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Abstract

A theory for analyzing the radiative and reactive electromagnetic energies of a radiator in vacuum is presented. In vacuum,

the radiative electromagnetic energies will depart from their sources and travel to infinity, generating a power flux in the space.

However, the reactive electromagnetic energies are bounded to their sources. They appear and disappear almost in the same

time with their sources, and their fluctuation also causes a power flux in the space. In the proposed theory, the reactive

electromagnetic energies of a radiator are defined by postulating that they have properties similar to the self-energies in the

charged particle theory. More importantly, in addition to a main term of source-potential products, the reactive energies contain

a special energy term which will last to exist a short time after the sources disappear. This oscillating energy is related to the

electric displacement and the vector potential, and seems to be responsible for energy exchanging between the reactive energy

and the radiative energy in the radiation process, performing like the Schott energy term. As the Poynting vector describes the

total power flux density related to the total electromagnetic energy, it should include the contributions of the propagation of

the radiative energies and the fluctuation of the reactive energies. The mutual electromagnetic couplings between two radiators

are also defined in a similar way in which the vector potential plays a central role. The reactive electromagnetic energies can

be evaluated with explicit expressions in time domain and frequency domain. The theory is verified with the Hertzian dipole

and numerical examples.
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The flaw in the previous version that in the case of Hertzian dipole the reactive magnetic energy does not exactly equal the 

energy stored in the inductor in the equivalent circuital modal has been fixed. More numerical examples will be included 

in my formal paper.) 
Abstract—A theory for analyzing the radiative and reactive electromagnetic energies of a radiator in vacuum is 

presented. In vacuum, the radiative electromagnetic energies will depart from their sources and travel to infinity, 
generating a power flux in the space. However, the reactive electromagnetic energies are bounded to their sources. 
They appear and disappear almost in the same time with their sources, and their fluctuation also causes a power 
flux in the space. In the proposed theory, the reactive electromagnetic energies of a radiator are defined by 
postulating that they have properties similar to the self-energies in the charged particle theory. More importantly, 
in addition to a main term of source-potential products, the reactive energies contain a special energy term which 
will last to exist a short time after the sources disappear. This oscillating energy is related to the electric displacement 
and the vector potential, and seems to be responsible for energy exchanging between the reactive energy and the 
radiative energy in the radiation process, performing like the Schott energy term. As the Poynting vector describes 
the total power flux density related to the total electromagnetic energy, it should include the contributions of the 
propagation of the radiative energies and the fluctuation of the reactive energies. The mutual electromagnetic 
couplings between two radiators are also defined in a similar way in which the vector potential plays a central role. 
The reactive electromagnetic energies can be evaluated with explicit expressions in time domain and frequency 
domain. The theory is verified with the Hertzian dipole and numerical examples. 

Index Terms—Reactive energy, electric energy density, magnetic energy density, radiative energy, Poynting vector 

I. INTRODUCTION 

The electromagnetic radiation problems have been intensively investigated for more than a hundred years. It is a little 
bit strange that there is still no widely accepted formulation for evaluating the stored reactive energies and Q factors of 
radiators[1]-[14]. The main difficulty may come from the fact that there is no clear definition in macroscopic 
electromagnetic theory for the reactive electromagnetic energy. It is commonly known in classical charged particle theory 
that the fields associated with charged particles can be divided into self-fields and radiative fields[15][16]. The self-fields 
include the Coulomb fields and the velocity fields, carrying self-energies, part of it also referred to as Schott energy in 
some literatures[17]-[19]. The radiative fields are generated by the acceleration of charged particles, emitting radiative 
energies to the surrounding space. The self-fields/self-energies are considered to be attached to the charged particles, or 
simply speaking, they appear with the charged particles and disappear with the charged particles. On the contrary, after 
being radiated by the charged particles, the radiative fields/energies will depart from the sources and propagate to the 
remote infinity. They exist after their generation sources disappeared and can couple with other sources they encounter in 
their journey. Although it is natural to consider that the reactive energies in macroscopic electromagnetics is similar to the 
self-energies or the Schott energy, no successful attempt has been found or well accepted to handle the reactive energies 
in this manner. No expressions for reactive energies are established in macroscopic electromagnetics that can be derived 
rigorously from the self-fields of charged particles. 

On the other hand, Poynting vector is widely considered as the electromagnetic power flux density[20]. Poynting 
Theorem describes the relationship between the Poynting vector, the varying rate of the total electromagnetic energy 
densities, and the work rate done by the exciting source. It provides an intuitive description of the propagation of the 
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electromagnetic energy. However, interpreting the Poynting vector as the electromagnetic power flux density has always 
been controversial [21]-[31], and some researchers have pointed out that Poynting Theorem may have not been used in the 
correct way in some situations[32][33]. This difficulty is largely due to the fact that it is not easy to separate from the 
Poynting vector the true radiative power flux.    

It is known that the Poynting Theorem is not convenient to use for evaluating the reactive energies stored by radiators 
in an open space [5][13], which has been investigated for decades. For harmonic fields, the total electromagnetic energy 

obtained by integrating the conventional energy densities of  0.5 D E and  0.5 B H over the infinite three-dimensional 

volume is infinite because they account for the total energy consisting of the radiative energy and the reactive energy. For 
harmonic fields over the time interval ( t    ), the radiative energy occupies the whole space and is infinitely large 
[14]. Some researchers suggested that those fields associated with the propagating waves should not contribute to the stored 
reactive energies. The reactive energies can be made finite by subtracting from the total energy density an additional term 
associated with the radiative power. However, it is not easy to give a general expression for that term because the 
propagation patterns are quite different for different radiators [1][5].  

Based on these observations, the macroscopic electromagnetic radiation issue is revisited and a new energy/power 
balance equation at a certain instant time is proposed, which may give an intuitive and reasonable demonstration that the 
Poynting vector does not only contain the radiative power flux density but also a pseudo power flux caused by the 
fluctuation of the reactive energies. 

It is not the aim of this paper to argue that the reactive energies in the macroscopic electromagnetics are exactly the self-
energy or the Schott energy in the classical charged particles. Instead, a definition for the reactive electromagnetic energies 
is proposed based on the hypothesis that the reactive energies in the macroscopic electromagnetics bear the same 
characteristics as the self-energies or Schott energy: (1) they are attached to the sources. They will disappear after their 
sources disappeared; (2) the definition is in consistent with the stored energies associated with static charges and steady 
state currents; (3) the reactive energies do not propagate like the radiative energies, but their fluctuation may propagate at 
the light velocity in vacuum just like the radiative fields. A theory is proposed based on these considerations, in which the 
radiative energies and the reactive energies can be separated. A special energy term is included in the reactive energy, 
which performs like the Schott energy in charged particle theory [18]. As a consequence, the Poynting vector is divided 
into two vectors. One vector mainly accounts for the power flux density associated with the radiative energies and the other 
vector accounts for the fluctuation of the reactive energies. The theory also provides a simple way to define the mutual 
electromagnetic couplings between two radiators. One radiator may exert electromagnetic couplings to other sources 
through its potentials instead of fields.  

II.  FORMULATIONS FOR REACTIVE AND RADIATIVE ENERGIES 

For the sake of convenience, we define the energy term associated with a charge density and a current density in free 
space as follows, respectively, 

       1 1 1 1 1

1
, , ,

2s sV V
W t t t d w t    r r r r r   (1) 

       1 1 1 1 1

1
, , ,

2s s
J JV V

W t t t d w t d  A r J r r r r   (2) 

where the scalar potential   and the vector potential A  evaluated at the observation point r  and the time t  are 

defined in their usual way, 

   1
1

0 1

,
,

4sV

t
t d

R







 
r

r r   (3) 

   1
0 1

1

,
,

4sV

t
t d

R





 
J r

A r r   (4) 

In the above equations,  1, t r and  1, t J r are the charge density and current density at source point 1 sVr  and 

retarded time t t R c   , in which c is the light velocity in vacuum and 1 1R  r r  is the distance between the two 

positions. 0  and 0  are respectively the permittivity and permeability in free space. The potentials have to satisfy the 

Lorentz Gauge, and their reference zero points are put at the infinity. 
From Maxwell equation, we can obtain the following relationships, 

         1 1 1 1

2 2 2 2 t
  

     

A

D E D D   (5) 
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  1 1 1 1

2 2 2 2t


        


D

B H A J A A H    (6) 

where E , H and D , B  are the electromagnetic fields/flux density associated with the sources. Integrating (5) over a 
domain a sV V  and making use of (1) gives 

  1

11 1 ˆ
22 2a aV S

W d dSt
t

        
A

r D nD E D    (7) 

where aS  is the surface enclosing aV , with outward normal unit n̂ . (7) shows that  W t  can be separated in to two 

parts, one part is stored in the domain aV , the other part will pass through aS  and be stored in the region outside aV . 

Especially, recalling that    2ˆlim 1
r

O r


D r  ,  lim 1
r

O r


 , where r̂  is the unit radial vector, the surface integral at 

the RHS of (7) approaches zero at S  when r  . Therefore, the electric energy defined by  W t  is really stored 

in the space with no energy leaking to the infinity. Furthermore, it can be checked that  W t  satisfies the three terms 

listed in the previously specified hypothesis. Therefore, it is reasonable to define the reactive electric energy of the radiator 
as 

       1

1 1

2 2
e e e

react tot radV
W d W W Wt t t t

t




       
A

rD E D    (8) 

where     10.5
tot

e

V
W t d



  rD E  denotes the total electric energy, and     10.5e
rad V

W dtt


    rD A  denotes the total 

radiative electric energy. It’s important to emphasize that because    e
reactW Wt t  holds for every time instant t, the 

reactive electric energy  e
reactW t  become zero when the charge source disappears. In other words, after the charge source 

decay away completely, there may still exist electromagnetic fields in the space, but the volume integral of (8) is zero.    
Integrating (6) over the domain a sV V  and making use of (2) gives 

  1

1 1 1 ˆ
2 2 2a a

J V S
W d dSt

t

             
D

r nB H A H A   (9) 

However, it is not proper to define  JW t  directly as the reactive magnetic energy. Firstly, the surface integral in (9) is 

usually a nonzero but bounded value at S  since    2ˆlim 1
r

O r


 H A r  . Therefore,  JW t  is not an energy purely 

stored in the whole space V  because it contains a part of energy that always flows towards the infinity, relating to the 

electromagnetic radiation. Secondly, in vacuum, the total radiative electric energy of a radiator should equal its total 

radiative magnetic energy. Denote the total magnetic energy as     10.5
a

m
tot V

W dt   rB H . If  JW t  is defined as the 

reactive magnetic energy, it can be checked from (9) that the radiative magnetic energy does not equal the corresponding 
radiative electric energy  e

radW t . Thirdly, as has been verified in our previous works[14][34][35], in the case of the 

Hertzian dipole, the reactive electric energy defined by  e
reactW t  is exactly in agreement with the electric energy stored 

in the capacitor in its equivalent circuit model proposed by Chu [36]. However, the reactive magnetic energy calculated 
with  JW t  does not exactly equal to the magnetic energy stored in the equivalent inductor. Only their time average 

values are equal. Taking into account of these factors, the definition of the reactive magnetic energy of a radiator is modified 
by making the total radiative magnetic energy equal the total radiative electric energy. Explicitly, we define 

      1

1 1

2 2
m m m

react tot rad V
W W W dt t t

t

        
A

rB H D  (10) 

wherein    m e
rad radW Wt t . Making use of (6), the reactive magnetic energy can be expressed by  

   1 1

11 1 ˆ
22 2s

m
react V V S

W d d dSt
t 

              r r nA J A HD A    (11) 

Apparently, an additional term, the second volume integral on the RHS, is used to balance the radiative magnetic energy 

and the radiative electric energy. The leakage energy to infinity contained in  JW t  is now accounted by the surface 

integral on the RHS. For pulse radiators, the surface integral vanishes because their waves never reach the infinity. It is 

clear that  JW t  appears/disappears with the current source  , tJ r . In the following, we will show that the second 
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volume integral on the RHS will also disappear not simultaneously but soon after its sources disappeared. 
The electric flux density can be expressed by  

     

       

0 0

1 1 1 11 1 1 1 1 1 1 12

, , ,

1
, ,

s sV V

t t t
t

G dt d G dt dt t t R c t t t R c
c

  


 

 


   



         

D Ar r r

r J rr r 
  (12) 

where the superscript “.” means derivative with respect to time. The time domain Green’s function can be expressed with 

the Dirac delta function, 

   1
1 1 1

1

, ;
4

t R c
G t R c

R





r r   (13) 

Denote the second volume integral as  ADW t . Substituting (4) and (12) into (12) to get integrations over source region 

   

     0 2 2 22 21 1 1 1 1 11 1 1 12

1

2

1
,, ,

s s s

AD V

V V V V

W dt
t

G dt d dtG dt d G dt dt t
c

 





 

 





         



     

rD A

J r rrr J rr r



 
  (14) 

where  1,2 1,21,2 t t R cG G    and 1,21,2R  r r . With the derivations detailed in the Appendix, the integral can be 

explicitly expressed by an integration of the source distributions, 

   

       
21

1

2
2 11 2 21 1 21 2

0 21

1

2
1 1

, , 2 , 2 ,
8 s s

AD V

t

V V t r c

W dt
t

d dc dt r c t r c
r

     









 



        



  

rD A

r rJ Jr r r r 
  (15) 

where 21 2 1r  r r . Note that  1 1, t r /  1 1, tJ r   and  2 2, t r /  2 2, tJ r  stand for the charge sources at  1 1, tr  and 

 2 2, tr , respectively. They are the same function related to the same source distribution. For a pulse source in  0,T , it 

can be checked that the integral becomes zero when 21,max 2t T r c  , which reveals that after the sources disappeared, 

although    , , tt t   A Dr r  is not zero everywhere in the space, its volume integral over the whole space, i.e., 

 ADW t , will soon become zero. Obviously, 21,maxr  is the largest distance between two source positions. 

The reactive electromagnetic energy is the sum of the reactive electric energy and the reactive magnetic energy, 

  1

1 1

2 2
react V

W t d
t

        
A

rD E B H D   (16) 

or numerically, it is equal to  

       1 1

11 1
22 2s

react J ADV V
W d d W Wt t t

t 


          r rA J D A   (17) 

with     10.5AD V
W t dt



   rD A . The total radiative energy is the sum of the radiative electric energy and the 

radiative magnetic energy, which is  

      1
e m

rad rad rad V
W W W dt t t

t

       
A

rD   (18) 

For static electromagnetic fields, the radiative energy is zero, and the reactive electric (magnetic) energy is exactly the 
stored electric(magnetic) energy associated with the static charge sources (the steady state current sources).  

Denote  

 0 1

1

2rad V
W dt

t t

        
D A

rA D   (19) 

The radiative energy can then be divided into 
     0rad rad ADW W Wt t t    (20) 
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With these definitions, the total electromagnetic energy can be expressed with  

             0
e m

tot tot tot rad react rad JW W W W W W Wt t t t t t t        (21) 

As shown in the Appendix,  0radW t  can be evaluated with an integration over the source region,  

 
       

       
21

21

1 2 21 1 21 2

0 2 1
20 21

1 2 21 1 21 2

, , , ,
1 1

8 , , , ,s s

t

r c

rad tV V

r c

dr c r c
W d dt

r c dr c r c

       

    

       
      


 



r r r r
r r

J J J Jr r r r

 

 
  (22) 

It can be checked that for a pulse source over  0,T ,    0 0rad radW Wt T  for t T . However, as seen from (20), the 

total radiative energy will continue to vary in a small time period 21,max, 2T T r c    due to the effect of   ADW t .  

Now we may give an interpretation to the radiation process of a pulse radiator with sources existing in  0,T . The 

reactive electromagnetic energy generated by the pulse radiator includes two parts, as shown in (17). The first part is 
 JW t . It is strictly attached to the sources and appears/disappears simultaneously with the source. However, the second 

part,  ADW t , does not disappear simultaneously with its source. It may still remain nonzero within the period of 

21,max, 2T T r c   , i.e., will disappear shortly after the source died away. Since the sources disappeared for t T , the 

nonzero reactive energy  ADW t  cannot be absorbed in vacuum since there is no sources. Because of energy conservation, 

the only possible way is that  ADW t  all converts to radiative energy, corresponding to the change of the radiative energy 

in the same time interval after the source disappeared. If we assume that the increasing rate of the total radiative energy in 
this stage equals the decreasing rate of  ADW t , then we can get the relationship expressed in (20). Although I know the 

argument may become exhausting, it is still proposed here to relate  0radW t  to the radiative rate and consider  ADW t  

as something like the Schott energy observed in papers concerning charged particles [17]-[19]. As is discussed in [19], the 
radiation rate is always nonnegative and it describes an irreversible loss of energy, while the Schott energy changes 
reversibly. Judging from (17) and (20), it is reasonable to consider that  ADW t  plays a kind of role to exchange energies 

between the reactive energies and the radiative energies. On the other hand, for 21max 2t T r c  , although   0ADW t  , 

its integrand is not necessary to be zero everywhere. It causes an energy fluctuation propagating with the radiative fields 
and contributes to the Poynting vector.    

The Poynting Theorem correctly describes the relationship between the work rate done by the source, the total 
electromagnetic energy in region a sV V  containing the source, and the total electromagnetic power flux crossing the 

boundary aS  of the region,  

1 1

1 1
ˆ

2 2s a aV V S
d d dS

t

              E J r D E B H r S n   (23) 

where the Poynting vector  S E H  is conventionally regarded as the power flux density, like in the antenna society. 
With the definition of (16) and (18), it can be rewritten as  

1 1 1

1 1
ˆ

2 2s a a aV V V S
d d d dS

t t t

                            
A A

E J r D E B H D r D r S n   (24) 

which implies that the Poynting vector contains the contribution from the propagation of the radiative energy and the 
fluctuation of the reactive energy.  

Now we will show that the radiative energy part  0radW t  associated with a bounded volume is a convenient quantity 

for engineering application, Substituting (5) and (6) into (23) and reorganizing it gives 

   1

1 1
ˆ

2 2s a a
JV V S

d W d dSt
t t tt t

                             
D A

E J r r E H A H D nA D    (25) 

For the sake of convenience, a new vector is introduced for the integrand of the surface integral in (25), 

 0

1 1
,

2 2rad t
t

         
S E H H A Dr   (26) 

It has to be noted that 0radS  is not the radiative power density. Denote its surface integration as   
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  0
ˆ

a
Srad radS

P t dS  S n   (27) 

The total work done by the source is  

     , ,
s

t

exc V
W t d d  


      E r J r r   (28) 

Integrating both side of (25) gives 

       0 00

t

exc J rad radW W W P dt t t       (29) 

where  0radW t  is defined as (19) with the integration domain replaced by aV . Accordingly,  SradP t  can be 

interpreted as the part passing through the observation surface aS . Since it is not easy to find an explicit expression for 

the total radiative power passing the observation surface,  SradP t  can provide a very good measurement for it. As shown 

in the Hertzian dipole and the other examples,  SradP t  gives a kind of time average value of the total radiative power 

passing through the observation surface. (29) indicates that it is more convenient to use  0radW t  instead of  radW t  in 

many practical situations. 

For 21,max 2t T r c  ,      0J ADW Wt t   , the total radiative energy can be expressed with integration of  SradP t  

on an arbitrary observation surface enclosing the radiator,  

       max

min
0

t

rad rad Srad exct
W W P dt W Tt t t     (30) 

For pulse sources,  SradP t  has nonzero values over period  min maxt t t  , in which mint  and maxt  correspond 

respectively to the earliest and the latest time that the fields pass through the observation surface. In a special case, we may 
choose a sV V , and put the observation surface aS  directly on the surface of the sources. Assume that all radiative fields 

come out of aS will no longer interact with the sources. Ignoring the radiative energy stored in sV , we may obtain the 

power coming out of the surface of the sources as    

 0

1 1

2 2s
Srad V

P t d
t

              
 E J A J r   (31) 

Apparently,  SradP t  at different observation surfaces are not expected to be equal, but their integrations over the time 

interval  min maxt t t   are equal, including that of  0SradP t , since all the radiative energy of the pulse source in 

vacuum will eventually pass through the observation surface and propagate to infinity.  

III. MUTUAL COUPLINGS 

Assume that two radiators have sources of  1 1,J  and  2 2,J  in 1sV  and 2sV  in vacuum, respectively. The 

coupling electromagnetic energy from source-2 to source-1 is defined as 

 

   

       

       

1

1 2

21

12 1 2 1 2 11 2

2
1 2 2 12 1 2 2 121 1

2 12
0 21 1 2 1 21 2 21 1 21 2

1 1 1

2 2 2

, ,, ,1 1

8 , , 2 , 2 ,

s

s s

V

t
V V

t r c

W t d
t

t R c c t R ct t
d d

r dct r c t r c

 

 

     







      
       

        



  

J A rD A

r J J rr r
r r

J Jr r r r



 

  (32) 

and for that from source-1 to source-2,  

   

       

       

2

2 1

21

21 2 1 2 1 22 1

2
2 1 1 21 2 1 1 212 2

1 22
0 21 2 1 2 12 1 21 2 21 1

1 1 1

2 2 2

, ,, ,1 1

8 , , 2 , 2 ,

s

s s

V

t
V V

t r c

W t d
t

t R c c t R ct t
d d

r dct r c t r c

 

 

     







       
       

        



  

J A rD A

r J J rr r
r r

J Jr r r r



 

  (33) 

where 1,2A  and 1,2  are respectively the vector potentials and scalar potentials by the sources  1,2 1,2, J .  
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In this theory, the mutual coupling energies also include a Schott energy like term, which may be denoted by  
2 1A DW t  

and  
1 2A DW t . It is proposed in this theory that the mutual electromagnetic coupling occurs when the potentials from one 

source propagate to other sources and interact with them or their nearby fields. The mutual coupling is exerted through 
potentials instead of fields, so the electric and magnetic Aharonov-Bohm effect [38][39] may be interpreted with the 
classical electromagnetic theory in a simple way, as the change of the mutual coupling energies will inevitably introduce a 
force on the sources influenced by the mutual coupling. 

IV. RADIATION OF HARMONIC SOURCES 

For harmonic fields with time convention of j te  , the radiation is assumed to last temporally from   to  , so the 

radiative energy is infinitely large. The Poynting theorem can be applied to describe the balance between the time average 

powers and the varying rate of the energies, 

1 1 1 1
ˆ2

2 4 4 2s a aV V S
d j d dS                 E J r B H E D r E H n   (34) 

The same symbols are used for the corresponding phasors for the sake of convenience. From which the time average 
radiative power at infinity can be evaluated with source distributions, 

  1 1
ˆRe Re

2 2 s
rad av S V

P dS d


            
    E H n E J r   (35) 

However, the evaluation of the reactive energies in conventional formulation requires to subtract the radiative energy 
from the total energy. Since both the energies are unbounded, all those formulations based on energy subtraction are not 
quite satisfactory so far.   

With the theory proposed here, the power balance can be evaluated within any domain enclosed by an observation surface 

aS  enclosing the source region sV  ,  

*1 1 1 1 1
ˆ2

4 4 2 4 4s s aV V S
d j d j dS                              

  E J r A J r E H H A D n   (36) 

The time average radiative power crossing the observation surface can be obtained using the radiative power flux vector 

SradS   or the source distributions,  

       1 1 1
ˆRe Re

2 4 2a s
rad av S V

P j dS d                          
 E H H A D n E r J r r   (37) 

Note that the observation surface is not required to approach infinity for evaluating the radiative power. It can be checked 
that the result is in consistent with that obtained using the Poynting vector, as has been shown in [14] that 

1 1
ˆRe 0

4 4S
j dS 



        
  

 H A D n   (38) 

The average reactive energy can be calculated with the fields and the vector potential, 

  * * *1 1 1
Re

4 4 2react av V
W j



         
  

 E D B H A D   (39) 

It is straightforward to check that   0AD av
W  , so the time average reactive energy can be alternatively calculated using 

the source-potential products as 

  * *1 1
Re

4 4s
react av V

W d       
  

 A J r   (40) 

It can be easily shown that the average value of  
2 1A DW t  and  

1 2A DW t  are also zero. The time average mutual 

coupling electromagnetic energies are then 

 

 

1

2

* *
1 2 1 2 112

* *
2 1 2 1 221

1 1
Re

4 4

1 1
Re

4 4

s

s

av V

av V

dW

dW

 

 

       


       





J A r

J A r

  (41) 

As expected,    21 12av av
W W  holds for mutual coupling in free space.  
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V. HERTZIAN DIPOLE 

A Hertzian dipole locating at the origin is analyzed to show the energy/power balance relationship. The moment of the 
dipole is assumed to be cosql t , the scalar potential and the vector potential of which can be readily derived from the 

Hertzian potential    4 cosql r t kr     [40][41],  

   0 ˆˆsin cos sin
4

ql
t kr

r


  


   A r θ   (42) 

   
2

0
2 2

1 1
cos cos sin

4

ql
t kr t kr

krk r

 
   


      

 (43) 

from which the fields are found to be 

       
2

2 2 2 2
0

1 1 1 1ˆˆ2cos cos sin sin 1 cos sin
4

k ql
t kr t kr t kr t kr

r kr krk r k r
     


                      

E r θ   (44) 

   1
ˆsin sin cos

4

kql
t kr t kr

r kr

   


       
H φ   (45) 

As is known, the Hertzian dipole is a point source and its total reactive energy is infinite. A common strategy is to evaluate 
the integrals (8) and (10) in the whole space excluding a small sphere with radius a. The results are found to be 

     0 3 3 3 3 2 2

1 1 1 1 1 1 2
cos 2 sin 2

2 2a

e
react V V

W t d t ka t ka
t ka kak a k a k a

  
 

                     


A
D E D r    (46) 

   2021 1
sin

2 2a

m
react V V

W d t kat
t ka




 

       
A

B H D r    (47) 

The radiative power evaluated at a spherical observation surface is  

  0
ˆ 2

a
Srad SradS

P t dS   S n   (48) 

It is a constant value independent of the radius of the sphere, clearly indicating that the total radiative power associated 
with  0radW t  crossing any concentric spherical surface is the same. 

For comparison, the surface integral of the Poynting vector on the spherical surface aS  is  

     0 3 3 2 2

2 1 2
ˆ 2 1 sin 2 1 cos 2

a
pv S

P t dS t ka t ka
ka k a k a

                      
 S n   (49) 

which varies with the radius of the surface. As expected, the time average of  pvP t  equals that of  SradP t . The time 

average energies are listed below,  

 

 

0

0 3 3

1

1 1

m av

e av

W
ka

W
kak a





      


      

 (50) 

The Q factor of the dipole is then calculated to be 

            
 

  3 3

2 1 1e av

rad av

W
Q

P kak a


     (51) 

which is exactly in agreement with the result shown in [42].  

The well-established equivalent circuit model proposed by Chu [36] for Hertzian dipole is shown in Fig.2. Assuming 
that the current in the radiation resistor at the interface of r a  is  0 cosRi I t ka  , the energies stored in the 

capacitor and the inductor can be derived to be 

 
   

 
 

 

   

2
0

3 3 2

2
20

1 1 1 1 1
cos 2 sin 2

2

1
sin

2

C

L

I
W t ka t kat

ka kaka ka ka

I
W t kat

ka

 





   
         

     
     

 

  (52) 



9 
 

 
Fig.2 Equivalent circuit model for Hertzian dipole radiation. 

If we choose 2
0 04I  , it can be verified that    C eW t W t , and    L mW t W t . This exact agreement gives a 

good support to the proposed theory.  
The integration regions for  radW t ,  0radW t  and  ADW t  are all modified in a similar way. They are found to be 

       0 0
sin 2 limsin 22 lim

a
rad rV V r

t ka t krW dV kt r a
t

  
  

         
A

D   (53) 

   0 0

1
2 lim

2a
rad V V r

W dV kt r a
t t


  

     
  
D A

A D   (54) 

     0

1 sin 2 limsin 2
2a

AD rV V
t ka t krW dVt

t
 

 

              A D   (55) 

With the wave travels to infinity, the total radiative energy  0radW t  monotonically increases with the radius, revealing 

that the radiative rate is always positive. The Schott term like energy  ADW t  oscillates in the propagation with a zero 

average value. Its amplitude remains constant in this case.   

VI. SHORT PULSE RADIATORS 

The radiation of a solenoidal loop current is analyzed again, with the numerical results of  ADW t  added. The 
solenoidal surface current on a ring is described by      ,s t I tJ r f r [A/m], as shown in Fig.3. Here we choose 

  ˆ1.0f r   (56) 

The inner and outer radius of the ring is 0.08m and 0.1m, respectively. The temporal function is a modulated Gaussian 
pulse, 

          
2

sin ,      0

0,                  else

e t t T
I t

    


  (57) 

with 102 10   ,  2 5 0.5t T T   , 1nsT  . Therefore, both its initial and final reactive energy are zero. Two 

spherical surfaces with radius of 0.2m and 10m chosen are as observation surfaces, with their centers coinciding with that 
of the source. They are labeled by sphere-1 and sphere-2, respectively. The radiative energies  0radW t  passing through 

sphere-1, 2 are calculated with integration of  SradP t , as expressed in (30).  pvW t   is the integration of the Poynting 

vector power passing through the observation surfaces, 

     1 10 0 1,2
ˆ,

t t

pv Spv sphere
W t P d d d   


     S r n r   (58) 

 

Fig. 3 Solenoidal loop current. 

The excitation energy, radiative energy  0radW t  and the energy evaluated with Poynting vector are shown in Fig. 6(a). 

In this case, the reactive energy includes the contribution from the current alone since the corresponding charge is zero, so 
it is denoted as JW  in the figures. JW  oscillates with the source and admits negative values periodically. In the proposed 

theory, it is acceptable because the reactive energy is dependent on the potentials, which are values relative to their 

o 
 

x 

y 

 

C a c

L a c

1R 
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reference zero points. When the current varies and changes its direction periodically, the retarded vector potential in the 
resource region lags behind and may point in direction opposite to that of the current, causing negative values. The energy 

 ADW t  is also plotted in Fig.6(a), and is zoomed in in Fig.6(b) together with JW . It is shown that  ADW t  oscillates 

like JW , but continue to exist for about 0.33ns after the source disappeared at 1ns. Note that the Schott energy in the 

charged particle theory may also be negative [19][43].  
The energies passing through sphere-1 are shown in Fig. 6(c). The smallest and the largest distance between the source 

and sphere-1 are respectively 0.1m and 0.3m. The total radiative energy passed at t=2ns is equal to that evaluated at the 
source region.   

The excitation power, radiative power SradP  and the time varying rate of the reactive energy are shown in Fig. 7(a). 

The powers crossing-1 and sphere-2 are shown in Fig.7(b) and (c), respectively. The radiative power  SradP t varies 

smoothly and remains positive. The Poynting power contains ripples coming from the fluctuation of  SreactP t , which 

gradually decrease with the propagation distance. 

 

(a) 

 

(b) 
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(c) 

Fig.6 The energies of the loop current. (a) The total excitation energy, reactive energy, radiative energy and ADW  evaluated in the source region.   

(b) The zoomed in figure for JW  and ADW . (c) The energies crossing sphere-1. 

 

(a) 

 

(b) 
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(c) 

Fig.7 The powers of the loop current. (a) The excitation power, radiative power and the varying rate of the reactive energy evaluated in the source 
region. (b) The powers crossing sphere-1. (c) The powers crossing sphere-2. 

VII. CONCLUSIONS 

Some issues concerning with the electromagnetic radiation and mutual couplings remain confusing or even controversial 
for decades long, especially the definitions for the reactive energy and Q factors of radiators. This theory proposes clear 
definitions and explicit expressions for the reactive energy and the radiative energy of a radiator. The introduction of a 
Schott energy like term in the reactive energy makes it possible to separate the radiative energy and the reactive energy in 
a reasonable manner. Consequently, a new power balance equation is given by modifying the Poynting relation so that the 
Poynting vector is divided into two parts, accounting for the contribution from the radiative energy propagation and the 
fluctuation of the reactive energy. The newly defined reactive energy term,  0radW t , and its flux,  SradP t , can 

characterize the radiative energy almost satisfactorily. Furthermore, they can be numerically evaluated more efficiently, so 
are the mutual electromagnetic coupling energies defined with potentials.   

Although in the theory, expressions for the reactive electric energy and the reactive magnetic energy are also separately 
provided, it is strongly recommended to combine the two reactive energies together and treating them as a whole.  

The theory is different from Carpenter formulation [23], in which it was proposed to use the source-potential combination 
terms in (16) as the total electromagnetic energy, and to replace the Poynting Theorem with a new equation. The 

formulation, as well as the power flow vector J


 by Slepian [44], was pointed to be mathematically flawed by Dr. 

Endean [44]. In the theory proposed here, the source-potential terms are considered to form the reactive energy together 
with a Schott energy like term. They compose only part of the total electromagnetic energy. So the theory does not suffer 
from the mathematical flaws checked by Dr. Endean since there is no modification to the total electromagnetic energy and 
the correspondent Poynting Theorem.    

 
Appendix 

(15) and (22) can be obtained using the method given in [6], involving the evaluation of the following key integration 
associated with two source point 1r  and 2r ,  

       
2

1 1 2 2 1 1 2 22
1 2

1

16V V

c
I G G d dR c R c c R c R

R R
    

 

     r r   (59) 

where 1,2 1,2t t   , 1,21,2R  r r . The value of the integral has been given in the equation (32) in [6]. Here we provide 

an alternative rigorous proof. In the spherical coordinates, choose 1r  as the origin, and put 2r  on z  axis. Therefore, 

we can write 2 21ˆrr z , 1R r r , 2 2
2 21 212 2 cosR r rr r   r r .  According to the symmetry of the integrand, 

we have 

     

 1 21

1 21

2 2
12 1

1 2 2 2 20 0 1
2 2

2 2
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8 8
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c r
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I r drd dc r c R c R

rR R
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dRc R

c rR r








       

 


 

 









   

     
 

  


  (60) 

where 2 1 21 2 cosdR c r R d    is used. The integration range of  1 2,  for nonzero I is determined by 
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2 1 211 21 c c rc r        (61) 

which is exactly the same as eq. (33) in [6]. 

Next, take the first term of  ADW t  as an example to show the derivation of (15). Rearranging the integration order 

gives 

     0 1 2 2 1 2 11 1 2 2

1
, ,

2 s s
AD V V V

W G G d dt dt d dt tt
t

  


 

 


  

     J r r rr r    (62) 

Making use of the identities  1 2 1 21 2G G G GG G    ,  1 1 1 1 1 1 1 1 1 1 1G G G G      J J J J    , and ignoring the 

surface integrals at S , we get  
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  (63) 

Performing the double integration  1 2dt dt   on the region limited by (61), and dividing the inner integration into three 

sub-regions gives, 
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  (64) 

Replacing 1t  by   and evaluating the second term in a similar way we can get (15). The nonzero range can be 

determined by noting that the sources exist in  0,T  and one of the source terms is zero for 21,max 2t T r c  .  
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