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Abstract

This paper reviews sensorless algorithms for both induction motors and permanent magnet motors using the active flux model,

such that any design applicable for non-salient pole ac motors can also be included in the review framework. The proposed

review framework classifies all sensorless algorithms following a five-layer hierarchy abbreviated as O-I-M-A-I, resulting in

four main categories as i) inherently sensorless position estimation, ii) non-inherently sensorless position estimation, iii) post-

position-estimation speed estimation, and iv) speed estimation for indirect field orientation. Various ac motor models are

derived by assuming a constant active flux amplitude, based on which seven generic sensorless algorithms are summarized in

a tutorial. Recommendations are made for sensorless drive designers to begin with inherently sensorless method such that the

two-way coupling between position estimation and speed estimation is avoided. Finally, classical induction motor model results

from time-varying active flux amplitude and slip relation, for which a state transformation is recommended for achieving global

stability.
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Abstract—This paper reviews sensorless algorithms for both
induction motors and permanent magnet motors using the active
flux model, such that any design applicable for non-salient pole
ac motors can also be included in the review framework. The
proposed review framework classifies all sensorless algorithms
following a five-layer hierarchy abbreviated as O-I-M-A-I, result-
ing in four main categories as i) inherently sensorless position
estimation, ii) non-inherently sensorless position estimation, iii)
post-position-estimation speed estimation, and iv) speed estima-
tion for indirect field orientation. Various ac motor models are
derived by assuming a constant active flux amplitude, based
on which seven generic sensorless algorithms are summarized
in a tutorial. Recommendations are made for sensorless drive
designers to begin with inherently sensorless method such that
the two-way coupling between position estimation and speed
estimation is avoided. Finally, classical induction motor model
results from time-varying active flux amplitude and slip relation,
for which a state transformation is recommended for achieving
global stability.

Index Terms—self-sensing, active flux, review, induction motor,
permanent magnet synchronous motor.

NOMENCLATURE

The nomenclature we use is common for permanent magnet
(PM) motors, where Ld, Lq, R,KE are respectively d-axis in-
ductance, q-axis inductance, stator resistance, PM flux linkage.
KActive = KE + (Ld − Lq)id denotes active flux linkage [1]
with d-axis current id = iα cos θd+ iβ sin θd, and θd the angle
of active flux vector ψActive = KActive∠θd. For induction
motors, Ld is stator inductance, Lq the stator transient leakage
inductance, and the inverse-Γ rotor flux amplitude dynamics:

d

dt
KActive =

−Rreq

Ld − Lq
KActive +Rreqid, KE = 0 (1)

where Rreq is inverse-Γ circuit rotor resistance [2]. All bold
R2 vector symbols are in stator αβ-frame, e.g., i = [iα, iβ ]T is
the measured αβ-frame current. J =

[
0 −1
1 0

]
, I =

[
1 0
0 1

]
. Park

transformation is P (θd) =
[

cos θd sin θd
– sin θd cos θd

]
. Operator s = d

dt = ˙.

I. INTRODUCTION

Sensorless or self-sensing control is typically referring to
the speed regulation of inverter-fed ac motors without using a
mechanical sensor for position (e.g., encoder, resolver or hall
sensor), or speed (i.e., tachogenerator), which is especially
desired for high speed motors (see e.g., [3]), motors with
large-diameter or hollow shaft, and motors used in adverse
environment [4]. Sensorless algorithm (SA) is at the core of
sensorless control, and reconstructs position and speed signals
based on the measured current and the model of ac motor.

The model of non-salient (pole) PM motor is a special
case of induction motor model [5]. Historically, it is not easy
to design SA for salient PM motors, because the position-
dependent inductance results in a highly nonlinear model, and
the salient PM motor can be treated as a non-salient one if
‖(Ld − Lq)i‖ � KE [6]. The active flux concept is proposed
in [1] and describes six types of ac motors, including induction
motor and salient PM motors. As a matter of fact, in induction
motor context, the active flux is no new concept, and is the
natural choice of state (i.e., rotor flux) in the inverse-Γ circuit
of induction motor [7], and it has long been found useful
in analysis, e.g., of direct torque control (DTC) [8, Eq. (7)].
In salient PM motor context, active flux has other names in
literature, such as fictitious PM flux [9], linear flux [10], and
extended flux [11].

The contribution of this paper is to propose an overview
framework that reviews SAs for both induction motors and
PM motors. The overview has two parts depending on how
KActive is modelled. Sec. II–Sec. V reviews SAs with constant
KActive assumption. Sec. VI reviews SAs with time-varying
KActive as in (1). The rest of this section builds the foundation
to understand the review with a classification and a tutorial.

A. Proposed Classification

We propose a classification for sensorless algorithms (SAs)
that obeys a 5-layer hierarchy, abbreviated as O-I-M-A-I:

1) Output, i.e., position θ̂d or magnetic field speed ω̂ , ˙̂
θd;

2) Input, i.e., i-only, ω̂-dependency, θ̂d-dependency, or(∫
ω̂dt
)
-dependency;

3) Model, i.e., voltage model (VM), 2nd-order current, 4th-
order emf, 4th-order disturbed flux, motion dynamics;

4) Algorithm, i.e., stabilized voltage model, disturbance
observer, state observer, adaptive observer, etc.;

5) Issues and improvements associated with the algorithm.

which forms the outline of Sec. II–V as follows.

• Position Estimation (PE)
– Inherently sensorless (IS) (i.e., no speed anywhere)
∗ Stabilized VM with flux or voltage compensation
· Amplitude (i.e. current model) based correction
· Angle (i.e., orthogonality) based correction

∗ Disturbance observer (DO) for emf
· Linear DO (that treats ac emf as dc disturbance)
· Sliding mode (SM) DO

1) Improvement in SM control law: milder switch-
ing function and dynamic correction.
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2) improvement in SM surface: incorporation of the
integral or the derivative of the current error.

3) improvement in SM gain: reaching law design.

∗ Saliency based method (invasive and non-invasive)
– Non-inherently sensorless (non-IS) PE (ω̂ is input)
∗ Speed is part of model
· EMF observer (full-order and reduced-order)
· Flux observer (full-order and reduced-order)
· Linearization based PE by extended Kalman filter
· Frequency adaptive observer

∗ Non-IS variants of DO and stabilized VM
· DO for extended emf
· VM utilizing ω̂-dependent orthogonality condition
· dq-frame variants of DO and VM

∗ Speed is only used for tuning of DO and VM
· First-order SMDO

1) Chattering issues
2) Ensuing low-pass filter’s ω̂-dependency
· Statically compensated voltage model (SCVM)

• Speed estimation
– Post-position estimation (i.e., extract ω̂ from θ̂d)
∗ Direct calculation using position, flux, and/or emf
∗ Inertia-free constant speed adaptation
· Cascaded adaptive observer that has EMF-type, flux-

type, and position-type (i.e., phase-locked loop)
· Speed adaptation law driven by current error

1) Unknown regressor
2) Filtered regressor

∗ Inertia-free ramp speed tracking
· Extended Kalman filter (EKF)
· Type-3 PLL

∗ Inertia dependent (i.e., motion dynamics involved)
· Extended Luenberger observer (ELO), extended state

observer (ESO), generalized ESO (GESO), general-
ized proportional-integral observer (GPIO)
· Reduced-order natural speed observer

– For indirect field orientation (IFO) (i.e., θ̂d =
∫
ω̂dt)

∗ General IFO position estimation
∗ IFO position based direct calculation with closed-loop
∗ From magnetic asymmetry (i.e., rotor slot harmonics)

B. Sensorless Control: A Tutorial

To help understand the classification above, a tutorial on
sensorless algorithm (SA) design is now provided.

1) Problem Formulation: Motor’s electrical angular rotor
speed ωr is governed by Newton’s second law of motion:

Js
npp

d
dtωr = Tem − TL (2)

where Js denotes rotor shaft inertia, npp designates pole pair
number, TL is load torque, and Tem is electromagnetic torque.
The sensorless control of system (2) is challenging, because
both the inputs Tem, TL and the output ωr are unknown.

2) The Objective of SAs: The objective of an SA is to
estimate ωr and Tem. The latter is proportional to the cross
product of the stator flux ψs and the active flux ψActive:

Tem = 3
2nppL

−1
q ψs · (−JψActive)︸ ︷︷ ︸

DTC Formulation

= 3
2nppKActiveiq︸ ︷︷ ︸
FOC Formulation

(3)

where the second equal sign is derived by substituting the
following relation between ψs and ψActive in αβ-frame [1]

ψActive , KActive∠θd ≡ KActive

[
cos θd

sin θd

]
= ψs − Lqi (4)

and iq = −iα sin θd+ iβ cos θd is the q-axis current. The FOC
formulation in (3) motivates the concept of active flux [1].
Based on (4), the d-axis angle θd can be extracted by

θd = arctan2 (ψβ,Active, ψα,Active) (5a)

or θd = −arctan2

(
eα,Active

sign(θ̇d)
,
eβ,Active

sign(θ̇d)

)
(5b)

where eActive , d
dtψActive is the emf due to active flux.

3) The Main Assumption: From (3), the objective of esti-
mating Tem reduces to estimation of active flux angle θd, if we
assume the active flux amplitude KActive is a known constant
such that both α-axis and β-axis components of ψActive are
sinusoidal [cf. (4)]. Constant KActive assumption is reasonable
for PM motors, and simplifies the design and analysis of SAs
for induction motors, which is not well realized in literature.

4) The Models: The estimation of θd relies on the dynamics
of measured i to reveal ψActive or its derivative d

dtψActive.
As per Faraday’s law, the stator voltage equation in αβ-frame
describes the dynamics among i, ψActive, and ψs:
d

dt
ψs =

d

dt
(ψActive + Lqi) = eActive + Lq

d

dt
i = u−Ri

(6)
where u is αβ-frame voltage. Since there is no speed in (6),
the SAs based on (6) are called inherently sensorless [12].

The magnetic field speed ω , θ̇d begins to appear, if we
further: i) include the steady state sinusoidal model for either
flux or emf: [note differentiating (7a) yields (7b)]

d

dt
ψActive = ωJψActive + K̇Active

[
cos θd

sin θd

]
︸ ︷︷ ︸

Eu, the unmodelled dynamics

(7a)

d

dt
eActive = ωJeActive + ω̇JψActive + d

dtEu︸ ︷︷ ︸
Unmodelled dynamics

; (7b)

or ii) cascade disturbed sinusoidal model for flux estimate [13]:
d
dt ψ̂s = ωJ

(
ψ̂s −Dψ

)
, d

dtDψ ≈ 0 (8)

with Dψ ∈ R2 the low frequency disturbance in stator flux;
or iii) substitute (4) into (6) to derive a nonlinear model:

Lqsi = u−Ri−ωKActive

[
− sin θd
cos θd

]
, sω = 0, sθd = ω (9)

or iv) apply Park transformation P (θd) =
[

cos θd sin θd
– sin θd cos θd

]
to (6):

d
dtKActive + Lq

d
dt id = ud −Rid + ωLqiq , ed,ss (10a)

ωKActive + Lq
d
dt iq = uq −Riq − ωLqid , eq,ss (10b)

where ed,ss, eq,ss are steady state emf of d- and q-axis. By
manipulating inductance, the dq-model (10) is rewritten as

d
dtKE + Ld

d
dt id= ud −Rid + ωLqiq

ωKActive − (Ld − Lq) d
dt iq︸ ︷︷ ︸

Amplitude of the extended emf e

+ Ld
d
dt iq= uq −Riq − ωLqid

(11)
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Transforming (11) to αβ-frame gets extended emf e’s model

Ld
d

dt
i+ e+ ωJ (Ld − Lq) i = u−Ri (12a)

d

dt
e = ωJe+ Unmodelled Dynamics (12b)

The SAs that are based on (7), (8), (9), (10), (11), or (12) are
non-inherently sensorless owing to the presence of ω.

5) Position SA Designs: The model based θd estimation
can be achieved by the following generic SAs via (5):
SA1: Disturbance observer (DO) for emf using (6):

Lq
d

dt
î = u−Rî+ f(ĩ), with ĩ , i− î (13)

where f(·) is correction term to be designed, and emf
information is extracted from f(ĩ). It is worth pointing
out that f(·) can be implemented as dynamic correction1

SA2.1: State observer, e.g., using extended emf model (12):

Ld
d
dt î = f1(ĩ) + u−Rî− ê− ω̂J (Ld − Lq) î
d
dt ê = f2(ĩ) + ω̂Jê

(14)
where f1(·),f2(·) are corrections to be designed. Similar
observer can be constructed for (6) and (7b). Note (14)
has its reduced-order variant, e.g., [6]

sê = ω̂Jê+ f
(
sî− si

)
(15)

where sî ≡ [u−Ri− ê− ω̂J (Ld − Lq) i] /Ld.
SA2.2: State observer using (6) and (7a):

Lq
d
dt î = f1(ĩ) + u−Rî− ω̂Jψ̂Active

d
dt ψ̂Active = f2(ĩ) + ω̂Jψ̂Active

(16)

Note (16) has its reduced-order variant, e.g., [14]

sψ̂Active = ω̂Jψ̂Active +K
[
ωJψActive − ω̂Jψ̂Active

]
(17)

where ωJψActive = sψActive ≡ u−Ri−Lqsi must be
substituted, and K = k1I − k2sign (ω̂)J , k1, k2 > 0.

SA2.3: Extended Kalman filter for the constant speed 4th-order
nonlinear model (9) [15], or for model (9) with sω = 0
being replaced by motion dynamics (2) [16].

SA2.4: As an alternative to SA2.3, transforming (9) into dq-
frame results in a 2nd-order open-loop current observer
that is disturbed by position error θ̃d = θd − θ̂d:

Lq ŝid = ud −Rid + ω̂Lqiq +KActiveω̂ sin θ̃d (18a)

Lq ŝiq = uq −Riq − ω̂Lqid −KActiveω̂ cos θ̃d (18b)

for which the θ̃d ≈ 0 assumption simplifies the unknown
position error terms as sin θ̃d = θ̃d and cos θ̃d = 1.

SA3: Voltage model with voltage compensation using (6):

ψ̂s = ψ̂Active + Lqi =

∫ t

0

(
u−Ri+ D̂

)
dt (19)

where D̂ is the stabilizing voltage yet to be designed.

1The term ‘dynamic’ means the correction f has internal state, implying f
involves integral operation. Disturbance observer with dynamic correction is
in the form of a state observer with an extended state (similar idea to ESO).

SA4: Flux compensation for VM based on DO using (8):

d
dt

ˆ̂
ψs = f1

(
ψ̂s −

ˆ̂
ψs

)
+ ω̂J

(
ˆ̂
ψs − D̂ψ

)
d
dtD̂ψ = f2

(
ψ̂s −

ˆ̂
ψs

) (20)

where ψ̂s is obtained by (19), and the estimated flux
disturbance D̂ψ is used for building D̂ in (19). The final
flux estimate is ψ̂s − D̂ψ rather than ˆ̂

ψs.

In summary, SA1 and SA4 are disturbance observers (DOs),
and the difference is that SA1 assumes voltage disturbance in
the current dynamics while SA4 assumes a flux disturbance as
ψ̂s = ψs+Dψ . Note SA4 is an example of DO with dynamic
correction D̂ψ . SA2 is state observer, and its difference from
DO is that state observer has a model for the unknown state.2

SA2 and SA4 always rely on a speed estimate ω̂. SA3 is
integrator, and its difference from SA4 is that SA3 relies solely
on voltage compensation in the integrator input, while SA4
further utilizes flux compensation at the integrator output.

SA1–4 are the multi-input multi-output (MIMO) version of
the story that links SA1–4 in Appendix A.

• SA1 is the MIMO version of DO (39), (40) and (41).
• SA2 is the MIMO version of state observer (42) and (43).
• SA3 is the MIMO version of voltage compensation (44).
• SA4 is the MIMO version of flux compensation D̂αψ .

Remark 1: SA4 is a cascaded DO rather than a reduced-
order observer. SA4 is also not a CAO because it does not
implement speed adaptation law but instead uses ω̂ extracted
from the prior flux estimate ψ̂s [13]. 4

6) Speed SA Designs: The model based ωr or ω estimation
can be achieved by the following generic SAs:

SA5: Direct calculation from dq-frame emf using the simpli-
fied steady state model of (10) or (11):

ω̂ = êq,ss/KActive, if êd,ss = 0 (21)

or direct calculation from position estimate by forward
difference of ω̂ = d

dt θ̂d, or direct calculation from stator

flux and stator emf es by: ω̂(ψ̂
T

s ψ̂s) = −(Jψ̂s)
Tes.

SA6: Speed adaptation law driven by some output error ε:

d
dt ω̂ = Gain× Regressor× ε (22)

SA7: Speed observer using (2) corrected by output error ε

d

dt
ω̂r = nppJ

−1
s

(
Tem − T̂L

)
+ kε (23a)

or simply
d

dt
ω̂r = â+ kε (23b)

where the dynamics of T̂L and â are yet to be designed.

To sum up, SA5 and SA6 are inertia-free, while SA7 often
depends on inertia but provides an estimate of load torque;
SA6 is often derived by Lyapunov analysis that requires
constant ω assumption to ensure the aymptotical stability of
output error ε. (23b) is an inertia-free variant of (23a). A
generalized form of SA7 is (46) in Appendix B.
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Fig. 1. Four complete sensorless algorithm schemes from example papers:
(a) [1], [17], (b) [6], [13], (c) [18]–[20], (d) [3], [21].

7) Complete Schemes for Estimation of Position and Speed:
Four typical sensorless schemes are presented in Fig. 1.
Fig. 1(a) shows that inherently sensorless position estima-
tion (IS-PE) results in a cascaded framework. Fig. 1(b) and
Fig. 1(c) reveal that non-inherently sensorless position esti-
mation (non-IS-PE) results in an interconnected framework.
Fig. 1(d) exemplifies that the position estimation can be
skipped by introducing the indirect field orientation (IFO), i.e.,
to get position from integral of speed: θ̂d =

∫
ω̂dt.

The block diagram of a sensorless control system using
SA3/4 and SA5/6 is shown in Fig. 2. In order to achieve
the least parameter dependency, the speed is extracted from
the stator flux, which is, however, reported in [22] to have
much worse dynamic performance compared with the speed
extracted from the active flux.

II. INHERENTLY SENSORLESS POSITION ESTIMATION
(IS-PE)

As shown in Fig. 1(a), in the framework of IS-PE, the
output is the θd-related state (i.e., flux or emf), the input is the
measured current i, and the model is (6), i.e., 2nd order flux
d
dtψs and 2nd order current d

dti that correspond to the two
algorithms, SA3 and SA1, respectively. This section reviews
the IS versions of SA3 and SA1, and their associated issues
and improvements.

A. IS-SA3: Stabilized Voltage Model (VM) of Flux ψs
SA3 applies pure integration to the calculated emf, and the

integration is stabilized by voltage compensation D̂ or flux
compensation D̂ψ . When there is a drift Dψ =

∫ t
0
Ddt in

the flux estimate, the resulting errors in position and speed
estimation can be derived as in [23, Eqs. (19), (21)]. In order
to build the stabilizing terms D̂ or D̂ψ , several assumptions
are resorted to, including:

(i) the constant KActive assumption [cf. (4)], so the active
flux trajectory (i.e., the Lissajous curve) is circular;

(ii) the orthogonality between flux and emf:
eActive = ωJψActive [cf. (7a)];

(iii) and the orthogonality between α-axis and β-axis emfs:
ėActive = ωJeActive [cf. (7b)].

Both assumption (ii) and (iii) are built upon assumption (i),
and assumption (i) leads to assumption (ii) and (iii) if ω̇ = 0.
Several tools are proposed and can be combined to build ψ̂s.

2SA2.1 (emf observer) is a dynamic DO assuming sinusoidal disturbance.

 

Fig. 2. Block diagram of a least-parameter-dependency sensorless scheme.
Inherently sensorless SA3 is shown, while the SA4 needs a speed estimate.

1) Amplitude Limiter: The pure integrator output u−Ri
s will

diverge to infinity. To avoid this, one can add an amplitude
limiter to constrain the amplitude of the integrator output
within KActive by means of flux compensation [24, Fig. 2],
or voltage compensation [25].

2) Origin of Flux Vector Trajectory: Another corollary of
the constant KActive assumption is that an accurate α-axis flux
estimate ψ̂αs should be a sinusoidal signal whose maximum
and minimum add up to null. In other words, the origin of the
flux estimate over one electrical cycle, i.e.,

D̂ψ =
1

2

 max
(
ψ̂αs

)
+ min

(
ψ̂αs

)
max

(
ψ̂βs

)
+ min

(
ψ̂βs

)  (24)

should be 0. If D̂ψ in (24) is not null, one can directly use it
to produce a final flux estimate as ψ̂s − D̂ψ [23], or one can
use it to construct a voltage compensation as D̂ = LPF(s)D̂ψ

[25]. In fact, the voltage compensation error D − D̂ can be
exactly calculated from D̂ψ by utilizing time information [26].

Remark 2: As discussed in [22, Sec. III], it is better to
use active flux to calculate D̂ψ in (24), because stator flux
components are not sinusoidal with sudden change in current.
For FOC drive, the active flux is obtained from (4), while for
DTC drive, the angle between active flux and stator flux can
be found by looking up the torque angle [22]. 4

3) Amplitude Correction: Amplitude limiter does not work
when the estimated flux amplitude is less than KActive [2], so
it is natural to replace the limiter with an amplitude correction
as follows [2], [27]–[35]3

D̂ = PI (s)P
(
θ̂d
)[

ε
0

]
= PI (s)

εψ̂Active

||ψ̂Active||
, PI (s) , k1 +

k2
s

(26)
where ε = KActive−||ψ̂Active|| is the amplitude mismatch. (26)
can be interpreted as transforming the d-axis mismatch ε back
to αβ frame. SA3 plus (26) describes the classical hybrid flux
estimator that outputs the sum of high-pass filtered voltage
model estimate and low-pass filtered current model estimate,
and leads to the classical interpretation that voltage model
is used for high speeds and current model is used for low

3The flux amplitude mismatch ε from (26) has an equivalent current error
form (25a), if a current estimate î is introduced as (25b):

i− î = L−1
q ψ̂Active

(
KActive

||ψ̂Active||
− 1

)
= L−1

q

εψ̂Active

||ψ̂Active||
(25a)

î = L−1
q

ψ̂s − ψ̂Active∥∥∥ψ̂Active

∥∥∥KActive

 (25b)

which is used, e.g., in [28], to build a sliding mode variant of (26).
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Fig. 3. Block diagram of the disturbance observer.

speeds [2], [27], [34]. Discussions for selection of k1, k2 is
documented in [2], [27], and it is suggested in [2] to set k2
to zero for slow speed reversal. Coincidentally, a contribution
from the control community also suggests to not implement
the k2 integral term, but in a slightly different form from (26)
as follows to facilitate the stability analysis [36], [37]

D̂ = k1ψ̂Active

(
KActive + ||ψ̂Active||

)
ε (27)

In induction motor context, instead of rendering a constant
KActive assumption, an equivalent statement is to impose the
correction in terms of flux command [38], [39]. The difference
is that the angle of the flux command can be determined by
an IFO integrator, i.e., using a different angle for P

(
1
s ω̂
)

in
(26) [38], instead of directly using the angle of flux estimate
as in [39]. Similarly, the flux command is used in replace of
KActive parameter for synchronous reluctance motor [40].

4) Compensation by Orthogonality: Another indicator of
divergence of flux estimation is the violation of orthogonality
condition that can be checked by calculating the dot product
es · ψ̂s with the emf due to stator field es , u − Ri. Based
on this dot product, one can implement flux compensation as
in [24, Fig. 3].

B. IS-SA1: Disturbance Observer (DO) for EMF eActive

The working principle of SA1 is to use the correction term
f(ĩ) to force î to track i. To make this happen, the norm of
f(ĩ) should be larger than the disturbance ||eActive||. As a
result, f(ĩ) itself serves as an estimate of eActive. However,
||eActive|| is proportional to ω, and to assure a wide operating
speed range, large correction gain is needed for non-dynamic
f , in which case the speed-dependency of the performance of
the IS observer is inevitable. A simple fix is to use a variable
correction as a function of ω̂, which, however, will make SA1
lose its IS property, and will result in an interconnected non-
IS framework as shown in Fig. 1(b). This dilemma can be
resolved by implementing f as dynamic correction.

1) Sliding Mode Disturbance Observer (SMDO): SMDO
is a nonlinear DO, and originally implements correction f
in SA1 as4 f = ksign(S) that consists of three parts, i.e.,
SM surface S, SM gain k, and SM control law sign(·).
Improvements on those three components are now reviewed.

The large SM gain requirement leads to chattering in the
emf estimate f . To mitigate the chattering issues, it is proposed
to use “milder” SM control law than the discontinuous cor-
rection sign(·), such as saturation function [41], and sigmoid
function [42]–[44]. Additionally, the f in [41], [44] is a linear
combination of SM correction and proportional correction.

By using large but constant SM gain, SMDO is an IS-
PE, but in order to reduce excessive noises in the estimated
disturbance emf f , an additional LPF is typically applied to
f , before θ̂d can be extracted. The phase delay caused by the
LPF should be compensated for different speeds [45]–[47].
Given a constant SM gain, it is suggested that the pole of the
LPF should rely on ω̂ [41], leading to a non-IS-PE design,
as shown in Fig. 3. Additionally, it is proposed to use smaller
SM gain and execute the SMDO at a frequency that is 3 times
as high as the PWM frequency [45], [48].

To achieve an IS-SMDO, it is recommended to implement
f as a dynamic correction that puts signum inside an integral.
This integral introduces an additional state, resulting in a
second-order SMDO, and the second state can be interpreted
as an estimate of the emf appearing in the current dynamics.
For example, the super-twisting algorithm can be used to
estimate the emf [17], [49], [50], and the resulting continuous
α-axis correction is fα = k1 |̃iα|

1
2 sign(̃iα) +k2

∫
sign

(̃
iα
)

dt,
where the integral term serves as a continuous estimate of
the emf. As a comparison, the second-order SMDO in [51]
uses discontinuous α-axis correction as fα = k1sign(̃iα) +
k2
∫

sign
(̃
iα
)

dt. Note the continuity of fα is decided by
the k1 term, and also note applying variable gain k1 |̃iα|

1
2 to

sign(̃iα) does not eliminate chattering because the derivative
of |̃iα|

1
2 is infinite when ĩα = 0. The chattering is reduced

because of using smaller k1 value and nonzero k2.
So far, all SMDOs reviewed above use current error ĩ as

the SM surface S—the argument of sign(·). Improvement
is expected by further designing SM surfaces. For example,
SM surface involving current error integral

∫
ĩdt (see, e.g.,

[52]) preserves observer robustness during reaching phase
[53], [54]. SM surfaces involving current error derivative ˙̃i
promise faster observer convergence (i.e., “convergence in
finite time”), including the fast terminal SM manifold [55] and
the non-singular terminal SM manifold [46]. Note the current
derivative needed in the manifold can be reconstructed using
super-twisting algorithm [46].

Finally, the SM gain k can be designed to be a function of
S [52], which is also known as the reaching law design in
SM control theory.

2) Linear Disturbance Observer: By modeling emf as dc
disturbance such that d

dteActive = 0, Tomita et al. [56] propose
to design the correction term as f ∝ (i̇ − ˙̂i) for SA1, where
the ω̂-dependent pole placement is mandatory, and is derived
by analyzing the H∞ norm of transfer function from the

4Vector version of signum function is: sign(S) = [sign(Sα), sign(Sβ)]
T.
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unmodelled dynamics to the emf error. In [57], proportional
correction f ∝ ĩ is implemented. In [58], proportional-integral
(PI) correction f = PI(s)ĩ is used, resulting in a dynamic
correction. The linear DO is deemed to be poorly damped
if constant correction gain is used [59]. Frequency domain
formulation of the DO with PI correction is proposed in [60],
which is further generalized for salient PM motor in [61].

The constant emf disturbance assumption d
dteActive = 0

is apparently not reasonable [cf. (7b)]. Intuitively, emf in dq
frame can be modelled as dc disturbance, but transforming
into dq-frame leads to non-IS-PE, which is discussed later in
Sec. III-B2.

Remark 3: Nonlinear second-order SMDO with dynamic
correction can track ac disturbance, while linear DO with PI
correction cannot, as is discussed in Appendix A. 4

C. Magnetic Asymmetry (Saliency) based IS-PE

There are magnetic asymmetry based SAs that can only be
applied to certain types of ac motors. Magnetic asymmetry
includes rotor slotting and rotor saliency. The former can be
exploited for speed detection (see Sec. V-C) and the latter is
utilized for IS-PE. For saliency due to main-flux saturation
or machine structure, the inductance is a function of rotor
position, and based on this fact, various invasive methods
that involve excitation of high frequency voltage or carrier
frequency voltage, are proposed. The readers are referred to
[62], [63] for a dedicated review. It is worth mentioning that
non-invasive saliency based PE is also possible, see e.g., [64]
for a non-invasive detection of position from the switching
function slopes in SM motor control. There is also a trend
trying to extending the near zero-frequency performance of
model based SAs by combining with saliency based PE [29],
[31]–[33], [65]–[73].

The performance of the saliency based PE is influenced
by the saturation induced magnetic cross-coupling, making
the inset type of the salient PM motors more suited with
higher load [74], and therefore there is also research trying to
take self-sensing capability into consideration for motor design
[74]–[76].

III. NON-INHERENTLY SENSORLESS POSITION
ESTIMATION (NON-IS-PE)

As shown in Fig. 1(b) and 1(c), in the framework of non-
IS-PE, the output is the θd-related state (i.e., flux or emf), the
input is current i and speed ω̂, and the model is (7), (8), (10),
(11) or (12). SA1 and SA3 have their non-IS variants, while
SA2 and SA4 are always non-IS. This section will review
non-IS-PE as two categories. The first category uses speed as
a parameter in the model, while the other uses speed only for
tuning estimator coefficients.

A. Non-IS SA2/4 Due to Speed being Part of αβ-Frame Model

Unlike SA1 and SA3, the unknown state, i.e., emf or active
flux, is modelled as internal state in SA2 and SA4 such that
the speed parameter ω appears, and ω is always replaced with
a speed estimate ω̂, meaning that this type of non-IS-PE is
disturbed by speed error, as shown in Fig. 3. SA2 is state

observer for emf or flux, while SA4 is a reduced-order flux
observer with flux disturbance estimation.

The key difference between full-order state observer and
reduced-order state observer lies in how they treat speed error.
SA2 in its full-order form reconstructs a current estimate î,
and calculate the output error ĩ to tune the speed estimate ω̂
using SA6. This requires that ĩ is sensitive to speed error.5

On the other hand, since current i is measured, there is no
need to reconstruct î, and by assuming a speed signal ω̂
is available, the unknown state can be reconstructed by the
reduced-order variants of SA2. This needs the state estimate
to exhibit robustness against speed error via careful observer
pole placement [6], [13].

1) EMF Observer (SA2.1): EMF observer can be imple-
mented in its full-order form [20], [61], [70], [77]–[81] or
in its reduced-order form [6]. In [70], [77], [80], [81], SM
corrections are implemented. Time-varying gain that depends
on SM surface is designed in [80] to reduce chattering, and
SM emf observer is found to be easier to tune as compared
with the extended Kalman filter for emf [80]. Proportional
correction is used in [20] and linear system analysis is con-
ducted to tune the observer. The dq-frame or more precisely
γδ-frame implementation of the emf observer can be found
in [78], where included is an interesting study that analyzes
the consequences of using constant speed assumption in emf
observer. In [61], the influence of dc offset on emf estimation
is analyzed. In [79], observer steady-state errors are analyzed
considering current/votlage error, parameter uncertainty and
filtering.

As for the reduced-order variant of emf observer, the
robustness against speed error can be designed through H∞
norm based pole placement [6].

2) Flux Observer (SA2.2): Flux observer can be imple-
mented in its full-order form [9], [10], [78], [82], or in
its reduced-order form [14]. In [78], the flux observer is
implemented in γδ-frame, and the speed difference between
dq-frame and γδ-frame that will result during speed transients
is obtained from a cascaded speed observer. In [9], the flux
observer is analyzed by Lyapunov stability theory through
finding the positive-definite matrix for the Kalman-Yakubovich
lemma. In [82], [83], SM state observer is proposed, and pole
placement for robustness improvement is detailed in [83].

In [14], reduced-order flux observer (17) is analyzed in the
misaligned γδ-frame, and is described by a rotatory differential
operator: P (θ) sP−1 (θ) = sI+ θ̇J and the stability analysis
of the flux observer holds only if speed is known.

3) Linearized Position Observation by EKF (SA2.3): EKF
can be applied to the nonlinear model (9) [15], [84]. The
fourth-order extended state model (9) assumes both constant
active flux amplitude and constant speed. It is also possible to
use stator flux ψs as state instead of i [84], where the flux
output error is equivalent to the current error that was revealed

5Large corrections in the current observer dynamics will reduce the current
error’s sensitivity to speed error. In extreme case, the speed error is forced to
be zero (e.g., trapped in SM surface), and therefore there is no way to extract
speed signal from current error. This fact dis-encourages the idea of speed-
adaptive SM state observer, but motivates the idea of cascaded speed-adaptive
observer.
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in (25a). In addition, the constant speed model d
dtω = 0 can

be replaced with the motion dynamics (2) and the resulting
EKF implementation can be found in [16].

4) Current Observer in dq-frame (SA2.4): The d-axis cur-
rent observer (18a) can be understood as an adaptive observer
with constant position error parameter θ̃d, provided that ω̂ is
available and accurate—which is a typical assumption in non-
IS-PE design. The observer can be implemented as an open-
loop one [85] [86, Sec. 9.2.2] or a closed-loop one [87].

Since the d-axis current error contains the information of
position error θ̃d, PLL can be used to form an estimate of
position [87].

Remark 4: Both SA2.4 and SA1 use 2nd-order d
dti dynam-

ics. The difference is that for SA1, a correction is necessary,
while SA2.4 can be implemented as open-loop observer. 4

5) Frequency-Adaptive System (SA4): The idea of SA4 is
to remove the flux disturbance in the sinusoidal flux estimate
prior obtained from SA3. Therefore, SA4 is called frequency-
adaptive DO in literature [13], [34], and is in fact a cascaded
flux observer using (8). The robustness of the cascaded flux
estimate ˆ̂

ψs against speed error is analyzed in [13, Fig. 2].
Note the observer tuning or pole placement in [13] is also
dependent on ω̂. Alternatively, we can understand the overall
system of voltage model estimator (SA3) and its DO (SA4) as
a “single tune integrator” [88], [89], whose performance relies
on the speed estimate. SA4 is typical non-IS-PE with speed
dependency in both model and tuning, as shown in Fig. 2.

The readers are referred to [59, Table 4] for a review of the
frequency adaptive observers for eliminating emf harmonics.

B. Non-IS Variants of SA1/3

Even though the original implementation of SA1 and SA3
is IS, it is possible to introduce speed-dependency by i)
modeling a different disturbance emf for SA1, ii) using a
speed-dependent orthogonal condition, or iii) implementing
SA1 and SA3 in dq-frame. Those non-IS variants are less rec-
ommended, though one benefit is that the ac emf disturbance
becomes dc disturbance in dq-frame.

1) Speed-Dependent Disturbance Model for SA1: In (13),
the disturbance is the emf due to active flux. However, one
can also implement SA1 (e.g., [41]) using the extended emf
model in (12), resulting in a non-IS SMDO as is done in [68].

2) dq-Frame Variant of SA1: In Sec. II-B2, the linear DO
method assumes the dynamics of the ac emf to be zero.
This assumption becomes more reasonable if one transforms
(13) into dq-frame, such that dq-frame emf is modelled as
dc disturbance and the correction f becomes Pf . In [71],
[90], [91], Pf is implemented as a PI law, resulting in a
dynamic correction. In [92], a classical DO (that uses LPF)
is proposed to estimate the extended emf e in dq-frame6.
In [69], [93], SMDO is proposed in dq frame. In [69], the
dq-frame correction Pf is implemented as a combination of
proportional correction and SM correction. In [93], a speed-
dependent SM surface that consists of current error and its
integral is selected, and the correction Pf is a dynamic one.

6The analysis in [92] is in γδ-frame but the implementation is in dq-frame.
For an example of γδ-frame observer implementation, see [78, Eqs. (17)].

3) Speed-Dependent Orthogonal Condition for SA3: Recall
that the dot product scalar orthogonality condition es ·Jψ̂s =
0 does not involve speed signal, but one can derive an speed-
dependent vector orthogonality condition as es − ω̂Jψ̂s = 0,
based on the assumption (ii) from Sec. II-A. Voltage com-
pensation D̂ based on es − ω̂Jψ̂s = 0 is proposed in [94],
[95].

4) dq-Frame Variant of SA3: Voltage model (19) is IS be-
cause it is in αβ frame. Transforming (19) into dq frame makes
the flux estimator coupled with speed estimation, resulting in
a non-IS-PE. The current error in (25) that is based on the
assumption (i) from Sec. II-A can be used to build a speed-
adaptive voltage model in dq-frame [67], [73].

C. Speed Only being Used for Tuning

Since the SA2/4 have speed in the model, it is natural to
also use speed for tuning (e.g., pole allocation). On the other
hand, IS-SA1/3 have the potential to be implemented being
free of speed, but the IS property is lost if speed is used for
tuning in SA1/3.

1) Non-IS Tuning for SA1: We have already addressed in
Sec. II-B that speed-dependent tuning is often adopted for
SA1, e.g., the linear DO whose pole placement is dependent
on ω̂, and the first-order SMDO with non-dynamic correction
whose switching gain or ensuing LPF is dependent on ω̂. There
are also examples of speed-dependent tuning for second-order
SMDO with dynamic correction, see e.g., [50, (10)]. In other
words, some practical implementation of SA1 requires speed-
dependent tuning, resulting in non-IS-PE.

This section will now focus on the speed-dependent tuning
that makes SA3 non-IS.

2) Non-IS Tuning for SA3: In order to stabilize the pure
integration in SA3, a high pass filter (HPF) can be added to
the output of the voltage model [96], which is equivalent to
replace the integrator with an LPF as follows:

ψ̂s =
ωLPF

s+ ωLPF
es, es , u−Ri (28)

which is IS if a fixed ωLPF is used. In fact, it is reported that
placing the LPF pole, −ωLPF, to be close to zero is sufficient
for zero speed7 operation of induction motor [97], but it is
often recommended to adopt the non-IS tuning ωLPF = k|ω̂|
to adjust observer damping with respect to speed [5], [98]. In
order to compensate the gain and phase shift introduced by
the LPF, a compensation term is introduced as follows [5],
[98]–[102]:

ψ̂s =
1

s+ k |ω̂|
es − J

ksign (ω̂)

s+ k |ω̂|
es︸ ︷︷ ︸

Two low pass filtered signals add up

=
[I − kJsign (ω̂)] es

s+ k |ω̂|︸ ︷︷ ︸
There is only one filter [100]

(29)
which is called statically compensated voltage model (SCVM)
[5], [21] because the compensation is only exact at steady state
when ω is constant. It is suggested in [100] to apply the static
compensation to the stator emf es first before going through
the LPF, as indicated by the text under the equations in (29).
See [5], [100], [101] for different advice for choices of k in

7Zero speed ωr = 0 does not mean ω = 0 for induction motor with load.
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(29). In [103], three speed-dependent cascaded LPFs are used
to recover the frequency response of integrator.

Note that the presence of skew-symmetric matrix J in (29)
means, e.g., β-axis emf is used for compensating α-axis dy-
namics, and this practice implicitly assumes an orthogonality
relation between α-axis and β-axis, i.e.,

∫ t+ 2π
ω

t
eαseβsdt = 0.8

which is the assumption (iii) from Sec. II-A. However, if some
signal phase shift network is introduced, the compensation
can be accomplished within the same axis, and therefore even
elliptical trajectory of stator flux vector can be tracked [104].

IV. POST-POSITION ESTIMATION (PE) SPEED ESTIMATION

Post-PE speed estimation extracts speed signal from an
assumedly-accurate flux/emf estimate or an erroneous current
estimate î that is disturbed by ω̃, as shown in Fig. 1(a), 1(b),
and 1(c). For post-PE speed estimation, the output is ω̂; the
input is θ̂d-related states or current error ĩ; and the model is
constant speed model d

dtω = 0, steady state model of (10), or
motion dynamics (2). The generic algorithms are SA5–7.

A. Post-PE-SA5: Direct Calculation

1) Direct Calculation from Position: Speed estimate can
be calculated by the forward difference of the flux angle θ̂d
[10], [23], and an additional LPF is embedded to reduce the
amplified noise in [23].

2) Direct Calculation from Orthogonality between Flux and
EMF: Acknowledging the fact that speed signal exists in
the dynamics of the derivative of stator flux, it can then be
calculated as ω̂(ψ̂

T

s ψ̂s) = −(Jψ̂s)
Tsψ̂s, where the derivative

of flux can be substituted with the calculated stator emf as
es = u−Ri [98], [99], [105], the SMDO emf estimate [55],
[106], [107], or the forward difference of flux [108]. In [109],

3) Direct Calculation from Emf: Speed is simply the emf
amplitude divided by the flux amplitude [46], [49].

B. SA6: Model Reference Adaptive System (MRAS)

An adaptive observer is established based on the fact that
the output error ε is measurable and can be used to drive the
speed adaptation law (22). Therefore, for sensorless ac motors,
the output error ε should always be the current error ĩ, and
the adaptive observer is of full-order. From the perspective of
model reference adaptive system (MRAS), the actual motor
is the reference model, and the full-order adaptive observer is
the adjustable model.

Now consider an MRAS, where the reference model is an
IS-PE, and then one can implement a reduced-order adaptive
observer as the adjustable model. Such adjustable model is
called cascaded adaptive observer (CAO) in this paper.

Full-order adaptive observer has an interconnected structure
between PE and speed estimation, while the CAO is designed
to be a cascaded speed estimation sub-system that comes after
the PE sub-system. However, if the reference model is a non-
IS-PE, then the resulting MRAS (of the non-IS-PE and CAO)
is interconnected.

8If KActive and ω are constant, then
∫ t+ 2π

ω
t eα,Activeeβ,Activedt = 0 is

valid, and it is also true for stator emf if d- and q-axis currents are constant.

1) CAO Based on Prior θ̂d-related States: CAO assumes
that an accurate estimate of the unknown states, e.g., position
θ̂d, emf ê or flux ψ̂s, is available, and an speed-adaptive
reduced-order observer based on output error ε = θ̂d − ˆ̂

θd,
ε = ê−ˆ̂e or ε = ψ̂s−

ˆ̂
ψs is further reconstructed for observing

the “estimate of unknown states” as an effort to extract the
hidden speed information by a speed update law (22).

EMF-type CAO, as shown in Fig. 3, is implemented in [6],
[43], [44], [52], [54], [57], [61]. Flux-type CAO can be found
in [82], but what is much more often to see is to use the angle
of the flux estimate to build a position-type CAO—which is
also known as phase-locked loop (PLL).

PLL is widely used for post-PE speed estimation. During
formulation of PLL, various types of position error signals
can be exploited, such as the q-axis voltage [101], the angle
of γδ-frame extended emf [71], d-axis current error from (18a)
[87], and the forward difference of high frequency components
of αβ-frame current [110]. PLL for induction motors would
need to add an additional slip relation [5]. Speed error during
speed transients is inevitable because typical PLL is 2nd-order
system that assumes constant speed [111], which is a type-
2 system [13]. The transfer function from actual position to
estimated position can be found in [92, Eq. (18)] and [71,
Eq. (39)] The speed error from PLL during speed dynamics
is analyzed in [58]. In [29], an additional PI term driven by
torque error is further added to the PLL based speed estimate.
PLL can be generalized for higher order to track time-varying
speed [14, Eq. (24)], and see also [35] and [92, Eq. (22)] for
an application of type-3 PLL for tracking ramp speed signal.

Generally speaking, when designing for post-PE speed
estimation, a position signal θ̂d is assumed to be available and
accurate, meaning that no correction for θ̂d is done during
post-PE speed estimation stage. However, the reality is that
non-IS observer is disturbed by speed error and that the
emf estimate is probably obtained from an LPF, thus lagged
response of θ̂d with respect to θd is expected. A remedy is
proposed in [60] to compensate the delay in the estimated
emf during the post-PE speed estimation stage using PLL.

2) Speed Adaptation Law Using Prior Current Error ε =
ĩ: The speed adaptation law (22) is driven by the estimated
current error ĩ. The regressor depends on how speed appears in
the adopted model, and typical choices of regressors are stator
flux [69] and extended emf [20]. Particularly, in (18b), the
regressor is KActive [87]. Speed adaptation treats the speed as
a constant parameter, but one can design an inertia-dependent
speed-adaptation law that includes an additional torque term
[87], [108].

C. SA7: Speed Observer

1) Observer with Constant Load Torque Assumption (23a):
Speed observer (SA7) uses the motion dynamics (2) to extract
speed information from the prior position estimate, resulting in
a 3rd-order state observer for position, speed, and load torque
[40], [78], [90], [110] [112, Fig. 9]. SA7 often assumes a
constant load torque, and has various names, such as extended
Luenberger observer (ELO) [113, Sec. 4.5.3.5] or extended
state observer (ESO) [47], [114]–[116]. Particularly, nonlinear
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correction is used in [115], [116]. See (45) in Appendix B for
a discussion of those speed observer variants.

Alternatively, one can also design a 3rd-order state observer
using q-axis current, speed and load torque as states, which
can be understood as a reduced-order implementation of the
original natural speed observer [18] for either PM motors [2]
or induction motors [105], and can also be understood as an
ELO implementation of the q-axis current observer (18b) [87].
The difference is that the natural speed observer uses motor
active power error as the scalar output error ε, which, however,
makes observer tuning to be dependent on q-axis voltage [2].

2) Inertia-Free Variant of Speed Observer (23b): In [70],
[77], an extended Kalman filter type speed observer is pro-
posed for a 3rd-order system of position, speed and accelera-
tion, without needing inertia parameter Js.

V. SPEED ESTIMATION FOR INDIRECT FIELD
ORIENTATION (IFO)

If the angle used in Park transformation P is an integral of
a speed estimate, the torque control is said to be dynamic and
based on IFO. In this sense, IFO is a special kind of non-IS-PE
with the simplest dynamics: θ̂d = 1

s ω̂. The interesting idea is
that now we can construct the speed estimation based on the
IFO position estimate 1

s ω̂, rather than assuming some accurate
position estimate is available, which is a completely different
design philosophy from post-PE speed estimation because of
this special input, as shown in Fig. 1(d).

A. General IFO-PE

Generally speaking, we can add an additional IFO integrator
to the output of any post-PE speed estimation, to achieve
general IFO-PE, as shown in Fig. 1(a), 1(b), and 1(c). The
IFO integrator provides an additional position estimate as 1

s ω̂
that can be used in e.g., SA3 [38], as is discussed in Sec. II-A3
to design voltage compensation D̂ for induction motors.

B. IFO-SA5: Closed-loop Direct Calculation from EMF

This sub-section reviews the special IFO-PE designs whose
speed estimation do not rely on prior position estimate. The
input is

∫
ω̂dt, the output is ω̂, the model is (10), and the

generic algorithm is SA5.
The key to implement (21) is to design a feedback loop

to force êd,ss = 0. In other words, if êd,ss 6= 0, the speed
estimate ω̂ must be updated to make êd,ss = 0. So the practical
implementation of (21) is [85, Sec. III] [117]9

sθ̂d = ω̂ = k
êq,ss

KActive
+ sign(êq,ss)

k1s+ k2
s

êd,ss (30)

Special choices are k = 0 [3], and k2 = 0 [21], [118]. It is
pointed out in [5] that the introduction of an additional LPF
will resolve the algebraic loop caused by (30), because êq,ss
is a function of ω̂, so ω̂ appears on both side of (30).

9The ud, uq , id, iq used for êd,ss, êq,ss are obtained using IFO: P ( 1
s
ω̂).

A variant of (30) is to replace êq,ss, êd,ss with integral of
q-axis and d-axis current error, ĩd, ĩq [85, Sec. IV]:

êq = k
1

s

[
iq −

1

Lqs
(êq,ss − êq)

]
(31a)

sθ̂d = ω̂ =
êq

KActive
+
k1s+ k2

s

[
id −

1

Lqs
êd,ss

]
(31b)

with [id, iq]
T = P (θ̂d)i (31c)

where k2 is originally set to zero in [85]. Note the current
observer is embedded in (31) as Lq ŝid = êq,ss − êq and
Lq ŝiq = êd,ss. As a result, the steady state assumption of
sid = siq = 0 for (21) can be removed.

We believe it is one of the most interesting observations
in the field of sensorless control, that (when the KActive is
constant,) the open-loop q-axis current error in (31a) contains
speed error information, and the open-loop d-axis current error
in (31b) contains position error information [86, Eq. (9.26)].
This is further generalized for time-varying KActive in [5,
Eq. (13)] as “basic relations for sensorless flux estimation”.

C. Magnetic Asymmetry (Rotor Slot Harmonics) Detection

For straight slot induction motors of certain stator and
rotor slot combinations [119], the rotor slotting will induce
harmonics in i [120], and rotor speed can be detected from
the rotor slot harmonics in i [119], [121], [122]. This kind
of speed estimation can detect speed independently from the
rotor position and has almost no parameter dependency [121].

VI. LOSE THE CONSTANT KActive ASSUMPTION

So far, thanks to the constant KActive assumption, all the
SAs reviewed above (except the ones relying on the magnetic
asymmetry) can be applied to both induction motors and PM
motors.10 However, KActive is by definition a time-varying
parameter as long as (Ld − Lq)id varies, and a change in
KActive leads to the unmodelled dynamics Eu in (7).

Sometimes a time-varying KActive is beneficial, e.g., for
efficiency improvement or for better dynamic performance.
Specifically, at high speeds, faster speed dynamic process can
be achieved if the flux amplitude is first weakened such that
more dc bus voltage can be used for producing torque current,
which is a result of a multi-step optimization control [123].

This section briefly reviews compensation for the dis-
turbance due to time-varying KActive in salient motors in
Sec. VI-A, and then the rest of this section focuses on the
derivation of induction motor model and its SA designs. In
fact, most literature of sensorless induction motors depends
on the time-varying KActive model.

A. Compensation for Time-Varying KActive in Salient Motors

In [11], an angle compensation that takes into account the
unmodelled dynamics in (7b) when KActive varies is proposed.
In [9], the i̇d in the unmodelled dynamics Eu in (7a) is
compensated by its estimate.

10Even though SA1 does not explicitly require KActive to be constant,
but the flux or voltage compensation often relies on the constant KActive

assumption. For example, the flux offset D̂ψ in (24) does not equal to 0
when flux amplitude varies.
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B. Model of Induction Motors with Time-Varying KActive

For induction motors, the unmodelled dynamics Eu satisfy

Eu = P−1(θd)
[
K̇Active

0

]
= Rreq

(
i− ψActive

Ld − Lq

)
︸ ︷︷ ︸

negative rotor current

−ωslJψActive

(32)
in which (1) and (4) have been substituted, and ωsl =

Rreqiq
KActive

is the slip relation. The model with stator current and active
flux as states can be derived from (6), (7a) and (32):

Lq
d
dti = u−Ri− d

dtψActive (33a)
d
dtψActive =

−Rreq

Ld−LqψActive +Rreqi+ (ω − ωsl)JψActive

(33b)

which is exactly the inverse-Γ circuit induction motor model.
There are two things that make induction motors unique:

1) Active flux amplitude KActive is not constant and is
maintained by stator excitation for non-PM motors.

2) There is a slip speed ωsl difference between field speed
ω and rotor speed ωr, i.e., ωr = ω − ωsl.11

In other words, the induction motor is not a PM motor nor
synchronous motor. These two facts correspond to the two
unique features of the SAs dedicated for induction motors:

1) There is a chance for estimated flux amplitude K̂Active

to collapse [124], and there is a chance for the change in
flux amplitude being mis-interpreted as a change in flux
angle [5], such that unstable sensorless operation results.

2) The current model of induction motor (33b) provides
angle information, while for synchronous motors, the
angle of current model flux can not be utilized [5, (10)].
Therefore, in the context of PM motors, the term “current
model” is no more than the active flux parameter KActive.

C. SAs Based on (i, ψActive) Model (33)

1) IS-PE Design: IS-PE is achieved by designing 4th-order
DO for the unknown term

(
−Rreq

Ld−Lq I + ωrJ
)
ψActive in (33)

using SM correction [106], [107], [109], [125]–[127] or PI
law dynamic correction (a.k.a. ESO) [128]. This results in an
IS-PE design with a redundant observer as is discussed in
the Appendix A. The redundant observer gives an estimate
of flux for direct calculation of ω̂r by [109, Eq. (23)] [129,
Eq. (26)], and see also [129, Sec. V] for a cascaded variant
of redundant flux observer. Alternatively, one can design an
IS SMDO whose correction f is in replace of the unknown
term ωrJψs or ωrJψActive, depending on the choice of state
variables [130].

2) Non-IS-PE Design: Using current and flux as states,
speed-adaptive observer can be designed in αβ-frame [83],
[108], [131]–[137] and dq-frame [138]. This is referred in
literature as the “full-order observer” of induction motors,
which has attracted a lot of research attention. Active flux
(or rotor flux) is often chosen as the state, while stator flux
ψs can also be selected as state [108]. Linear correction is
often used, but SM correction can also be found in literature
[83], [108], [136].

11The slip speed causes an algebraic loop when using (30) for sensorless
q-axis current control [5].

As a special case of non-IS-PE, the motion dynamics (2)
can be further utilized such that speed is treated as a state
and inertia is needed. In αβ-frame, a 6th-order natural speed
observer is proposed in [18] with the stator current, active
flux, speed and load torque as states, and the key feature is to
use motor active power error as the scalar output error ε. In
dq-frame, it is stated in [139] that the speed estimation can be
achieved through the d-axis subsystem, and a 5th-order SM
state observer consisting of d-axis current, d-axis rotor flux,
rotor position, rotor speed and load torque is proposed.

3) Challenges at Low Speed Regeneration: It is very chal-
lenging to stabilize the (i, ψActive) model based full-order
observer in low speed regeneration and slow zero frequency
crossing, because the stable speed adaptation law derived
from Lyapunov function [133] depends on the unknown flux
error, and the hyper-stability analysis in [131] depends on the
assumption that the ratio between flux error norm and current
error norm has finite upper bound such that the unknown flux
error can be replaced by current error. Careful observer gain
designs based on the linearized model (see, e.g., [134], [137],
[140], [141]) and the positive real property [142] are proposed
for improved stability. It is also effective to re-design the speed
adaptation law [135], [143], [144] [19, Eq. (26)]. It is shown
in [145] that in order to find a Lyapunov function for the full-
order observer, the observer coefficients must be dependent on
the actual speed, implying global stable design does not exist.

D. Change of States for Global Stability

To attack the regeneration instability challenge, an ideal
solution is to find a globally stable speed-adaptive observer de-
sign. In the literature of observer design [146]–[150], observer
is often proposed for a class of systems that are in Brunovsky
observer form [151]12, which does not describe the induction
motor dynamics (33). We will soon see that the key to attain
global stability is to use a different state variable other than
active flux. In the following, we will use (y, x) to denote the
output state and the internal state of the new model.

1) Model (Lqi,−eActive): The dynamics are [19]

sy = u−Ri+ x

sx = −Rreq

(
si+ 1

Ld−Lqx
)

+ ωrJx
(34)

where si can be obtained using a state variable filter [19].
2) Model (Lqi, Rreqi− eActive): The dynamics are [19]

sy = u− (R+Rreq) i+ x

sx = −
(

Rreq

Ld−Lq I − ωrJ
)

(x−Rreqi)
(35)

which avoids the term si in (34).
3) Model (Lqi, Lqi+ψActive): This yields

sy = u− (R+Rreq) i+
(

Rreq

Ld−Lq I − ωrJ
)

(x− y)

sx = u−Ri
(36)

12To simply put, the following system form is desired:
d

dt

[
y
x

]
=

[
0 I
0 0

] [
y
x

]
+Regressor× Parameter + . . .
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whose key property is that there is no unknown variable ωr
in the dynamics of stator flux x. The research based on this
model is summarized in the monograph [152].

4) Model (Lqi, [
Rreq

Ld−Lq I − ωrJ ]ψs): This yields [153]

sy = x−
(

Rreq

Ld−LqLd +R
)
i+ ωrJy + u

sx =
(

Rreq

Ld−Lq I − ωrJ
)

(u−Ri)
(37)

5) Model (Lqi, [
Rreq

Ld−Lq I − ωrJ ]ψs,−s[ωrJψActive]): If
speed and load torque are treated as system states, a sixth-
order system results, and a state transformation is proposed to
extend the system (37) with a third R2 vector state that is the
time derivative of −ωrJψActive [154].

6) Model (Lqi, [
Rreq

Ld−Lq I − ωrJ ]ψs, ωr, TL): A more
straightforward model is to extend (37) with two scalar states
ωr, TL, that is, no state transformation for ωr, TL [150].

7) Adaptive Observer Form: In [147], a class of system
that allows globally stable adaptive observer design is said to
be in the adaptive observer form, which is translated into two
requirements on induction motor model, i.e., Brunovsky form
and known regressor for speed. Even though only model (37)
is in adaptive observer form, the existence of globally stable
speed-adaptive observer is an established fact [155], [156].

8) Advances in High Gain Observer Design: The known
regressor for speed requirement is removed in the high gain
observer design [149]. Application of this high gain observer
to (37) is studied in [157], and it can also be applied to (34) or
(35). A simulation study in [105] shows the high gain observer
design proposed in [154] can identify resistances even in speed
transients. The requirement on the partitioned matrix needed
in [149], [154] is later removed in [150], which allows one to
further design high gain observer for the sixth-order induction
motor system with two scalar states ωr and TL instead of
the R2 vector −s[ωrJψActive] [150]. The observer design in
[150] allows certain nonlinear term like ωrx to appear, and
note both ωr and x are states, with sx defined in (37).

E. Model Reference Adaptive System (MRAS) for IFO-PE

In the field of sensorless induction motor drive, MRAS is a
jargon for a system with the voltage model (VM) as reference
model and the current model (33b) as adjustable model.13

The pioneer work on MRAS in [96] (and also the follow-
up work [129], [158]) is a good example showing the spirit of
IFO-PE that an accurate estimate of flux/emf is not needed,
by using (28) as the reference model and using high-pass
filtered i for current model as the adjustable model. There are
also attempts to compensate for the gain and lag introduced
in (28) (see, e.g., [159]). The convergence of MRAS based
flux estimate needs an analysis of the error dynamics of the
flux error and the mismatch between VM and current model
[160]. In [12], the VM is transformed to an estimated dq-
frame to derive a generalized slip relation in terms of the VM
correction gains. In [161], the correction in VM is replaced
with a super-twisting based dynamic correction. The dual
reference observer proposed in [130] is also an MRAS, and is

13This is the reason why we have been using the name CAO instead of
MRAS in Sec. IV-B.

an example of implementing the amplitude correction (26) in
its current error form (25a) in a time-varying KActive model.
The MRAS implementation in [27] has made it clear that the
amplitude mismatch is used to stabilize VM and the angle
mismatch is used to tune ω̂ used in current model. In [129],
the speed adaptation law is implemented as an SM control
law.

Readers are referred to [162] for a dedicated review of
various variants of MRAS that have different output error ε.

VII. CONCLUDING REMARKS

This paper reviews SA designs for both induction motors
and PM motors, and a map of the overview is shown in Fig. 4.
IS-PE is a key concept in this paper, meaning the PE has no
speed-dependency, e.g., saliency based methods. If there is
two-way coupling between PE and speed estimation, the PE
is non-IS. All speed estimation methods are coupled with PE
in some way, with an exception being the rotor slot harmonics
based speed detection. According to Fig. 4, there are four types
of generic PE methods:

1) SA1—the potentially IS DO that does not need the model
of the unknown internal states. The key is to design
dynamic correction that allows smaller switching gain to
reduce chattering for SMDO and reduces lagging when
tracking ac disturbance for linear DO.

2) SA2—the non-IS state observer that utilizes the model of
the unknown internal states. The key is to decide which
path to go: the robust reduced-order state estimation or
the speed-adaptive full-order observer. From (7), emf
observer is disturbed by ω̇ while flux observer is not.

3) SA3/4—the potentially IS stabilized integrator. The key is
to design voltage and/or flux compensation based on the
three assumptions from prior knowledge, or to implement
the integrator as a statically compensated (open-loop)
state filter. There is also a trend to design the stabilized
voltage model as a non-IS single tune integrator.

4) The IFO integrator θ̂d = 1
s ω̂ that enables IFO based speed

estimation that can take advantage of P ( 1
s ω̂).

A complete SA scheme consists of the PE and a cascaded
or interconnected speed estimation for which the generic
algorithms are SA5–7: direct calculation, MRAS, and speed
observer, respectively. Now, we are ready to make some
general recommendations by topics as follows.

Regeneration stability. There is no regeneration instability
issue for PM motors, because classical SA designs for induc-
tion motor allows the intermediate state, i.e., the active/rotor
flux, to collapse to zero. In fact, with IS flux estimation,
there is no need of working-condition-dependent stabilization
design for sensorlesss induction motors anymore. For example,
it is mentioned in [105] that the original implementation of
the non-IS 6th-order natural observer for current, flux, speed,
and load torque in [18], loses its stability during low-speed
regeneration, while a simple modification to a cascaded design
with IS flux estimator plus a cascaded speed observer resolves
this problem.

Adopt the constant KActive assumption. This is a natural
practice for PM motor SA designs. For induction motors,
we encourage to design the SA scheme as if KActive is a
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Fig. 4. The map of the overview by the 5 layer hierarchy “O-I-M-A-I”. Solid line means classification or logic flow, and dashed line describes the signal
flow. The example saliency based method is [110]. Note the non-IS tuning and non-IS variants of SA1/3 discussed in Sec. III-B and III-C are not shown.

constant while calculating KActive using (1). In fact, all SAs
reviewed in this paper should be able to be applied to induction
motors14, and there is at least one benefit that the collapse of
the estimated flux amplitude can be avoided.

Time-varying KActive Model. For PM motors, there is
a need for more research of the compensation of the SA
scheme when constant KActive assumption is violated. As for
induction motors, first, there is also IS-PE design for induction
motor model (33a), and an ensuing redundant observer using
(33b) shall give the flux angle needed for DFOC (see, e.g.,
[106], [109]), or this SA design can be easily extended as
general IFO-PE; Second, the reality is that for IFOC, only the
speed estimate ω̂ is the ultimate goal and this means that even
the globally stable speed-adaptive observer (which is non-IS-
PE) is only an intermediate step to obtain ω̂. Globally stable
design is recommended because the observer tuning freedom
is not exhausted for stabilization purpose. However, given
the fact that the Lyapunov stability analysis is established
to only ensure the asymptotically stability of state estimation
through the speed adaptation design, an additional cascaded
speed estimation that extracts ω̂ from the globally stable
state estimation sounds reasonable. In other words, the speed
estimate ω̂ is designed to be disturbed by any parameter
uncertainty in the model, as an effort to ensure consistent
estimation of the state estimation, and therefore, maybe a post-
PE speed estimation from the state estimation could be more

14This even includes the saliency based method, see, e.g., [163].

accurate than the results from the speed adaptation law.15

Try IS algorithm SA1/3 as a starting point. E.g., SA3
with amplitude correction (i.e., the hybrid of VM and current
model) is one of the mostly widely used IS-PE. For SA1
with linear correction, we suggest to implement the dynamic
correction f to higher order (i.e., as GESO or GPIO) as an
effort to reduce the lagging when tracking ac emf disturbance.
For SA1 with nonlinear correction f , we would like to
emphasize that as long as κ0 [defined in the general DO (45)]
is within [0, 1), there would be chattering. Therefore, it is also
beneficial to implement the SMDO to higher order than second
order to reduce chattering, but the SM correction involves
more coefficients such as κj , j = 0, 1, 2, and the optimal
tuning of κj along with correction gains is of interest. As a
comparison, non-IS-PE introduces two-way coupling between
PE and speed estimation and the interconnected structure is
more difficult to be analyzed.

EMF based PE considering harmonics. First, there is
no evidence showing that emf observer is better for PE than
flux observer. Also, note the sinusoidal dynamics of emf
are disturbed by speed variation ω̇. After emf estimation, a
redundant observer can be implemented, which can simply
be an integration of the emf, to get a flux estimate for θ̂d,
which attenuates the higher-order harmonics in emf estimate

15A well known example is that the sensorless controlled induction motor
can control accurate torque but can only regulate biased speed when rotor
resistance value is erroneous, which implies that active flux angle θ̂d is
accurate and ω̂ compensates for the uncertainty in rotor resistance [131],
[158].



13

and amplifies the low frequency disturbance in emf estimate.
If ω̂ is available, a single tune integrator that is an integrator
only at ω̂-frequency can be used to reduce both dc-bias and
higher-order harmonics, where the key step is to design a good
band-pass filter [59].

Speed Estimation. Direction calculation (IFO-SA5) needs
very little computational resources thus is recommended for
cheap chips, but it is also sensitive to noises. For high dynamic
performance, the SA7 (speed observer) should be used instead
of SA6 (MRAS). To reject time-varying load torque, higher-
order SA7 design such as GPIO and GESO is beneficial.

APPENDIX A
POSITION ESTIMATOR DESIGN BASICS

Even though ac motor is a multiple-input multiple-output
(MIMO) system, but the following single-input single-output
(SISO) observer design can be generalized to ac motor.

Consider an SISO system with unknown parameter ω:
d
dtyα = f (yα) + d

dtxα = f (yα) + g (yα, xα, ω)
d
dtxα = g (yα, xα, ω)

(38)

with two states, i.e., one measurable output state yα (i.e., the
α-axis current) and one unknown internal state xα (i.e., the
α-axis active flux).

Our target is to reconstruct an estimate of xα, denoted by
x̂α, or an estimate of ẋα, denoted by ˆ̇xα. If we treat emf
ẋα as dc disturbance16, the proportional-integral correction is
sufficient to reject the disturbance with k1, k2 ≥ 0:

d
dt ŷα = f (ŷα) + ˆ̇xα, ˆ̇xα = k1ỹα + k2

∫
ỹαdt, (39)

where ỹα , yα − ŷα is output error, and non-zero k2 leads
to dynamic correction—meaning that the observer system is
extended with an additional state in the correction term ˆ̇xα.
If ẋα is an ac disturbance of frequency ω̂, the proportional-
resonant (PR) law that serves as a generalized integrator at a
given frequency ω̂ can be used to reject the disturbance:

d
dt ŷα = f (ŷα) + ˆ̇xα, ˆ̇xα = k1ỹα + k2

s

s2 + ω̂2
ỹα (40)

If ẋα is the sum of multiple ac disturbances, or if we
acknowledge the fact that ω̂ is erroneous, the variable structure
correction can be used e.g., with the simplest SM surface ỹα:

d
dt ŷα = f (ŷα) + ˆ̇xα, ˆ̇xα = k1sign (ỹα) + k2

∫
sign (ỹα) dt

(41)
Nonzero k1 causes chattering, and nonzero k2 leads to dy-
namic correction. Additionally, one can add a redundant state
observer for xα to attenuate noises:

d
dt x̂α = ˆ̇xα, with ˆ̇xα defined in (39), (40), or (41).

Alternatively, if we treat xα as a state17, a Luenberger state
observer for x̂α is established:

d
dt ŷα = k1ỹα + g (ŷα, x̂α, ω̂) + f (ŷα)
d
dt x̂α = k2ỹα + g (ŷα, x̂α, ω̂)

(42)

16By “disturbance”, we mean we pretend to not know the dynamics of ẋα.
17By “state”, we mean we know at least an approximation of its dynamics.

If we treat ẋα as a state, another state observer that is in the
Brunovsky form can be designed:

d
dt ŷα = k1ỹα + f (ŷα) + ˆ̇xα
d
dt

ˆ̇xα = k2ỹα + d
dtg (ŷα, x̂α, ω̂)

(43)

In (42) and (43), an estimate of ω̂ is needed, and one can
either introduce an adaptive law as d

dt ω̂ ∝ ỹα, or make sure
the state estimate is robust against parameter error ω̃ = ω− ω̂.

So far, among (39)–(43), (39) and (41) have the potential to
avoid ω̂-dependency. There exists another ω̂-free design, i.e.,
directly integrate for zα , xα + yα (i.e., stator flux):

d
dt ẑα = d

dt (x̂α + yα) = f (yα) + D̂α (44)

where the voltage compensation D̂α is included to stabilize
the pure integration as there is no zα on the right hand side.
For this SISO system, since z̃α is unknown, we need to design
D̂α with some prior knowledge that is solely related to the α-
axis dynamics. For example, the maximum and minimum of
ẑα-waveform within one electrical cycle should add to zero at
steady state. Here, note the electrical cycle can be determined
by detecting adjacent zero-crossings of the ẑα-waveform. For
a MIMO system, we can use even more prior knowledge,
e.g., the orthogonality and the flux amplitude, to constraint the
behavior of ẑα as an effort to stabilize the pure integration.

Note (44) corrects the integration within the integrator
dynamics, and we can also correct the integration at its output
by ẑα− D̂αψ , where the flux compensation D̂αψ can be either
directly calculated by the prior knowledge [23], or can be
estimated by a disturbance observer [13].

APPENDIX B
SPEED ESTIMATOR DESIGN BASICS

Disturbance observer (DO) can be used for extracting speed
information from rotor position estimate (denoted by ϑ , θ̂d),
and can be described as a 3rd-order system with four terms:

d
dt ϑ̂ = f(ϑ̂) + k0|ϑ̃|κ0sign(ϑ̃)

+ k1

∫
|ϑ̃|κ1sign(ϑ̃)dt

+ k2

∫∫
|ϑ̃|κ2sign(ϑ̃)dtdt

(45)

If f = k2 = 0, constant speed is assumed. If f = 0, ramp
speed is assumed. If f(ϑ) =

npp

Js

∫
Tem(ϑ)dt, (45) is inertia-

dependent, and constant load torque is assumed. (45) describes
a class of observer designs (with integer j = 0, 1, 2):
• If κj 6= 1, (45) is nonlinear ESO. Typical choices are
κ0 = 1, κ1 = 1

2 , κ2 = 1
4 [164, Ch. 4].

• If κj = 1, (45) is linear ESO, proportional-integral
observer (PIO), or extended Luenberger observer (ELO).

• If κj = 1, f = 0, (45) is EKF in which k0, k1, k2 are
time-varying gains considering the unmodelled noises.

• If κj = 1, k2 = f = 0, (45) is PLL or adaptive observer.
• If κj = k1 = k2 = f = 0, (45) is first-order SMDO.
• If κ1 = k2 = f = 0, κ0 = 1

2 , (45) is second-order SMDO
with dynamic correction using super-twisting algorithm.

Remark 5: (45) can be further generalized to fourth-order
system with a “k3 term” added, which is making the T̈L = 0
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assumption, which is studied in literature as generalized PI
observer (GPIO) [165], [166] or generalized ESO (GESO)
[167]. 4

The speed observer (i.e., SA7) takes the following form:

ω̂ = f(ϑ̂) + k1

∫
|ϑ̃|κ1sign(ϑ̃)dt+ k2

∫∫
|ϑ̃|κ2sign(ϑ̃)dtdt

(46)
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