribu-
tions as follows:

1) Public Key Setting: We put forward a dynamic multi-
key FHE scheme without using a reference matrix. Instead of
using the circular-security assumption to ensure the security of
the public parameters, we use the product of a public key and
a uniformly random matrix to hide the secret key. Besides,
our scheme works in the public-key setting, rather than the
symmetric key setting.
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2) Smaller Public Parameters: In the process of ciphertext
extension, only one public parameter is required, and the pub-
lic matrix is relatively small. Therefore, less ”local” memory is
required for public parameters. The comparison of our scheme
with the the current learning with errors (LWE) based multi-
key FHE schemes is provided in Table I.

3) Computational Complexity Is More Efficiency: The ex-
tended ciphertext structure in our scheme is

C =

[
C X
O Y

]
∈ Znk×nkl

q .

We first proposed a concept called distributed ciphertext
extension. The computation and ciphertext extension that are
originally done independently by the cloud are now jointly
participated by all parties and completed by each participant
interactively. This improvement reduces the work of the cloud
and improves the efficiency of ciphertext extension.

Except for these contributions described above, we also
retain some of the properties in our scheme. Our scheme
is a dynamic FHE scheme in which the ciphertexts can be
homomorphically computed under several keys and the results
are available in further computation under additional keys.
Moreover, our scheme is also suitable for dynamic on-the-
fly MPC. In addition, our scheme can support unbounded
homomorphic computations for any polynomial number of
keys using a ”bootstrap”method.

II. PRELIMINARIES

A. Notion

Negligible Function. For a parameter λ and a positive poly-
nomial poly (λ), if there exists a function F (λ) = 1/poly (λ)
, we call F is negligible, written as negl (λ).

Matrices, Vectors and Sets. Matrices and vectors are
represented by bold uppercase letters (e.g., A) and lower-case
bold letters (e.g., a) respectively, the ith element of vectors by
the notation of a [i].||a||∞ and ||a||1 represent the maximum
norm and 1-norm respectively where ||a||∞ = maxi |ai| and
||a||1 =

∑
i ai. The inner product of two vectors a, b for some

dimension n is written as ⟨a, b⟩. We define [k]
def
= {1, 2, ..., k}

for any non-negative integer k.
Distributions. If χ is sampled uniformly or normally from

the probability distribution D, we denote by χ
$← D. For

the distributions D0 and D1 if they are computationally

indistinguishable or statistically indistinguishable, we denote
by D0 ≈

c
D1 and D0 ≈

s
D1 respectively.

Definition 1 (B-bounded distributions (Definition 2
[12] )). A distribution ensemble {Dn}n∈N supported over the
integers, is called B-bounded if

Pr
e

$←Dn

[|e > B|] = negl (n) .

Kronecker Products. Given an m1 × n1 matrix A and an
m2 × n2 matrix B. Kronecker product of the two matrices
denoted by ⊗ is defined as

A⊗ B := ( a1,1B, a1,2B, ..., a1,n1
B, a2,1B, ..., a2,n1

B,
..., am1,1B, ..., am1,n1

B )

where A⊗B is an m1m2×n1n2 matrix and the ai,j is the (i, j)th

element of A. There are some properties of the Kronecker
product used throughout this paper as follows:

1) If A and B have the same size:

(A + B)⊗ C = A⊗ C + B⊗ C

2) If the matrix products AC and BD exist:

(A⊗ B) · (C⊗ D) = AC⊗ BD

3) for any matrices A, B, C, D of compatible dimensions:

(A⊗ B) = (A⊗ Iheight (B)) · (Iwidth(A) ⊗ B)
= (Iheight(A) ⊗ B) · (A⊗ Iwidth(B)) .

B. Learning With Errors

The Learning with Errors (LWE) problem was pointed
out by Regev [13]. It has a decisional variant denoted by
DLWEn,m,q,χ will be used in our paper. Given (a polynomial
number of) independent samples (ai, bi) ∈ Zn+1

q sampled
either from the LWE distribution AS,χ or the uniform dis-
tribution, the DLWEn,m,q,χ problem is to distinguish which
these samples come from. The DLWE assumption is that these
two distributions are computationally indistinguishable for any
PPT adversary. It is known that if the discrete Gaussian distri-
bution χ with parameter αq ≥ 2

√
n over Z, the DLWEn,m,q,χ in

the average-case is as hard as the approximation lattices prob-
lems in the worst-case with approximation factors of Õ (n/α)
by the classical or quantum reductions [13][25][26][27].

TABLE I: Comparison of multi-key FHE schemes

|pk| |CT | CRM Dynamic Assumption Bootstrap in each level

Clear and McGoldrick Õ
(
nL2

)
Õ
(
n2k2L2

)
YES NO LWE NO

Brakerski and Perlman Õ
(
n3

)
Õ (nk) YES YES LWE&Circular security YES

Mukherjee and Wichs Õ
(
nL2

)
Õ
(
n2k2L2

)
YES NO LWE YES

Scheme #1 of Peikert and Shiehian Õ
(

n (K+L)2
)

Õ
(

n3k (K+L)4
)

YES YES LWE NO

Scheme #2 of Peikert and Shiehian Õ
(

n4 (K+L)4
)

Õ
(

n2k2 (K+L)2
)

YES YES LWE&Circular security NO

Ours Õ
(

n3 (K+L)2
)

Õ
(

n2k2 (K+L)2
)

NO YES LWE NO

Here k is the actual number of the secret keys associated with the ciphertext, K denotes a designed upper bound on k, L represents the maximum depth
of the boolean circuits homomorphically evaluated (without bootstrapping), and n is the dimension of the underlying LWE problem used for security. The
Õ notation hides the factors of the form log poly (n, k, l) for some polynomial function . The |pk| and |CT | represent the size of pk and the ciphertext
respectively, where all the sizes are in bits. CRM denotes whether or not the common reference matrix is needed in the scheme.
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Definition 2 (Decisional LWEn,m,q,χ problem). Suppose λ
is the security parameter. Let n = n (λ), q = q (λ) ≥ 2
and the error distribution χ = χ (λ) over Z . The decisional
learning with errors problem is to distinguish the following
distributions:

Distribution 0: The ith sample (ai, bi) ∈ Zn+1
q is sampled

uniformly from the random distributions where ai
$← Zn

q and

bi
$← Zq.

Distribution 1: The ith sample (ai, bi) ∈ Zn+1
q is made up of

uniformly sampling ai
$← Zn

q and computing bi
$← ⟨ai, s⟩+ ei

where s $← Zn
q is generated uniformly and ei

$← χ is sampled
from the error distribution.

Definition 3 (Decisional LWEn,m,q,χassumption). Decisional
LWEn,m,q,χ assumption holds if

|Pr [A (a, b) = 1 : (a, b)← Distribution0]| −
|Pr [A (a, b) = 1 : (a, b)← Distribution1]| = negl (n)

for any PPT adversary A.
But in this work, it is convenient to use another form of

decisional LWE as Peikert and Shiehian mentioned in their
scheme.The DLWEn-1,m,q,χ is computationally equivalent to
the DLWEn,m,q,χ problem and the LWE samples in this form
are indistinguishable from uniform assuming the hardness of
DLWEn,m,q,χ problem.

C. Gadget Matrix

For convenience, we use the gadget matrix [26] and some
definitions in [23] throughout this work.

The gadget matrix is used to decompose the vectors or the
matrices(over Zq) into short vectors or matrices(over Z). The
standard gadget vector is

g =
(
1, 2, 4, 8, ..., 2l−1) ∈ Zl

q

where l = ⌈log q⌉. And g−1 : Zq → {0, 1}l is the bit
decomposition function, which outputs a binary column vector
over Z consisting of the binary representation if its elements.
It is obvious that g · g−1 [a] = a and we define

[a] g−t def
= g−1 [a]t

which outputs a binary row vector and satisfies [a] g−t ·gt = a.
According to these definitions, it is obvious that

(In ⊗ g) ·
(
In ⊗ g−1

)
[A] = A,

[A]
(
In ⊗ g−t) · (In ⊗ gt) = A

where the (In ⊗ g) is exactly the n-row gadget matrix G and(
In ⊗ g−1

)
[·] is exactly the bit-decomposition operation G−1

on height-n matrices or vectors.

D. Cryptographic Definitions

Definition 4. A leveled dynamic multi-key FHE
variant of GSW is a tuple of PPT algorithm
(Setup, Keygen, Encrypt, Decrypt, Extend, Eval) having
the following properties:

params ← Setup
(
1λ, 1L, 1k

)
: Given a security parameter

λ, the maximum circuit depth L, a bound k on the number of
keys, it outputs the system public parameter params.
(pk, sk) ← Keygen (params) : This algorithm is used to

generate the public key pk and the secret key sk.
C ← Encrypt (pk, u) : On input the public key pk and a

single bit message u ∈ {0, 1} , it outputs the ciphertext C that
encrypts u corresponding to pk.

u ← Decrypt ((sk1, sk2, ..., skk, ) ,C) : Given the concate-
nation key SK = (sk1, sk2, ..., skk, ) and a (fresh, extended
or evaluated) ciphertext under SK corresponding to PK =
(pk1, pk2, ..., pkk, ) , it recovers and outputs the message u ∈
{0, 1}.

C′ ← Eval (PK,C,C1,C2, ...,Cs) : Given a boolean circuit
C of maximum depth L along with s (fresh, extended or
evaluated) ciphertexts wires, outputs an evaluated ciphertext
C′ that implicitly contains a reference to each public key
associated with Ci where 1 ≤ i ≤ s.

Ĉ← Extend (pk,C) : On the input of a (fresh, extended or
evaluated) ciphertext corresponding to the message u ∈ {0, 1}
under SK = (sk1, sk2, ..., skk−1, ) , and a PK consist of the
public key pk and the public extension matrix, it outputs an
extended ciphertext Ĉ corresponding to the message u ∈ {0, 1}
under SK = (sk1, sk2, ..., skk, ).

These algorithms should satisfy compactness and correct-
ness functionality properties as follows:

Compactness. We say a dynamic multi-key FHE scheme is
compact if the length of Ĉ is independent of C and s instead
of depending polynomially on λ, k and L. In other words,∣∣∣Ĉ∣∣∣ ≤ poly (λ, k,L) if there exists a polynomial p (·, ·, ·).

Correctness. A leveled dynamic multi-key FHE scheme
is correct if for the security parameter λ, a bound k on the
numbers of keys, for a circuit of depth at most L having
N input wires and a ciphertext sequences (Ci)i∈[N] corre-
sponding to a same key set S (S is made up of

(
pkj, skj

)
←

Keygen (params) ) for each j ∈ [k], Ci is generated as
Ci ← Encrypt

(
pkj, uj

)
where i ∈ [N], j ∈ [k] and u ∈ {0, 1},

the following formula has a probability of negl (λ):

Pr [ Decrypt (sks,Eval (PK,C,C1,C2, ...,Cs)) ̸=
C (u1, u1, ..., uN) ] = negl (λ) ,

where Decrypt is given those secret keys sks from a fixed key
set S corresponding to the public keys referenced by all the
ciphertexts.

GSW Linear combination. This operation takes the GSW
ciphertexts Ci,j which is the encryption of the individual entries
M [i, j] where M ∈ Zm×m

q and a plaintext vector v ∈ Zm
q

as inputs. This operation outputs a ”pseudo ciphertext”Clc

satisfying tC ≈ vM.
Property 1.(Linear combination, Property 5.3 [17] ) Let

M ∈ {0, 1}m×m be a matrix and for i ∈ [m], j ∈ [m], let
Ci,j ∈ Zn×m

q be a β − noise GSW encryption of M [i, j] under
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a secret key t ∈ Zn
q and v ∈ Zm

q be some vector (not necessarily
short). Then there is a polynomial-time deterministic algorithm

Clc = GSW.LComb ((C1,1, ...,Cm,m) , v)

which outputs Clc ∈ Zn×m
q such that tClc = vM + e where

|e|∞ ≤ m3β.
Implementation. The algorithm GSW.LComb

((C1,1, ...,Ci,j, ...,Cm,m) , v) is implemented as follows:
For each i ∈ [m], j ∈ [m] defines a matrix Zi,j ∈ Zn×m

q as
follows:

Zi,j [a, b] :=

{
v [i] , when a = n and b = j
0, otherwise

and then output Clc ∈ Zn×m
q where

Clc =

m,m∑
i=1,j=1

Ci,jG−1 (Zi,j).

III. CONCRETE CONSTRUCTION

In this section, we show how to construct
a multi-hop, multi-key FHE scheme MFHE =
(Setup, Keygen, Encrypt, Decrypt, Extend, Eval) from
LWE for single bit message in the public-key setting.

A. Basic Encryption Scheme

params ← Setup
(
1λ, 1L, 1k

)
: On input of a security

parameter λ ∈ N , a maximum depth L ∈ N of the evaluated
circuit and a bound k on the number of keys, it chooses the
lattice dimension parameters n = n (λL), a modulus q and
Bχ−bounded for Bχ = Θ(n) standard discrete Gaussian error
distribution where χ = χ (λL) with parameter 2

√
n. We will

explain later how to choose the modulus q in order to get
correct decryption. Then it sets m = nl where l = ⌈log q⌉
and chooses a random matrix B ∈ Zn−1×m

q . It outputs the
params = (q, n,m, χ,Bχ,B). We stress that all the other
algorithms implicitly get params as input even if we usually
do not write this explicitly.

(PK, sk) ← Keygen (params) : We separate Keygen to two
sub-algorithms to generate secret key and pubic key along with
a public extension matrix respectively:

1) Sample t̄ $← χn−1 randomly from the standard discrete
Gaussian error distribution and then output sk = t = (−t̄, 1) ∈
χn.

2) Sample e $← χm and compute b = t̄B+ e ∈ Zm
q . Then set

pk = A =

[
B
b

]
, we can observe that t · A = e. In addition,

unlike the current dynamic multi-key schemes, it also sets P =
(ω ⊗ AR)+(In ⊗ t⊗ g) as the public extension key. It finally
outputs the public key PK = (A,P).

C ← Encrypt (pk, u) : To encrypt a message u ∈ {0, 1}
, sample a uniformly random matrix R $← {0, 1}m×m as the
randomness. Then output the encryption of message u as C ∈
Zn×m

q where

C = AR + uG.

It is obvious that C is simply a GSW ciphertext encrypting
u under secret key t:

tC = tAR + utG
= eR + utG
= e′ + u (t⊗ g) .

Observe that a fresh ciphertext C is generated by encrypting
the message u with the pk A with corresponding sk = t. Recall
that t ·A = e and ||e||∞ ≤ Bχ. It is obvious that tC = e′+utG
where e′ = eR which implies ||e′|| ≤ mBχ. Therefore, the
ciphertext C is mBχ−noisy encryption of u under secret key
t. We define this value as initial noise β := mBχ.

Ĉ ← Extend (params,PK,C) : This algorithm takes as
input a (fresh, evaluated or extended) ciphertext C ∈ Znk×nkl

q
that encrypts u under a concatenation key sk = t =(
t1, t2, ..., tk ∈ χnk

)
where ti ∈ χn for i ∈ [k]. Note that C

satisfies tC = EC+u (t⊗ g) with noise ||EC||∞. This algorithm
extends the ciphertext C ∈ Znk×nkl

q to Ĉ ∈ Zn(k+1)×n(k+1)l
q

under an additional secret key sk = t∗ ∈ χn corresponding
to the public extension matrix P. The extended ciphertext Ĉ
is a GSW encryption of the message n ∈ {0, 1} under the
new extended secret key sk = t̂ = (t, t∗) ∈ χn(k+1). We will
give a detailed description of the specific implementation steps
below.

u ← Decrypt (SK,C) : The ciphertexts in our scheme is
GSW ciphertexts, so that this is an ordinary GSW decryp-
tion. For simplicity, we just describe how GSW decryption
works here. To decrypt a message u , the decrypter lets
ω = (0, 0, ..., q/2) , then computes v = tCG−1

(
ωT

)
=

EC
(
ωT

)
+ u⌈q/2⌉ where EC

(
ωT

)
is the noise term whose

bound is mβ. If v is closer to 0 as opposed to 0, the decryption
result is 0; otherwise, the result is 1.

C ← Eval (PK,C,C1,C2, ...,Cs) : The ciphertexts above
are just GSW ciphertexts (with no extra information), so
homomorphic addition and multiplication work as the GSW
scheme:

GSW.Add (C1,C2) : Output C1 + C2 ∈∈ Znk×nkl
q

GSW.Mult (C1,C2) : Output C1G−1 (C2) ∈ Znk×nkl
q

GSW.NAND (C1,C2) : Output G− C1G−1 (C2) ∈ Znk×nkl
q

Therefore, we only need to show how to extend the cipher-
texts to additional keys.

B. Ciphertext Extension

As we have mentioned above, a dynamic (e.g., multi-hop for
keys), multi-key FHE scheme supports an arbitrary ciphertext
of C (u1, u2, ..., uk) under the concatenation key extending to
an additional key. Briefly speaking, a dynamic multi-key FHE
scheme must be able to support the extension of the evaluated
ciphertext and/or the extended ciphertext C ∈ Znk×nkl

q and
satisfy the GSW decryption, namely,

t̂Ĉ = (t, t∗) Ĉ
= EĈ + u (t, t∗)G
= EĈ + u ((t, t∗)⊗ g)
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where (t1, t2, ..., tk) ∈ χnk and t∗ ∈ χn represents the concate-
nation of k individual secret keys ti ∈ χn and the additional
key respectively, and u ∈ {0, 1} is a plaintext corresponding
to the evaluated or the extended ciphertext.

In order to achieve this goal, we extend C ∈ Znk×nkl
q to an

additional secret key t∗ ∈ χn for which we know the associated
public matrix P∗ and generate a ciphertext Ĉ ∈ Zn(k+1)×n(k+1)l

q

that encrypts u under t̂ = (t, t∗) ∈ χn(k+1). Besides, the
ciphertext Ĉ is the GSW construction.

We generate the extension ciphertext as

Ĉ =

[
C X
O Y

]
∈ Zn(k+1)×n(k+1)l

q

where the extension ciphertext is the same as [23] in structure,
but we must declare here that the components are different
because of our design, which is why we claim the homomor-
phism evaluation of extended ciphertexts is more efficient than
their work.

Notice that by construction,

t̂Ĉ = (tC tX + t∗Y) + EĈ.

Below we show how to construct the X and Y to satisfy

tX + t∗Y ≈ u (t∗ ⊗ g)

so that

t̂Ĉ = (u (t⊗ g) u (t∗ ⊗ g)) + EĈ

= (u (t, t∗))⊗ g + EĈ

= ûtG + EĈ

satisfy our proposition.
Particularly, we stress that the construction of X and Y in

our scheme is inspired by previous works [16][17][23]. In
detail, let Y′ be the encryption of plaintext u under t∗. But
in order to avoid the key holder of t∗ being able to recover u
individually, we use an unrelated matrix to “blind” Y′ to get
the final Y in our scheme. And then we let X be the encryption
of the unrelated matrix under t ∈ χn, so whether the extended
ciphertext can be decrypted or not will be decided by the key
holder of t and t∗ where t is a concatenation key composed of
k individual secret keys.

We construct X and Y in two steps:
Constructing Y. Suppose that there exists a ciphertext C ∈

Znk×nkl
q that satisfies

tC = EC + utG (1)

where t represents the concatenation key. Then we want to
find an equation satisfies

tX ≈ −′′Blind′′

t∗Y ≈ ut∗G +′′ Blind′′

so that

t̂Ĉ = (t, t∗)
[

C X
O Y

]
= (tC tX + tY∗) + E
= (utG ut∗G) + E
= u (t, t∗G + E)
= ûtG + E.

If we set C̄ = C · (et
n ⊗ Il) ∈ Znk×l

q consist of the last l
columns of C, then

tC̄ ≈ ug (2)

with error EC̄ ( same as EC ). Different from Equation 2, we
establish a relationship between the additional key t∗ and the
plaintext u ∈ {0, 1} to satisfy

t∗C̄ ≈ ug

so that we can construct matrix Y to satify t∗Y ≈ ut∗G, which
is in line with our proposition above.

Firstly, we break C · (et
n ⊗ Il) ∈ Znk×l

q into k rows sub-
matrices C̄i ∈ Zn×l

q , i.e.,

C̄ =


C̄1

C̄2

...
C̄k



Then, every encryption participant sets its own

Pi = A∗Ri +
(
ωT ⊗ ti ⊗ g

)
= A∗Ri +


O
O
...

ti ⊗ g



to compute
(

C̄i
)′
∈ Zn×l

q where i ∈ [k], Ri ∈ {0, 1}m×m,
ω = (0, 0, .., 1)

n and A∗ is the public key with respect to t∗
and then we get the final

(
C̄
)′ ∈ Zn×l

q :

1) Computing
(

C̄i
)′
∈ Zn×l

q

(
C̄i
)′

= Pi · g−1
(

C̄i
)

=
(
A∗Ri +

(
ωT ⊗ ti ⊗ g

))
· g−1

(
C̄i
)

= A∗Ri · g−1
(

C̄i
)
+


O
O
...

ti ⊗ g

 · g−1 (C̄i
)

= A∗Ri · g−1
(

C̄i
)
+


O
O
...

ti · C̄
i
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2) Computing C̄′ ∈ Zn×l
q :

C̄′ =
k∑

i=1

(
C̄i
)′

=

k∑
i=1

Pi · g−1
(

C̄i
)

= A∗R1 · g−1
(

C̄1
)
+ A∗R2 · g−1

(
C̄2

)
+ ...+

A∗Ri · g−1
(

C̄i
)
+


O
O
...

t1 · C̄
1
+ t2 · C̄

2
+ ...+ tk · C̄

k



=

k∑
i=1

A∗Ri · g−1
(

C̄i
)
+


O
O
...∑k

i=1 ti · C̄
i


Every encryption participant needs to broadcast its

(
C̄i
)′
∈

Zn×l
q after the calculation so that all participants can do

the summarization operation, and we can find an interesting
property here

k∑
i=1

tiC̄
i
= tC

= ug + EC

and

t∗C̄′

=

k∑
i=1

t∗A∗Ri · g−1
(

C̄i
)
+ t∗


O
O
...∑k

i=1 ti · C̄
i



=

k∑
i=1

t∗A∗Ri · g−1
(

C̄i
)
+
(
−t̄∗, 1

)


O
O
...∑k

i=1 ti · C̄
i


= u · g + EC̄′

where EC̄′ ≤ kmβ + EC̄.
Due to this discovery, we use the public matrix P∗ =

(ω∗ ⊗ A∗R∗) + (In ⊗ t∗ ⊗ g) associated with t∗ where ω∗ =
(1, 1, .., 1)

n, Ri ∈ {0, 1}m×m and define

s :=
(
In ⊗ In ⊗ g−1

)
·
(

C̄′ ⊗ In

)
·Π

where Π is a permutation matrix of order nl satisfying
(A⊗ B)Π = (B⊗ A), we observe that

t∗ · P∗

= t∗ · ((ω∗ ⊗ A∗R∗) + (In ⊗ t∗ ⊗ g))
= (ω∗ ⊗ e∗R∗) + (t∗ ⊗ t∗ ⊗ g)

so that

t∗ · P∗ · s = (ω∗ ⊗ e∗R∗) · s +

(t∗ ⊗ t∗ ⊗ g) ·
(
In ⊗ In ⊗ g−1

)
·
(

C̄′ ⊗ In

)
·Π

= (ω∗ ⊗ e∗R∗) · s + (t∗ ⊗ t∗) ·
(

C̄′ ⊗ In

)
·Π

= (ω∗ ⊗ e∗R∗) · s +
(

t∗ · C̄′
)
⊗ t∗ ·Π

= (ω∗ ⊗ e∗R∗) · s + t∗ ⊗ EC̄′ + u (t∗ ⊗ g) . (3)

Since the
(
In ⊗ In ⊗ g−1

)
·
(

C̄′ ⊗ In

)
∈ {0, 1}n2l×nl then

t∗ · P∗ · s
= Et∗·P∗·s + u (t∗ ⊗ g) (4)

where Et∗·P∗·s ≤ n3lβ + BχEC̄′ .
According to equations above, we know that if every

participant broadcasts its
(

C̄i
)′
∈ Zn×l

q and then the key holder
of t∗ can recover the plaintext u by investigating if or not it
is a malicious participant.

To avoid this risk and ensure the security of our scheme,
we randomly select a participant j where j ∈ [1, k] to perform
only the computation. Specifically, the participant j can receive
computation results broadcast by other participants, but it does
not broadcast its own computation results so that(

C̄′
)broadcast

=

k\j∑
i=1

((
C̄i′

))broadcast

=

k\j∑
i=1

A∗Ri · g−1
(

C̄i
)
+


O
O
...∑k\j

i=1 ti · C̄
i


̸= C̄′ (5)

According to Equation (5), the key holder of t∗ can not get
any information about the plaintaext u even if it is a malicious
participant. We also can observe that because of

tj · A∗ ̸= E (6)

the jth participant also can not recover u. Hence, the plaintext
u is invisible to the key holder of tj

th
and t∗ in the process of

extension ciphertext formation.
Secondly, we need to add a “Blind” item to Y recalling how

we want to construct X and Y with our description above. Since
the public key is

pk = A =

[
B
b

]
and suppose C is the GSW encryption of message 0 under
pk1 = A1 so that

C = A1R1 =

[
B1R1

b1R1

]
for some random matrix R ∈ {0, 1}m×m. Later, assuming we

are given pk2 = A2 =

[
B
b2

]
corresponding to the additional

secret key t2. Then

t2C = −t̄2BR1 + b1R1
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Because of b2 = t̄2B + e2, we observe that

t2C = (e2 − b2)R1 + b1R1

= e2R1 + (b1 − b2)R1 (7)

From Equation (4), if we simply set Y = P∗ · s, the
key holder of t∗ can recover the plaintext u indenpendently.
Therefor, we need to add a “blind” item to Y as we mentioned
above. Then we combine Equation (3) with Equation (7) and
let C = AiMi as the “Blind” term, i.e., we set

Y = ((ω∗ ⊗ AiMi) + P∗) · s

where Mi ∈ {0, 1}m×m. We observe that

t∗Y
= t∗ · (ω∗ ⊗ AjMj) · s + t∗ · P∗ · s
= (ω∗ ⊗ ((bj − b∗) ·Mj + e∗Mj · s)) + Et∗·P∗·s + u (t∗ ⊗ g)
= (ω∗ ⊗ ((bj − b∗) ·Mj · s)) + (ω∗ ⊗ (e∗ ·Mj))

+ Et∗·P∗·s + u (t∗ ⊗ g)
= (ω∗ ⊗ ((bj − b∗) ·Mj · s)) + u (t∗ ⊗ g) + EY (8)

where EY ≤ n3lβ + Et∗·P∗·s ≤ 2n3lβ + BχEC̄′ .
If there exist a matrix X that can let tX =

− (ω∗ ⊗ ((bj − b∗) ·Mj · s)), then the Equation (8) can be
satisfied and the extension ciphertext is a GSW ciphertext in
structure.

Constructing X. From Equation (5) and Equation (6) above,
we know that any participant, including t∗, cannot acquire any
information about plaintext u through Y individually because
of the “blind” term. Hence, we can construct X through the
“blind” term. Specifically, the jth participant uses the GSW
linear combination to generate a ciphertext Cj-lc based on Mj ∈
{0, 1}m×m to get X. Therefore, we define

Cj-lc := GSW.LComb ( ( C1,1, ...,Cm,m ) ∈ ( Zn×m
q )

m2

,

b∗ − bj ) ∈ Zn×m
q

where Ca,b ∈ Zn×m
q is the GSW encryption of the each element

of the private random matrix Mj ∈ {0, 1}m×m, i.e.,

Ca,b ← GSW.Encrypt (pk,Mj [a, b]) ∈ Zn×m
q

It can be seen from Property 1 that

tjCj-lc = (b∗ − bj) ·Mj + e

where e ≤ m3β.
So if we define

X :=


O
...

(ω∗ ⊗ Cj-lc) · s
...
O

 ∈ Znk×nkl
q

where O is the zero matrix of order n×nl. Then, we can have

tX
= tj · (ω∗ ⊗ Cj-lc) · s
= (ω∗ ⊗ ((b∗ − bj) ·Mj + e)) · s
= (ω∗ ⊗ e) · s + (ω∗ ⊗ ((b∗ − bj) ·Mj)) · s
= EX + (ω∗ ⊗ ((b∗ − bj) ·Mj)) · s

Since ω∗ = {1, 1, ..., 1}n, so EX ≤ m3n3lβ.
Since

tX + t∗Y
= (ω∗ ⊗ ((b∗ − bj) ·Mj)) · s+
(ω∗ ⊗ ((bj − b∗) ·Mj)) · s + u (t∗ ⊗ g) + EX + EY

= u (t∗ ⊗ g) + EX+Y

where EX+Y ≤ m3n3lβ + 2n3lβ + BχEC̄′ . Finally, we have

t̂Ĉ = (t, t∗)
[

C X
O Y

]
= (tC tX + t∗Y)
= ûtG + EĈ

which indicates that Ĉ is a GSW ciphertext corresponding to
the message u ∈ {0, 1} under the secret key sk = t̂ = (t, t∗) ∈
χn(k+1) with error

∣∣∣∣EĈ

∣∣∣∣
∞ = max {||EC||∞, ||EX+Y||∞} ≤

(m + 2)
3n3lβ+ kβ2+Bχ||EC||∞. So, in our construction, the

error bound for extension is equal to poly (n, k, l)+Bχ||EC||∞,
which is a multiple of the original error ||EC||∞ by a factor
Bχ. We can still extend a ciphertext under additional multiple
keys while incurring increase in the error by a factor of Bχ.

In order to make the process of ciphertext extension more
clear, not just in the mathematical expression, we will use an
algorithm to explain this process and a figure illustrate our
proposed scheme below.

The algorithm below clearly illustrates the process of ci-
phertext extension in our scheme. In Algorithm 1, the input
parameter C of the ciphertext extension function is a simply
GSW ciphertext. The input parameter Bro flag is TRUE
means that except for a certain participant, other participants
need to broadcast their calculation results in the process of
ciphertext extension when additional keys occur. In addition,
when some participants are offline, as long as it has published
the parameter Pi = A∗Ri +

(
ωT ⊗ ti ⊗ g

)
required by the

ciphertext extension in advance, the ciphertext extension can
still proceed normally. The security of the whole process can
be guaranteed as mentioned above and be explained in the
following section of security analysis.

In Figure 1, we compare the traditional multi-key FHE
scheme with ours. In the traditional multi-key FHE scheme,
after the plaintext is encrypted, the ciphertext is uploaded to
the cloud via the internet. When it is necessary to perform
homomorphic computation on the ciphertext encrypted under
different keys, the cloud needs to extend the ciphertexts
to the concatenation secret key to ensure that the evalu-
ated ciphertexts can be decrypted correctly. The process of
ciphertext extension increases the workload of the cloud,
which requires ciphertexts provider to pay more to the cloud
service provider. In this article, we propose a distribution
method to extend ciphertexts through distributed computing.
Participants interactively perform the process of ciphertext
extension through the internet, and the cloud only needs to
do homomorphic computation. Obviously, this improvement
addresses the disadvantages of the traditional multi-key FHE
scheme we presented above.
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Fig. 1: A comparison between the traditional multi-key FHE scheme (left) and ours (right).

C. Parameters Setting

Now we bound the worst-case error growth when homo-
morphically evaluating a depth L circuit of NAND gates.
Suppose there are two ciphertext (fresh, extended or eval-
uated) C1 ∈ Znk×nkl

q and C2 ∈ Znk×nkl
q be the encryp-

tion of u1 and u2 respectively under the concatenation key
t = (t1, t2, ..., tk) ∈ χnk, satisfying Equation (1) with the
error bound by E . As GSW13 mentioned, the homomorphic
computation of two ciphertexts by NAND gates has the error
bounded by (nkl + 1)E = poly (n, k, l)E where poly (n, k, l)
enotes a polynomial function in n, kandl.

When we extend a ciphertext with the error bounded by E∗,
the final ciphertext has the error bounded by (m + 2)

3n3lβ +
kβ2 + BχE∗. Therefore, for any depth L homomorphic com-
putation on ciphertexts encrypted under k keys, the result has
the error bounded by poly (n, k, l)k+lE∗. Therefore, it suffices
to choose a modulus q ≥ 4poly (n, k, l)k+lE∗ following the
previous work. Recall that l = Θ(log q) = Õ (k + d), where
Õ hides the logarithmic terms and χ is a discrete Gaussian
distribution with the error bound Bχ = Θ(n). The LWE
problem with this parameterizations is hard and corresponds
to a worst-case approximation factor of poly (n, k, l)k+l for n-
dimensional lattice problems.

IV. SECURITY ANALYSIS

In this section, we discuss the security of our scheme
MFHE = (Setup, Keygen, Encrypt, Decrypt, Extend, Eval).
Compared with scheme #2 in [23], the biggest difference is
that we release the circular-security assumption in the process
of the ciphertext extension. We prove that our scheme is IND-
CPA secure without the circular-security assumption.

Theorem 4.1 Our scheme MFHE =
(Setup, Keygen, Encrypt, Decrypt, Extend, Eval) described

in Section 3 is IND-CPA secure under the decisional
LWEn−1,m,q,χ problem.

Proof. We prove that the public extension key and the
ciphertexts are indistinguishable in the real world from the
ideal world for any PPT adversary A. Let we consider the
hybrid experiments in the real word and the idea world
respectively as follows:

Game 0: This is the real IND-CPA game played between
a challenger CH and an adversary A. More precisely:

1) The challenger CH runs the algorithm Setup
(
1λ, 1L, 1k

)
to generate the public params and Keygen (params) to obtain
key pair (PK, sk) where PK include a public key A =[

B
b

]
∈ Zn×m

q and a public extension key P = (ω ⊗ AR) +

(In ⊗ t⊗ g) ∈ Zn×n2l
q , secret key sk = t = (−t̄, 1) ∈ χn and

R ∈ {0, 1}m×m is a random matrix. Then the challenger CH
sends PK to the PPT adversary A.

2) The adversary A chooses a pair of message u0, u2 ∈
{0, 1} for the challenger CH.

3) The challenger CH chooses a random bit b ∈ {0, 1}
and a random matrix R ∈ {0, 1}m×m, then runs the encryption
algorithm Encrypt (pk, u) to generate ciphertext Cb = AR +
ubG and sends the challenge ciphertext Cb to adversary A.

4) Finally, the adversary A guesses the bit for b as b’ in
the polynomial time and then sends bit b’ to challenger CH.
The Game 0 outputs 1 if b’ = b and 0 otherwise.

Game 1: This is a hybrid experiment in the ideal word,
unlike the hybrid experiment Game 0, Game 1 has the
following facts:

1) The challenger runs the corresponding algorithm to
obtain key pair (PK, sk) and chooses a uniformly random
matrix U ∈ Zn×m

q , then generates the public extension key
P = (ω ⊗ U) + (In ⊗ t⊗ g) ∈ Zn×n2l

q and sends PK to the
PPT adversary A.
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Algorithm 1 The Process of Ciphertext Extension with Mul-
tiple Participants

Input:
Function Ciphertext Extend (C,P∗,A∗,Bro flag);

Output:
//construct Y.

1: for each i ∈ [1, k] do
2: break C̄ = C · (et

n ⊗ Il) to k rows sub-matrices C̄i;
3: set Pi = A∗Ri +

(
ωT ⊗ ti ⊗ g

)
; // Ri ∈ {0, 1}m×m is an

uniformly random matrix.

4: compute
(

C̄i
)′

= Pi · g−1
(

C̄i
)

;
5: if Bro flag then
6: broadcast

(
C̄i
)′

;
7: else
8: compute C̄′ =

∑k
i=1

(
C̄i
)′

;

9: set s :=
(
In ⊗ In ⊗ g−1

)
·
(

C̄′ ⊗ In

)
·Π;

10: compute Trans matrix Y1 = P∗ · s;
11: sample an uniformly matrix M ∈ {0, 1}m×m;
12: compute Trans matrix Y2 = (ω∗ ⊗ AiMi) · s;
13: set Y = Y1 + Y2; //finish Y.

//construct X.
14: call function to get C(a,b) =

GSW.Encrypt (pk,M [a, b]) for each element of
M;

15: call function to get Clc =
GSW.LComb

((
C1,1, ...,Cm,m) , b∗ − b

)
;

16: broadcast Clc; //finish X.
17: end if
18: end for

19: construct Ĉ by C,X and Y according to the format;

20: return Ĉ;

2) The challenger CH chooses a random bit b ∈ {0, 1} and
an uniformly random matrix U ∈ Zn×m

q , then generates the
challenge ciphertext Cb = U + ubG and sends the challenge
ciphertext Cb to adversary A.

We define the probability that the adversary guesses bit b
correctly as Pr [Si]. It is found that the advantage of A is
Pr [S1] = 1

2 in the ideal world is owing to the challenge
ciphertext Cb = U + ubG and the public extension key
P = (ω ⊗ U) + (In ⊗ t⊗ g) are uniformly random and inde-
pendent of the message as U ∈ Zn×m

q is an uniformly random
matrix. Our scheme is IND-CPA secure under the decisional
LWEn−1,m,q,χ problem if the advantage of A satisfies Lemma
1 in these two worlds.

Lemma 1. |Pr [S0]− Pr [S1]| = |Pr [S0]−
1

2
| = ε

where ε is negligible.
Proof. In the real word Game 0, the ciphertext is generated

as Cb = AR+ubG where A is the public key and each column
of A is a LWE sample. By contrast, the ciphertext form is
Cb = U + ubG in the ideal word Game 1 where U ∈ Zn×m

q is

an uniformly random matrix. Let define the two distributions
“real” and “ideal” as

real = {Cb ∈ Zn×m
q : Cb = AR + ubG

where A ∈ Zn×m
q is a LWE sample and

R ∈ {0, 1}m×m is a random matrix }

ideal = {Cb ∈ Zn×m
q : Cb = U + ubG

where U ∈ Zn×m
q is an uniformly random matrix }

where ub ∈ {0, 1}. Then if a distinguisher A can distin-
guish these two distributions “real” and “ideal” , then A can
distinguish AR ∈ Zn×m

q from U ∈ Zn×m
q . Therefore we can

obtain that

Pr [S0] = Pr [A (Cb) = 1 : Cb ← real]

Pr [S1] = Pr [A (Cb) = 1 : Cb ← ideal] .

As we mentioned above, our scheme is IND-CPA secure if
the advantage of A is

|Pr [S0]− Pr [S1]| = negligible

among the real and ideal worlds, namely,

| Pr [A (Cb) = 1 : Cb ← real]−
Pr [A (Cb) = 1 : Cb ← ideal] | = negligible

for these two distributions, it is the advantage of A o dis-
tinguish the matrix AR ∈ Zn×m

q from the uniformly random
matrix U ∈ Zn×m

q . This is negligible by the following Lemma
2:

Lemma 2 [12]. Let params = (n, q,m, χ) be such that the
LWEn,q,χ assumption holds. Then, for m = O (n log q) , A ∈
Zn×m

q and R ∈ {0, 1}m×m, the joint distribution (A,A · R) is
computationally indistinguishable from uniform over Zn×m

q ×
Zn×m

q .
Consequently, A · R is computationally indistinguishable

from uniform over Zn×m
q under the decisional

LWE assumption, hence the advantage of A in
distinguishing matrix A · R ∈ Zn×m

q from U ∈ Zn×m
q

is negligible, namely, | Pr [A (Cb) = 1 : Cb ← real] −
Pr [A (Cb) = 1 : Cb ← ideal] | = negligible so that
|Pr [S0]− Pr [S1]| = negligible. On the other hand, from
Lemma 2, we can observe that the secret key t ∈ χn is
computationally hided by A · R ∈ Zn×m

q . It means that the
public extension key and every ciphertext are uniformly
random and independent of the messages. Therefore,
Theorem 4.1 holds and our scheme is IND-CPA secure.

V. CONCLUSION

In this work, we have proposed a dynamic multi-key FHE
scheme from LWE. Compared with the traditional dynamic
multi-key FHE scheme, we effectively solve the shortcomings
of the existing multi-key FHE schemes, that is, we use a
dietribution method to reduce the workload of the cloud and
the cost of the encrypter on the cloud. We have shown that
our construction is comparable with the other multi-key FHE
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schemes with respect to public parameters length, ciphertext
size, assumption and so on. Furthermore, our scheme is only
based on LWE without other assumptions and has a light pub-
lic key, which makes the process of ciphertext extension more
efficient. In addition, unlike other existing dynamic multi-key
FHE schemes in the symmetric key setting, our scheme works
in asymmetric key setting. However, our dynamic multi-key
FHE construction is of single bit encryption. In future, we will
focus more on studying dynamic, multi-bit and multi-key FHE
design from LWE. Furthermore, in addition to the GSW13
FHE scheme, we would like to further explore using different
FHE schemes to design more efficient dynamic multi-key FHE
schemes from LWE.
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