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Abstract

This paper presented an regrasp planning method to eliminate grasp uncertainty while considering the geometric constraints

of a fixture. The method automatically finds the Stable Placement Poses (SPPs) of an object on a Triangular Corner Fixture

(TCF), elevates the object from its SPPs to dropping poses and finds the Deterministic Dropping Poses (DDPs), builds regrasp

graphs by using the SPP-DDP pairs and their associated grasp configurations, and searches the graph to find regrasp motion

sequences for precise assembly. Since the SPPs and their associated regrasps are constrained by the TCF’s geometry and have

high precision, the final object poses regrasped via it has low uncertainty and can be directly used for assembly by position

control. In the experimental section, we study the performance of analytical and learning-based methods for estimating the

DDPs of different objects and quantitatively examine the proposed method’s ability to suppress uncertainty using assembly

tasks like peg-in-hole insertion and sheathing tubes, aligning holes, mounting bearing housings, etc. The results demonstrate

the method’s robustness and efficacy.
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Reducing Uncertainty Using Placement and Regrasp
Planning on a Triangular Corner Fixture

Zhengtao Hu1, Weiwei Wan1∗, Keisuke Koyama1, and Kensuke Harada1,2

Abstract—This paper presented an regrasp planning method
to eliminate grasp uncertainty while considering the geometric
constraints of a fixture. The method automatically finds the Stable
Placement Poses (SPPs) of an object on a Triangular Corner
Fixture (TCF), elevates the object from its SPPs to dropping
poses and finds the Deterministic Dropping Poses (DDPs), builds
regrasp graphs by using the SPP-DDP pairs and their associated
grasp configurations, and searches the graph to find regrasp
motion sequences for precise assembly. Since the SPPs and their
associated regrasps are constrained by the TCF’s geometry and
have high precision, the final object poses regrasped via it has
low uncertainty and can be directly used for assembly by position
control. In the experimental section, we study the performance of
analytical and learning-based methods for estimating the DDPs
of different objects and quantitatively examine the proposed
method’s ability to suppress uncertainty using assembly tasks
like peg-in-hole insertion and sheathing tubes, aligning holes,
mounting bearing housings, etc. The results demonstrate the
method’s robustness and efficacy.

Note to Practitioners—In production lines, robots interact with
peripheral devices to improve efficiency and reduce uncertainty.
In this work, we focus on a special peripheral device – a
Triangular Corner Fixture (TCF) made by three inclined and
mutually perpendicular plates, and study using it to improve
manipulation precision. The inclined plates of the TCF form a
gravity bucket that holds a dropped objects in stable states under
gravity. In a real scenario, a robot picks up an object and releases
it above the TCF. The released object will reach a stable state
on the TCF. Then, the robot regrasps and moves the stabilized
object to the target pose with reduced uncertainty. Using the
method presented in this paper, a robot can automatically finish
the above procedure by finding all the object’s stable states in the
TCF, planning grasp configurations, invalidating infeasible states
and grasps, building regrasp graphs and searching the graph to
find a regrasp motion sequence that moves the object to a goal
pose with high precision for assembly. In industrial applications,
the proposed method has the potential to improve the flexibility of
robotic systems for high-precision tasks. In the research fields, it
may inspire the research on sensorless manipulation and extrinsic
manipulation, and push forward the studies in robotic regrasp.

Index Terms—Fixture, Precise Assembly, Regrasp Planning

I. Introduction

UCERTAINTY is a crucial problem to employ robotic ma-
nipulators for assembly tasks. Especially for autonomous

manipulators that receive vision feedback and generate manip-
ulation motion online, uncertainty is challenging to eliminate

This paper is based on results obtained from a project, JPNP20016,
subsidized by the New Energy and Industrial Technology Development
Organization (NEDO). 1 Graduate School of Engineering Science, Osaka
University, Toyonaka, Osaka, Japan. 2 National Inst. of AIST.

∗ Contact: Weiwei Wan, wan@sys.es.osaka-u.ac.jp

Fig. 1: Using the geometric constraints of a fixture to reduce
uncertainty. (a-c) Drop and regrasp. (d) Insertion.

– They originate from a series of mutually coupled compo-
nents like vision, control, contacts, etc. Overcoming them and
achieving precise manipulation is tricky.

Contemporary literature tends to solve the uncertainty prob-
lem using multi-modal sensing and improved sensing algo-
rithms. Related articles reported significant improvements in
robotic perception [1]. However, despite the achievements,
the improvements in sensing technology still fail to pro-
vide sufficient qualifications for autonomous manipulators,
as sensing is not the only reason for uncertainty. On the
other hand, researchers in the robotic planning and control
community developed sophisticated integral motion planning
and control policies to enable robots to correct object poses
during manipulation. The policies include but are not limit
to scanning search, spiral research, impedance control, hybrid
force/position control, etc. [2] [3] [4], which need force sensors
[5], tactile sensors [6] [7], or current sensors for feedback.
Compliant mechanisms are hardware alternatives of the poli-
cies [8] [9]. They are effective and less expensive counterparts
of the sensor-based implementation. The policy-based methods
or the compliant mechanisms have advantages in regulated
scenarios but tend to be influenced by environmental changes.
Users need to adjust various parameters or key hardware
components like springs for different applications.

Unlike methods that improve robotic perception and control
or develop new compliant mechanisms, eliminating uncer-
tainty through manipulation while considering geometric and
physical constraints is more straightforward, robust, and cost-
effective. The fundamental idea is deploying a fixture in the
robot workspace. The pose of a workpiece can be precisely
aligned and determined by taking advantage of the geometric
constraints induced by contacting the fixture and the physical
constraints induced by gravity. The idea is not new. It is widely
seen in factory automation for aligning randomly placed work-
pieces [10] [11], and has been practiced since the beginning of
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robotics. This paper reinspects the idea of employing a fixture
to reduce uncertainty. Different from the conventional design
and mechanical analysis, our focus is on the planning aspect.
We develop algorithms to compute an object’s stable poses
on a fixture and employ these poses as intermediate states
to build manipulation graphs and plan robotic manipulation
sequences. With the help of the stable intermediate poses on
the fixture, the uncertainty in planned manipulation sequences
can be reduced. A workpiece is manipulated precisely, and the
manipulation results can be directly used to conduct difficult
tasks like insertion. In detail, the fixture used in our study is a
triangular corner fixture, which is comprised of three mutually
orthogonal planes, as shown in Fig. 1. Driven by gravity, a
workpiece dropped from above the tilted corner fixture may
firstly contact the inner surfaces and then slide to the bottom
under gravity and the guides of the mutually orthogonal planes.
The workpiece will rest at a particular pose at the bottom of
a gravitational bucket formed by the fixture.

Previously, dropping a workpiece onto a tilted corner for
regrasp and reducing pose uncertainty was widely used in
the automation industry. For practical purposes, the robot
motion for a successful dropping was manually specified.
Their stability relied on a system integration engineer’s sub-
jective adjustments and examination. The method developed
in this work automatically finds the Stable Placement Poses
(SPPs) of an object on a Triangular Corner Fixture (TCF) and
consequently enables auto-planned precise robotic regrasp and
manipulation. The method first computes the SPPs considering
geometric contact constraints, physical feasibility, and static
stability. Then, it elevates the object from its SPPs to dropping
poses and finds the Deterministic Dropping Poses (DDPs)
from them. When the object is released from the DPPs, it
will rest at expected SPPs. Finally, the method computes
the gripper configurations for grasping and regrasping the
object considering the TCF, SPPs, and DDPs. The method
will output a pick-and-place sequence that manipulates the
object with the help of the TCF by high precision. In the
experiments, we study the performance of different methods
for estimating the DDPs of different objects and quantitatively
examine the proposed method’s ability to eliminating uncer-
tainty by inserting a peg into holes with different clearance.
We also examined the method’s practical performance using
real-world assembly tasks like peg-in-hole insertion, sheathing
tubes, aligning holes, and mounting housings, etc. The results
verify that the method enables a robot to finish assembly
tasks without using sensors, compliant control, or complicated
mechanism, making the robot system more robust and flexible.

The paper is organized as follows. Related work is presented
in Section II. background information about the TCF and
an overall workflow of the proposed method are introduced
in Section III. Section IV-VI present the details of SPP
sub-planner, DDP estimator, and release/regrasp sub-planner,
respectively. Experiments and analysis are shown in Section
VII. Section VIII draws conclusions and discusses future work.

II. RelatedWork
The research related to this study includes sensorless ma-

nipulation, placement estimation, and regrasp planning.

A. Sensorless manipulation

Like its name, sensorless manipulation means manipulating
objects without using sensors. It relies on the mechanic and
geometric constraints of a task to pose objects, and is simpler
and more robust compared to sensor-based manipulation [12].
Sensorless manipulation is widely seen in automation lines to
eliminate the uncertainty. The exemplary mechanism used for
sensorless manipulation includes chutes, hoppers, bowl feeders
and feed tracks, etc [10]. For robotic applications, Mason
initially discussed the basic concept of sensorless robotic
manipulation in [13]. After that, a variety of sensorless robotic
manipulation approaches were studied. For example, Brost et
al. [14] proposed using combined pushing and squeezing and
flat finger pads to grasp an object with uncertainty. Nie et
a. [15] and Hirata et al. [16] designed special-shape finger
pads to align uncertain objects. Ha et al. [17] developed an
automatic designer that finds finger pad shapes for robustly
grasping various objects. Goldberg et al. [18], and Zhou et
al. [19] used a sequence of parallel grasp actions to orienting
and positioning uncertain objects to a specific pose. Maeda
et al. [20] and Varkonyi et al. [21] developed caging-based
methods to achieve in-hand manipulation and parts feeding,
respectively. Erdmann et al. [22] and Schmidt et al. [23] used
the active actions of palms and boundary walls to manipulate
objects. Berretty et al. [24] and Akella et al. [24] studied the
usage of passive settings like fences. Grossman et al. [25],
Erdmann et al. [12], and Mannam et al. [26] respectively used
robotic manipulators to move a tray attached to its tool center
point. As the robotic manipulator moves, an object in the
tray will be slid into a trihedral corner and stopped by the
tray’s walls. The final pose of the object can be determined
by carefully planning and controlling the tray’s tilting motion.

Similar to the conventional sensorless manipulation sys-
tems, our proposed method uses geometric constraints to
hold objects. The objects are supposed to be dropped by a
robotic manipulator onto a TCF and trapped by the tilted
TCF inner surfaces under gravity. We assume that visual
recognition is used to locate an object’s initial pose, and allow
recognition and other uncertainty. We develop algorithms to
plan stable placement poses, estimate dropping poses, and
plan grasp/regrasp poses to reduce uncertainty while taking
advantage of the TCF’s geometric constraints. Our process is
fully automatic and applies to a wide variety of objects given
their model information.

B. Placement estimation

We consider a placement estimation as a two-part process.
In the first part, we find a set of stable placement poses of
the part. Then, based on the placement poses, we infer the
dropping or releasing poses. The review of related work in
placement estimation is carried out by inspecting the two parts.

The most fundamental problem of placement estimation
is finding a stable placement on a horizontal plane. In this
case, the object’s stability can be determined by checking
if its Center of Mass (CoM) projection passes through the
convex supporting polygon [27] [28] [29]. As an extension to
the fundamental problem, Wan et al. studied the placement
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planning on a tilted plane [30], a support pin [28], and
arbitrary support structures [31]. Harada et al. [32] developed
an algorithm to plan the stable object placement with non-
flat contact considering the convexity of the paired contact
surfaces. They assumed that the friction force is large enough
to prevent sliding. The placement stability of rigid bodies
and assemblies considering frictional contact was discussed
in [33] [34]. Contact Wrench Space (CWS) was widely used
for stability estimation. The radius of a maximum inscribed
sphere in the contact wrench cone indicates how much external
wrench or inertial wrench a grasp can tolerate. It can be
used to evaluate the grasp qualities and find optimum grasp
configurations [35] [36] [37] [38], and can also be used to
estimate the stability of structures [39] [40].

Dynamic dropping simulation is also widely used for place-
ment estimation [31] [41]. However, to assure the reliability
of the simulated results, various parameters need to be tuned,
and repeated examinations must be performed, which makes
the methods less credible and time-consuming. For this rea-
son, many researchers studied fast alternatives for dynamic
simulation. For example, Kriegman and David [42] proposed
an algorithm that computed a maximal capture region of
the desired stable pose in the configuration space where the
object pose would converge into a desired one. Jorgensen et
al. [43] presented to generate drop regions for stable poses
and discussed two methods, the largest enclosing ellipsoid
computation and the kernel density estimation to determine
optimal drop poses from them. Varkony [44] provided a
statistics-based prediction method for estimating the resting
poses of the dropped parts. Fekula et al. [45] used a similar
method to perform the estimation, and based on the reasoned
stable poses and the rendered top view images of them, they
further positioned the objects using a vision-based method.
Baumgartl et al. [46] developed a fast placement planner,
which is capable of computing a stable position and orientation
for a dropped object in complicated environments. In addition,
learning-based methods also became popular for placement
estimation and handling the uncertainties in manipulation
processes. Lu et al. [47] proposed to train a probabilistic
graphical model as a classifier to predict the appropriate grasp
types (power grasp or precision grasp). Li et al. [48] developed
a deep network that uses a single depth point cloud to estimate
the pose of an articulated object. Newbury et al. [49] used
two Convolutional Neural Networks (CNNs) to estimate both
the placement rotations and stabilities and obtain the human-
preferred object placements and orientations. CNNs are also
well used to estimate the grasp configurations [50] and predict
the grasp qualities [51] as well. Feng et al. [52] used a Support
Vector Machine (SVM) and a Long Short-Term Memory
(LSTM) model to analyze the features of tactile sensors to
detect slip and unstable grasps.

In our proposed method, a TCF is used to hold the dropped
object and constrain its final configuration. We first find the
SPPs on the tray corner considering the geometric constraints
at the contact. Then, we use analytical and learning methods to
obtain the DDPs of the objects that lead to the found SPPs. We
compare the performances of the different estimation methods
to understand the advantages and disadvantages.

C. Regrasp

Regrasp is a manipulation method for robots to reorient
the grasped object. It refers to an intermediary fixture to
help the robot overcome both robot kinematic constraints
and environmental geometric interference. A robotic system,
HANDEY [53], was designed with the regrasp ability based on
the algorithm presented in [54]. In some early work [55] [56]
[57], the researchers decoupled the planning problem from the
robot motion and concentrated on the regrasp sequences and
online computation efficacy. More recent research pays more
attention to finding the optimal path, which combines the robot
motion with regrasp [58] [59]. Wan et al. [60] presented to
use a relational database to manage the grasp data, which
enabled reusing 10,000 of grasps and their relationship to
search the regrasp path. In [61], the dynamic regrasp graph
was presented, and the planning method considering regrasp
is extended to assembly tasks.

We, in this work, especially focus on a tetrahedral inter-
mediary fixture and using it to reduce uncertainty. Previously,
Wan et al. [30] compared the efficacy of using a flat surface
and a tilting surface in a work cell as the intermediary fixture
[62]. Cao et al. [28] presented to leverage a support pin as
the intermediary fixture to provide stable placement. Ma et
al. [31] considered to regrasp objects using general structures.
The comparison of using different intermediary fixtures was
presented in [63]. The previous studies mainly concentrated on
optimizing the motion sequence or improving the feasibility of
orienting. Different from them, we in this paper use regrasp to
eliminate uncertainty and perform precise tasks. A TCF is used
as the intermediary fixture considering its crossing surfaces
and tetrahedral shape can provide geometric constraints to
align the dropped object. Together with the TCF, the place-
regrasp process is treated as a release-regrasp way, and the
estimation of robust dropping poses is studied.

III. Preliminaries andMethod Overview

This section explains the background knowledge of a TCF,
and presents the outline of the proposed method.

A. Background knowledge of a TCF

A Triangular Corner Fixture (TCF) is made of three inclined
plates intersecting at one bottom point, as shown in Fig. 2(a).
The three inclined flat plates form a gravitational basket [64]
that holds a dropped object at a stable pose. Compared with
a flat surface, the plates of a TCF can always pull a dropped
object into configurations with minimal potential energy in the
gravitational field.

Especially, the plates of the TCF used in this paper are
mutually perpendicular. The reason we study this special case
is that our goal is to assemble mechanical workpieces pre-
cisely. Although these workpieces have different shapes, they
comprise geometric primitives like a cylinder, cuboid, ball,
wedge, etc., and have three mutually perpendicular surfaces.
We thus propose using a TCF made of three mutually per-
pendicular plates as an intermediary fixture to hold them. Fig.
2(a) shows the structure of the mentioned TCF. Its three plates
are fabricated as three congruent isosceles right triangles. The
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Fig. 2: Structure of a Triangular Corner Fixture (TCF).

angles between the triangular plates and a horizontal plane are
the same (54.74◦). Figs. 2(b) shows a real-world fabrication.
The three triangular plates are made of acrylic boards and
are detachable from the base. The isosceles length le of the
triangular plates are equal. Since they are detachable, the le
can be changed, and the TCF dimensions can be adapted for
parts of different scales. The TCF base is mounted on a 3-axes
rotational platform for fine-adjustment. The platform bottom
has an adapter plate for connecting with other fixtures.

B. Method overview

We develop a planner that estimates the robust dropping
poses and stable placements of an object in the mentioned
TCF and hence finds the regrasp motion that leads to precise
assembly. Fig. 3 shows the workflow of our proposed planner.
It receives the meshed models of the target object, the robotic
gripper, and the TCF as the input. Three sub-modules will
use the input: the Stable Placement Pose (SPP) planning sub-
module, the Deterministic Dropping Pose (DDP) estimation
sub-module, and the grasp configuration planning sub-module,
respectively, to find stable placement poses, estimate robust
dropping poses, and plan gripper configurations. Specifically,
the SPP sub-module computes a set of stable placement
candidates of a given object that satisfies geometry constraints
and is statically stable in the TCF. The DDP estimation sub-
module uses a classifier to predict if an object dropped from
an elevation position can be aligned to the expected SPP and
finds a set of SPP-DDP pairs. The grasp configuration planning
sub-module computes the gripper configurations for releasing
an object at the DDPs and regrasping the object at the SPPs
in the found SPP-DDP pairs. These computed releasing and
regrasping gripper configurations are used to build a regrasp
graph to reason a robot motion sequence. The details of the
three sub-modules will be explained in Sections V-VII.

IV. Plan Stable Placement Poses

We define an SPP as follows: An object is at an SPP when
it stays in the triangular corner fixture in a balanced static
condition. We use the algorithm shown in Fig. 4 to plan the
SPPs. The algorithm receives an object and a TCF model as
input and returns all satisfying SPPs as output. It comprises
three steps which are highlighted using diamonds and blocks
of different colors in Fig. 4. The first step includes the blue
diamonds and blocks. In this step, the algorithm clusters the
faces of the object’s mesh model into facets and computes their

Fig. 3: Workflow of the proposed planner.

Fig. 4: Plan the SPPs. The digram is a close-up view of the
“Plan SPP” sub-module in Fig. 3.

triple combinations. The triplets of facets are the candidate
contact faces with the inner surface of the TCF. The second
step includes the yellow diamonds and blocks. In this step,
the algorithm uses the triplets of facets to compute the object
poses in the TCF. The triplets of facets must be in contact with
the TCF’s inner surface during the computation. Meanwhile,
the object models are required to be not penetrating the TCF
and the surrounding environments. The third step includes
the pink diamonds and blocks. The algorithm in this step
examines the static stability of the object poses computed in
the second step and discards the unstable ones. The details of
these three steps are presented below. We only consider face-
to-face contact between the object and the TCF as effective
contact candidates in the algorithm. Although a point-to-face
or line-to-face contact can also stabilize an object, they are
less reliable and ignored to simplify the planning algorithm.

A. Step 1: Facets and their Triplet Combinations

In this step, the algorithm clusters triangle faces of an
object’s mesh model Mo into facets and then uses the facets
to find mutually perpendicular triplet combinations.

Using conventional segmentation methods to cluster facets
may lead to uneven area [65]. Instead of the conventional
methods, we use superimposed segmentation [66] to generate
uniform facets. The method especially has better performance
when handling curved surfaces. Take the T-shape pipe junction
object shown in Fig. 5 for example. The mesh model of the
junction is shown in Fig. 5(a). The segmented superimposed
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facets are shown in Fig. 5(b). For a mesh modelMo, we denote
its superimposed facet set using So = {si} (i = 1, 2, ...m), where
each si indicates a facet.

Fig. 5: (a) A raw meshed model. (b) Segmented surfaces. (c)
A candidate triplet of facets. It has three mutual orthogonal
surfaces. (d) The object’s frame ({Co}) and the object-to-TCF
transformation coordinate described in it ({C′o}). (e) The TCF’s
frame ({C f }) and the object-to-TCF transformation coordinate
described in it ({C′f }). (f) A placement pose of the object on
the TCF. (g) The first failure case: Penetration. (h) The second
failure case: Phantom contact. (i) All planned LFPs.

After getting the facets, we find the mutually perpendicular
triplet facet combinations. Here, we assume to only consider
the face-to-face contacts between an object and the TCF, and
thus ignore the edge and vertex contact. The details of our
workflow is as follows. With all segmented facets, we combine
every three surfaces into a triplet and get a collection of triplets
Sg = {Sg( j) = {sa, sb, sc|sa, sb, sc ∈ So}, j = 1, 2, ...C3

m}. Then,
we examine the orthogonality of each triplet’s facet normal.
The one that has three mutual orthogonal normal is considered
as a feasible candidate, as illustrated in Fig. 5(c). We use S

′

g =

{S′g(i) = {sa, sb, sc|(sa ⊥ sb, sa ⊥ sc, sb ⊥ sc)}, S′g(i) ∈ Sg} to
denote the feasible candidate collection. The workflow can
be accelerated using linear programming to avoid repeatedly
examining the impossible combinations.

B. Step 2: Computing Transformations

In the second step, the algorithm computes the transfor-
mation that fits the triplet facets onto the inner surfaces of
the TCF. We use {Co} and {C f } to respectively represent the
object frame and the TCF frame, and use {C

′

o} to denote the
local frame of S′g(i). The intersection point of S′g(i)’s three
orthogonal facets are selected as {C

′

o}’s origin. Its coordinate
axes are determined considering the inverted normal directions
of the facets (The exact x, y, and z choices are free, as long

as they meet the right-hand rule). Fig. 5(d) illustrates a {C
′

o}

defined considering the S′g(i) shown in Fig. 5(c).
Next, we compute the placement pose of an object by

transforming its {C
′

o} onto TCF. We define two coordinate
systems for the TCF. One is {C f }. Its origin is at the bottom
point of the TCF, and its orientation is the same as the
world coordinate system. The other one is {C

′

f }, which has
the same origin as {C f } but the x, y, z axes are along the
intersection edges of the TCF’s perpendicular surfaces. The
placement poses of the object can be computed by superposing
{C

′

o} to {C
′

f }, which means if we use a transformation matrix
C f

Co
Ti to denote the placement pose, it can be computed as

C f

Co
Ti=

C f

Co
Ti

Co

C′o
Ti=

C f

C′f
Ti

Co

C′o
Ti. An object may have many S′g(i) and

thus many C f

Co
Ti. We name C f

Co
Tis the Potential Placement Poses

(PPPs). Fig. 5(f) illustrates one PPP of the T-juction object.
Note that the potential C f

Co
Ti may not be logically feasible

since we did not check interference and contact. The object
may penetrate the TCF, as shown in Fig. 5(g). It may also
be floating in the air as the size of the TCF is limited and
the contact is phantom (Fig. 5(h)). Thus, at the end of the
second step, we screen the PPPs by detecting collisions and
the existence of contact and removing the logically infeasible
ones. We get a set of Logically Feasible Poses (LFPs) after
the screening, as illustrated by Fig. 5(i).

C. Step 3: Examining the Static Stability

In the third step, we further use Contact Wrench Space
(CWS) analysis to examine the static stability of the LFPs
and obtain the SPPs. For a clear illustration, we use an L-
shape object instead of the T-junction to exemplify this step.
The workflow is as follows.

First, we extract the contact polygons between the object
and the TCF’s inner surfaces. Each of the three TCF inner
surfaces has a contact polygon set, which may have a single or
multiple elements. We compute the convex hull of the contact
polygons in each set to get three support polygons for the
three inner surfaces. The SP1-3 in Fig. 6(a) illustrate the three
support polygons of the L-shape object. Second, we consider
the vertices of the three support polygons as the effective
contact points that provide supporting forces for the object,
compute a wrench cone formed by the wrenches exerted on
them and the object’s gravity, and judge the stability of the
object using the relation between the wrench cone and the
origin of the wrench space. The yellow spheres in Fig. 6(a)
illustrate the effective contact points. Assume there are in total
k effective contact points pi = [xi, yi, zi], (i = 1, 2..., k). We
build a local frame at each of the pis to describe the contact
force. The x and y axes of the local frame compose a tangent
plane on the contact point, and the z axis aligns with the
normal of the TCF’s inner surfaces, as shown in Fig. 6(d). The
contact force at pi can be represented by the components along
the three axes as fi = [ fxi, fyi, fzi]T . The effect wrench exerted

on pi can be computed using wi =

[
I 0[

pi×
]

I

] [
fi

τi

]
, where

τi indicates the exerted torque. Considering the frictional
constraints at the contact point, fi must be in a friction cone
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Fig. 6: (a) Support polygons and contact points formed by the
contact between the object and the TCF. (b) Friction cones and
gravity exerted on the object. The friction cone is simplified
as a hexagonal pyramid. (c) Wrench cone Ws in the wrench
space.

and fxi, fyi, and fzi must meet
√

f 2
xi + f 2

zi ≤ µ fzi, where µ is
the friction coefficient. Since fi is inside a cone and is not
deterministic, directly using the equation to compute wrench
cone is difficult. To overcome the difficulty, we approximate
the friction cone with a pyramid [67], as shown in Fig. 6(b.2-
3). The lateral edges of the pyramid represent the extreme
fi choices. They are named as f j

i , where the granularity of
the approximation determines j. A linear combination of the
f j
i could approximate a freely chosen fi in the friction cone.

With this consideration, we represent wi using multiple values
wi = {w j

i } and use all w j
i to compute the wrench cone. Each w j

i
will be the wrench from one f j

i . Considering all of them for
wrench cones is the same as considering linear combination
of the f j

i . The wrench set W born by the object comprises
the {w j

i } at every pi and the object’s center of mass. It can be
expressed as W = {w j

1} ∪ ... ∪ {w
j
k} ∪ {wg}, where wg denotes

the gravitational wrench. The wrench coneWs spanned by the
wrench is essentially a convex hull of the elements in W [36].
The stability of LFPs is judged by examining the relationship
between the origin of the wrench space andWs

1. If the origin
is inside theWs of an LFP, the LFP is considered to be stable
and will be counted as an SPP. The planner will look over all
LFPs and find a set of SPPs.

V. Estimate Deterministic Dropping Poses
If an object released from a pose on top of the TCF has a

deterministic and expectable SPP when it gets stabilized inside
the TCF, we call the releasing pose a Deterministic Dropping
Pose (DDP). This section presents methods to estimate if the
SPPs obtained in the last section have correspondent DDPs.
The methods are based on the assumption that a candidate
DDP is a pose linearly elevated from an SPP. The elevation
height he ranges from h− to h+, as shown in Fig. 7. We
elevate an SPP to a random height in [h−, h+] to get candidate
releasing pose and use the methods presented in the following
subsections to estimate if the object deterministically stabilizes
at the SPP after being dropped from the releasing pose. If the
algorithms suggest a positive predicted result, we save the SPP
and the releasing pose as an SPP-DDP pair. All saved SPP-
DDP pairs will be used for reasoning and planning the regrasp
sequences to improve grasping precision.

1The magnitude of all elements in W is set equally as 1 when computing
the Ws since we assume unknown masses.

Fig. 7: Visualization of the
elevation height he and its
effective range [h−, h+]. The
d f is the depth of the TCF. It
is not mentioned in the main
text. We choose h− to be a bit
lower than d f and choose h+

to be outside d f to take into
account various possibilities.

Specifically, we propose two methods for the estimation.
The first is an analytical method based on CWS, and the
second is a learning-based method. Their details are as follows.

A. Analytical method

In the first method, we predict the SPP by considering a
static stability criterion, which screens an SPP considering
its capability of resisting external disturbance wrenches. The
method is based on an intuition that an SPP with larger
stability is more likely to have a DDP than a less stable one.

Similar to the third step of planning SPPs, the analytical
method uses CWS to evaluate static stability. However, instead
of directly generating convex hull of contact wrenches to span
the wrench space, the method constructs the wrench cone by
computing the convex hull of W’s Minkowski sum. We use the
notation Wmkv to differ the wrench cone in this section from
the Ws used before. Compared to Ws, Wmkv can quantify
the resistible external wrench, thus make it easier to decide
an evaluation criteria [36]. In particular, the method computes
the shortest distance from the origin of the wrench space to
the hyperplanes that constitute Wmkv and uses the shortest
distance as the stability quality. Then, the method finds the
SPPs that have enough stability quality from the obtained SPP
set and elevate them to get DDPs.

The static stability criteria-based analysis may find the
DDPs with large determinism from the SPPs of an object.
However, the stability quality of different objects cannot be
measured on a unified scale, making it difficult to set a unique
threshold for a general estimation. Also, the criterion is based
on intuition and is not fundamentally true. The DDPs may
have uncertainty (positional and rotational noises, and also
bouncing) in the real world, which are not considered by the
method and may invalidate the intuition. For these reasons,
more advanced methods need to be explored.

B. Learning-based method

In the second method, we use machine learning to predict
DDPs. We use a sim-to-real method [68] to obtain the training
data and train different classifiers to judge if an SPP has a
correspondent DDP.

1) Training data: The training data comprises a data sec-
tion and a label section. The data part comprises the contact
polygons, the position of the object’s CoM, and the support
surfaces of the TCF. They are projected onto a horizontal
plane and formulated as a 2D grayscale image shown in Fig.
8 to simplify numerical computation. In detail, we assume a
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Fig. 8: An SPP shown in (a) is converted into a grayscale
image in (c) by using the top view shown in (b).

grayscale image with 224 × 224 pixels. The background of
the image is white (grayscale value: 255). The regions of the
projected support polygons and the contact polygons are set to
220 (support surfaces) and 0 (contact polygons). The projected
CoM is formulated as a circular patch. Its color is computed
using vgrey = φ ·hcom, where φ is the ratio between a real-world
distance and the numbers of image pixels used to represent
it, hcom indicates the vertical distance from the CoM to the
bottom point of a TCF. The vgrey essentially normalizes hcom

considering the dimensions of the TCF and the image.
The label section is collected by physical simulation. We

place a work table and a TCF in simulation and generate
the candidate releasing poses by randomly elevating an object
from their SPPs, dropping the object from the candidate
poses, and examining the finally stabilized poses. Unlike
the analytical method, we add noises to the releasing poses
to take into account uncertainty. The object falls from the
releasing poses with random noises, and we compare the
object’s stabilizing CoM with the CoM of the expected SPP
when it gets stabilized. If the two CoMs coincide, a successful
trial is recorded. Otherwise, a failure is recorded. Here we
use the CoM as the reference to avoid misjudging symmetric
objects with small support surfaces (e.g., balls and cylinders).
The configurations of these symmetric objects are considered
to be identical when moving around the symmetry center. By
comparing the CoMs instead of the configurations, we may
avoid misjudging the identical configurations. We run 100
trials for each releasing pose and compute a success rate. If
the success rate is more significant than a given threshold, the
releasing pose will be labeled as a positive sample.

2) Classifiers: Using the training data collected in the last
section, we train classifiers to predict if the object dropped
from a releasing pose can rest at an expected SPP. The
classification is a simple binary one since there are only
two labels. Various methods like Support Vector Machine
(SVM), Fully Connected Network (FCN), and Convolutional
Neural Network (CNN) can be used to model the classifier.
Specifically, we implement and compare a linear SVM, a four-
layer FCN, and an Alexnet-CNN. The detailed results and
discussions about the implementation and comparison will be
presented in Section.VIII-B.

VI. Plan Grasp Configurations and Regrasp Sequences

This section presents detailed releasing and regrasp planning
algorithms for adjusting grasping precision. The algorithms
are partially based on our previous work published in [66]

and [69]. First, we plan grasps configurations for an object
without considering any obstacles using the methods presented
in [66]. Then, based on the planned grasp configurations, we
generate two sets of grasp configurations for the SPP and DDP
in each SPP-DDP pair while considering different levels of
collisions. Finally, we build a regrasp graph [69] by reasoning
and connecting the grasp sets associated with all SPP-DDP
pairs, and search the graph to obtain regrasp sequences.

Fig. 9 and 10 exemplify the above workflow using the L-
shape object. Fig.9(a) shows the planned grasp configurations
when there are no surrounding obstacles, and the object pose
is aligned with the global frame. Fig. 9(b-c) show an SPP
and its associated grasp configuration set. These grasps in
the set are transformed from (a) along with the object pose.
The grasp configurations that collide with the TCF after the
transformation are removed. Fig. 9(d-j) show the DDP paired
with the SPP and the procedure for generating its associated
grasp configuration set. Fig. 9(d) is the DDP. Fig. 9(e) is
the grasps transformed from (a), with the ones in collision
with the TCF removed. Fig. 9(f) shows the swept volume of
the released object. The grasps in (e) are further examined
considering the swept volume. If an opening hand collides
with the swept volume, the released object will collide with
the hand when it falls onto the TCF, leading to an unexpected
resting pose. Thus, we further examine the collision between
the grasp configurations in (e) and the swept volume, and
remove the collided ones. Fig. 9(g.1-2) and 9(h.1-2) show a
collision-free and a collided examples respectively. The grasp
configuration in Fig. 9(g.1) does not collide with the swept
volume after releasing in Fig. 9(g.2). Contrarily, the grasp
configuration in Fig. 9(h.1) get collided in Fig. 9(h.2). Fig.
9(i) highlights all collided grasp configurations in (e) with red
color. Fig. 9(j) shows the remaining collision-free grasps.

Fig. 10 shows the regrasp graph built using the two grasp
configuration sets in Fig. 9(c) and (j). The black maximally
connected graphs in Fig. 10(a) and (d) show the transit
relations among the grasp configurations associated with the
initial and goal object poses. The black maximally connected
graphs in Fig. 10(b) and (c) show the transit relations among
the grasp configurations associated with the DDPs and their
pairing SPPs. The blue edges among the maximally connected
graphs show the transfer relations among the grasp configura-
tions associated with different object states. The yellow edges
represent strong connections between the black maximally
connected graphs in Fig. 10(b) and (c). They indicate that
a grasp configuration associated with a DDP can transit to
another grasp configuration associated with its pairing SPP. To
precisely regrasp the L-shape object, our planner will search a
path on the graph by starting from one node in (a) (the initial
grasp) and ending at another node in (b) (the final grasp). The
path essentially maps to a sequence where the object will be
grasped from the initial pose (a node in (a)), moved to a DDP
(a node in (b)), dropped down onto the TCF and regrasped (a
node in (c)), and finally moved to the goal (a node in (d)).

VII. Experiments and Analysis
This section includes three parts. First, we compare the

methods for estimating the DDP-SPP pairs. Second, we use
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Fig. 9: (a) Grasp configurations planned without considering
any surrounding obstacles or pose changes. (b) An SPP. (c)
The grasp configuration set associated with the SPP in (b). (d)
A DDP. (e) Transformed collision-free grasps from (a), with
the ones in collision with the TCF removed. (f) Swept volume
of the dropped object. (g-h) Releasing hands may collided with
the swept volume. (i) Grasp configurations that collide with
the swept volume are highlighted in red and will be removed.
(j) Grasp configurations associated with the DDP.

the most satisfying method to perform regrasp and examine
the regrasp precision. Third, we validate the benefits of the
proposed method using real-world assembly tasks.

A. Comparison of the DDP estimation methods

We proposed one analytical method and three learning-
based methods in Section V-B-2) for estimating the DDPs. In
this subsection, we compare their performance using physical
simulation. Especially for the learning-based methods, we use
the 14 primitives shown in Fig. 11(a) to obtain the training
data. The primitives are scaled from 50% to 150% with 10%
granularity, as shown in Fig. 11(b), to obtain 154 objects.
Using these objects, we get 4464 SPPs. We collect training
data using these SPPs in a PyBullet-based physical simulator.
According to the real-world model, the friction coefficient
and the bounce rate between the object and the TCF in the
simulator are set to 0.3 and 0.2. The inner edge length of
the TCF is set to 50.0 mm. Its d f is set to 28.0 mm. We
collect the training data by repeatedly elevating the objects
from the SPPs to random start positions between h− = 0.8d f

and h+ = 1.5d f with maximally 3.0 mm positional and 3.0◦

rotational noises, and dropping them from the start position.
When the objects get stabilized, we compare their CoMs with
that of the source SPPs and label the results. Through the
physical simulation, we collected 1770 positive samples and

Fig. 10: A regrasp graph. (a) Initial pose and its subgraph.
(b) DDP and its subgraph. (c) SPP and its subgraph. (d) Goal
pose and its subgraph. Each black node in the graph indicates
one grasp pose. Each circle indicates an object pose. The
nodes inside the circle are the grasp configurations associated
with the corresponding pose. First, the nodes in (a), (b), (c),
and (d) are connected separately to represent transit relations.
Second, the shared grasp configurations between (a) and (b),
and between (c) and (d) are connected for transfer relations.
Third, the nodes in (b) and (c) are connected to represent
transit relations between DDPs and SPPs.

2674 negative samples. 80% of the data is used to train the
estimators with cross-validation used to verify the results. The
remaining 20% is used for the test.

The results using different methods (including the analytical
one) are shown in Fig. 12. The learning methods have better
performance, of which the AlexNet shows the highest success
rate (90.1%). The analytical method has poor performance
because “finding the SPPs with enough stability quality” needs
a threshold. For practical purposes, we only used the most
stable configuration, which easily leads to ignored DDPs.
Meanwhile, even if one configuration has the most stable
stability, there is no guarantee that its elevated counterpart
is a DDP. The DDPs found by the method may thus be
unconvincing.

Besides the simulated data, we also validate the various
methods using four real objects shown in Fig. 13. They
include: (a) an L-shape object; (b) a T-junction; (c) a bracket;
(d) a bearing housing. According to the object’s size, we chose
a 50.0 mm-TCF for the L-shape object and bearing housing,
and a 70.7 mm-TCF for the bracket and the T-junction. For
the learning-based method, we used the classifiers trained
above to judge DDP-SPP pairs. For the analytical method,
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TABLE I: Comparing the success rate of different estimation methods.

L-shape object T-junction Bracket Bearing housing

Method Unpaired DDP-SPP Total(%) Unpaired DDP-SPP Total(%) Unpaired DDP-SPP Total(%) Unpaired DDP-SPP Total(%)

Analytical 48/48 6/6 100 0/48 0/24 0 42/42 12/12 100 72/72 6/72 54
SVM 48/48 6/6 100 38/48 14/24 72 33/42 12/12 83 72/72 45/72 81
FCN 48/48 6/6 100 37/48 14/24 71 32/42 9/12 76 72/72 50/72 85
AlexNet 48/48 6/6 100 41/48 18/24 82 38/42 10/12 89 72/72 60/72 92
* The Unpaired and DDP-SPP columns are presented in a fraction style. The denominator values indicate the ground truth obtained using repeated
physical simulation. The numerator values indicate the estimated results.

Fig. 11: Objects used for obtaining the training data. By
scaling the 14 primitive objects in (a) using the rules shown
in (b) (resize the object from 50% to 150% at every 10%), in
total 154 objects are prepared.

Fig. 12: Comparison of the
different estimation methods.
The learning-based methods
have higher estimation suc-
cess rate. Especially, the
AlexNet method is the most
effective one.

we use the most stable configuration. The results are shown
in Table. I. The table’s ground truth values (Denominators
of the “Unpaired” and “DDP-SPP” columns) are obtained by
repeated physical simulation. There are 54 SPPs for the L-
shape object. 6 of them have DDP-SPP pairs, as shown by the
denominators of the L-shape object’s “DDP-SPP” column. The
remaining 48 does not have counterpart DDPs, as shown by
the denominators of the L-shape object’s “Unpaired” column.
The numerators of the “Unpaired” column show the actual
number of SPPs that do not have a DDP. The numerators
of the “DDP-SPP” column show the actual number of SPPs
that have a DDP. The T-junction has 72 SPPs, where 24
of them have DDP-SPP pairs, and the remaining 48 do not
have DDP counterparts. The bracket has 12 DDP-SPP pairs
and 42 unpaired SSPs. The bearing housing has 72 DDP-
SPP pairs and 72 unpaired ones. The results show that the
analytical method works effectively for the L-shape object and
the bracket, but performs poorly for the T-junction object and
the bearing housing. The learning-based methods are better on
average but may have shortages for specific objects (i.e. the
bracket). The AlexNet method is the best of all learning-based

Fig. 13: The objects used for testing the planner. (a) L-shape
object. (b) T-junction. (c) Bracket. (d) Bearing housing.

methods, which is consistent with the results shown in Fig. 12.
We further performed real-world dropping tests using the

four objects. The process is as follows. First, we place the
object with a selected SPP on the TCF. Then, the robot will
grasp the object, elevate it to a DDP with random offset noises,
and open the gripper to release the object. Finally, we observe
the dropping process, check if the object gets stabilized at the
selected SPP, and record the results. The process is repeated
30 times for each SPP to get a statistical view. Fig. 14 shows
results. Due to page limits, it is impossible to show all SPPs
and we only present some representative DDP-SPP cases for
readers’ convenience. The results indicate that the estimation
mostly accords with the real-world results.

Since the analytical method had an extremely bad perfor-
mance on the T-junction object and the bearing housing, we
further analyzed the detailed contact between these objects and
the TCF surfaces to understand the reason. We found the DDP-
SPP pair that has the best SPP stability is like Fig. 12(b.3)
and (d.2). These SPPs have high static stability qualities, but
their contact areas are distributed around the objects’ CoMs
(as shown by the 2D grayscale images of the figure). A large
section of an object is not in contact with the inner surface of
the TCF. The object will have a low chance to stably “stand”
on the distributed contact when being dropped. It may get
stuck by the edges of the TCF.

B. Performance on eliminating uncertainty

In the experiments of this subsection, we use robotic peg-
in-hole insertion tasks to evaluate the performance of the
proposed method on eliminating uncertainty and compare it
with the conventional method that does not use TCF regrasp.

Fig.15 shows the difference of the methods used for com-
parison. The first method is the conventional one which
directly plans to move the picked object to the goal pose,
as shown in Fig.15(a). The method is abbreviated as DPM
in the following context. The second method is our proposed
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Fig. 14: The results of testing the estimator using different objects. (a) L-shape object. (b) T-junction. (c) bracket. (d) bearing
housing. The SPPs of each object are selectively shown. The left column shows the real-world photos, the middle column
shows the placements in the simulator, and the right column illustrates the projected images.

method, in which we build and search a regrasp graph to find a
regrasp sequence. Especially, we propose two implementations
of the method: Regrasp with All Grasps (RAG) and Regrasp
with a Prescribed Grasp (RPG). In the RAG implementation,
all the grasp configurations for the goal pose and SPP are
considered to build the regrasp graph, as shown in Fig.15(b).
The implementation exactly follows the graph shown in Fig.
10. In the RPG implementation, a goal SPP and a goal
grasp configuration are prescribed manually, as shown in
Fig.15(c). The motion between the prescribed goal SPP and the
prescribed goal pose using the prescribed grasp configuration
is taught instead of planned. From the viewpoint of Fig. 10,
the connections in Fig. 10(c) and Fig. 10(d) are replaced with
a given path. The regrasp sequence planner plans to (c) and
uses the given path to reach (d). Both the RAG and RPG
methods can take advantages of the TCF fixture to reduce
the uncertainty of the yellow object poses. However, the RAG
implementation’s performance relies a lot on a robot’s absolute
precision. The robot action is online generated until the last
step. In contrast, the RPG method leverages taught motion to
move the object from the TCF to the final goal. Its performance
is dominated by a robot’s repeatability precision. We compare
all the DPM, RAG, and RPG methods (or implementations)
in the experiments. The holes of the insertion tasks in the
experiments have different clearance, as shown in Fig. 16(a).

The diameters of the holes range from 10.1 mm to 18.0 mm.
The length and diameter of the peg are 75.0 mm and 10.0
mm, respectively. The clearance thus ranges from 0.1 mm
to 8.0 mm. We run the insertion for each hole using one
of the methods repeatedly by 15 times to obtain an average
success rate, and get the methods’ performance on eliminating
uncertainty by considering the smallest clearance with 100%
success rate.2 In each repetition, we place the object in a
random initial position on a table. A robot will detect it using
a PhotoneoPhoXi 3D Scanner M depth sensor and move it
to a pre-given goal pose with or without regrasp at the TCF.
At the goal pose, the robot will insert the peg by moving a
straight line with position control.

The results are shown in Fig. 16 as a bar chart, where
the horizontal axis is the different hole diameters, and the
vertical axis is the average success rate. The results tell that
the smallest clearance of the DPM, RAG, and RPG methods
are 7.0 mm, 1.0 mm, and 0.1 mm, respectively. The methods
share the same uncertainty origins, including visual recogni-
tion, fabrication, robotic control, etc., but they eliminate the
uncertainty to different ranges. The RAG clearance is larger
than RPG, which confirms that the robot has low absolute
precision compared to repeatability precision.

2A 100% average success rate means the method can always suppress
the peg’s uncertainty within a range indicated by the clearance value.
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Fig. 15: Illustrations of the task process using different methods. The initial pose, the intermediate DDP, and their associated
grasps are illustrated in a yellow color. The intermediate SPP, the goal pose, and their associated grasp poses are illustrated
in a cyan color. (a) DPM: Directly plan to move the object to the goal pose. (b) RAG: An implementation of the proposed
method that plans regrasp using all grasp configurations for the goal pose and the regrasp. (c) RPG: Another implementation
that plans regrasp using a prescribed grasp configuration for the goal pose and the regrasp. The cyan object poses and grasp
configurations (a single one for each object pose) indicate the prescribed items.

Fig. 16: The success rates (%) of inserting a peg into holes
with different diameters using different methods.

C. Performance in practical real-world tasks

Finally, we test the proposed method using four practical
real-world assembly tasks: (1) Inserting the L-shape object
into a rectangular groove; (2) Sheathing the T-junction with a
tube; (3) Aligning the holes of the bracket and a base plate;
(4) Mounting the bearing housing on a bracket. These tasks
are frequently seen at industrial manufacturing sites.

1) Inserting the L-shape object: In this task, we fix an
acrylic board with a rectangular groove on a table, and ask the
robot to insert the L-shape object into the rectangular groove.
Fig. 17(a.1) shows the sizes of the object and the groove. The
clearance between them is 2.0 mm.

2) Sheathing the T-junction: The goal of this task is to
sheathe a tube into the T-junction. The tube is vertically fixed
on the table, and the robot is asked to manipulate the T-
junction to perform the sheathing action. Fig. 17(b.1) shows
the sizes of the T-junction and tube. The maximum clearance
between the inner circle of the T-junction and the outer circle
of the tube is 0.3 mm.

3) Aligning the holes: In this task, a base plate with thread
holes is fixed on a table. The two through-holes on the short
side of the bracket are required to be aligned with the thread
holes on the base plate. If a screw bolt can be fastened in the
thread holes across the through-holes, we judge the alignment
to be successful. Fig. 17(c.1) shows the sizes of the bracket and
the thread holes. The difference between the inner thread-hole
diameter and through-hole diameter is the task’s clearance. Its
value is 1.7 mm.

TABLE II: Results of various methods in the practical tasks.

Clearance DPM RAG RPG

Insert L-shape 2.0 mm 2/10 10/10 10/10
Sheath T-junction 0.3 mm 0/10 0/10 10/10
Align holes 1.7 mm 0/10 10/10 10/10
Mount bearing housing <0.1 mm 0/10 0/10 10/10

4) Mounting the bearing housing: This task requires the
robot to mount the bearing housing on a fixed bracket. The
sizes of the bearing housing and mounting hole are shown in
Fig. 17(d.1). The clearance between them is less than 0.1 mm.

Like the previous experiments, the environment model,
object models, and the configuration of the TCF are pre-
given and pre-calibrated. Also, the goal poses of them in the
assembly tasks are known. The initial poses of the objects
are random. The conventional method (DPM) and the two
implementations of our method (RAG and RPG) are tested.
For each of the above tasks, we run ten times of experiments
using different methods. Table II shows the experiment results.
Using the DPM method, only two successful attempts were
observed in inserting the L-shape object. All other tasks failed.
Using the RAG method, all attempts to insert the L-shape
object and align the holes succeeded, but no success was
observed in the tasks of sheathing a T-junction and mounting a
bearing housing. All tasks were successfully performed when
the RPG method was used. The results show that the proposed
method can provide reliable and robust performance for these
tasks, especially when the RPG method is used.

Fig.17(a.2-d.2) shows execution pictures of some successful
results in Table II. Readers may also refer to the video
supplementary attached to this manuscript to observe the
detailed robotic actions.

VIII. Conclusions and FutureWork

This paper presented a regrasp planning method to eliminate
grasp uncertainty. The proposed method first computes all
SPPs on a TCF, then estimates the DDP to find all DDP-
SPP pairs, and finally generates the grasp configurations for
releasing and regrasping the object. In particular, an analytical
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Fig. 17: (a) Inserting the L-shape object. (b) Sheathing the T-junction. (c) Aligning the holes. (d) Mounting the bearing housing.
The left column shows the main boundary dimensions of the components and also points the assembly direction. The right
column shows the demonstration of the successful task.

and a learning-based method are proposed for the DDP esti-
mation. Experimental results verified that the learning-based
method is more reliable than the analytical one. The regrasp
sequence planned by the proposed method is demonstrated
to reduce uncertainty to less than 0.1 mm using an RPG
implementation, which is way more robust than a conventional
regrasp sequence that does not take into account a TCF.
Several real-world applications are also presented to show the
proposed method’s promising usage in assembly tasks.

Note that we ignored the influence of different materials
in our work, and we assumed uniform density, fixed friction
coefficient (0.3), and bounce rate (0.2). We also ignored the
rotation around an object’s symmetric axis (i.e., rotation of
the bearing housing). It is thus impossible to stabilize this
axis using the assumed TCF. In the future, we are interested
in building a large deep neural network that generalizes to
many common materials and developing flexible features and
planners to consider more complicated object shapes.
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