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Abstract

The new coronavirus (known as COVID-19) was first identified in Wuhan and quickly spread worldwide, wreaking havoc on the

economy and people’s everyday lives. Fever, cough, sore throat, headache, exhaustion, muscular aches, and difficulty breathing

are all typical symptoms of COVID-19. A reliable detection technique is needed to identify affected individuals and care for them

in the early stages of COVID-19 and reduce the virus’s transmission. The most accessible method for COVID-19 identification is

RT-PCR; however, due to its time commitment and false-negative results, alternative options must be sought. Indeed, compared

to RT-PCR, chest CT scans and chest X-ray images provide superior results. Because of the scarcity and high cost of CT scan

equipment, X-ray images are preferable for screening. In this paper, a pre-trained network, DenseNet169, was employed to

extract features from X-ray images. Features were chosen by a feature selection method (ANOVA) to reduce computations

and time complexity while overcoming the curse of dimensionality to improve predictive accuracy. Finally, selected features

were classified by XGBoost. The ChestX-ray8 dataset, which was employed to train and evaluate the proposed method. This

method reached 98.72% accuracy for two-class classification (COVID-19, healthy) and 92% accuracy for three-class classification

(COVID-19, healthy, pneumonia).
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Abstract 

The new coronavirus (known as COVID-19) was first identified in Wuhan and quickly spread 

worldwide, wreaking havoc on the economy and people's everyday lives. Fever, cough, sore 

throat, headache, exhaustion, muscular aches, and difficulty breathing are all typical symptoms 

of COVID-19. A reliable detection technique is needed to identify affected individuals and 

care for them in the early stages of COVID-19 and reduce the virus's transmission. The most 

accessible method for COVID-19 identification is RT-PCR; however, due to its time 

commitment and false-negative results, alternative options must be sought. Indeed, compared 

to RT-PCR, chest CT scans and chest X-ray images provide superior results. Because of the 

scarcity and high cost of CT scan equipment, X-ray images are preferable for screening. In this 

paper, a pre-trained network, DenseNet169, was employed to extract features from X-ray 

images. Features were chosen by a feature selection method (ANOVA) to reduce computations 

and time complexity while overcoming the curse of dimensionality to improve predictive 

accuracy. Finally, selected features were classified by XGBoost. The ChestX-ray8 dataset, 

which was employed to train and evaluate the proposed method. This method reached 98.72% 

accuracy for two-class classification (COVID-19, healthy) and 92% accuracy for three-class 

classification (COVID-19, healthy, pneumonia). 

Keywords: ANOVA; Chest X-ray Images; COVID-19; DenseNet169; XGBoost 

1. Introduction 

The new Coronavirus, also known as COVID-19, was initially discovered in Wuhan, China, in 

December 2019 [1]. COVID-19 is the name of the disease, and SARS-CoV-2 is the name of 

the virus. This novel infection spread from Wuhan to a large portion of China in less than 30 
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days [2]. Since November 19th, 2020, the COVID-19 pandemic had a detrimental effect on the 

world, with approximately 219,456,675 confirmed cases and 4,547,782 deaths reported till 27 

September 2021; in addition, nearly 7.7 million workers have lost their jobs in America [3]. 

The majority of coronaviruses infect animals; however, due to their zoonotic nature, They have 

the ability to infect humans [4], and as a result, it has the potential to infect human airway cells, 

leading to pneumonia, severe respiratory infections, renal failure, and even death. Fever, cough, 

sore throat, headache, weariness, muscle soreness, and short breathing are common COVID-

19 symptoms [5]. 

     Vivid screening of infected individuals, aids them to be isolated and treated is a crucial and 

essential step in combating COVID-19 [1]. Reverse transcriptase-polymerase chain reaction 

(RT-PCR) testing, which can identify SARS-CoV-2 RNA from respiratory material, is the most 

common technique for detecting COVID-19 patients [6]. It requires specialized materials and 

equipment that are not readily available; because of the large number of false-negative results, 

it takes at least 12 hours, which is inconvenient considering that positive COVID-19 patients 

should be identified and followed up on as soon as possible [7], [8]. Chest-CT scan is another 

option for detecting the disease, which is more accurate than RT-PCR; For instance, 75% of 

negative RT-PCR samples had positive results on chest-CT scans [9]. CT scans have several 

drawbacks, including image collection time, related cost, and CT equipment availability  [10]. 

When compared to CT scans, X-ray images are less expensive and more easily available [11]. 

As a result, the focus of the research is only on the use of X-ray imaging as a screening tool for 

COVID-19 patients. 

     Researchers discovered that COVID-19 patients' lungs contain visual markings such as 

ground-glass opacities—hazy darker areas that may distinguish COVID-19 infected 

individuals from non-infected patients [12], [13]. However, due to the limitations of experts, 

time constraints, and the irreversible consequences of misdiagnosis [4], it is crucial to discover 

a different approach to get faster and more reliable outcomes. The technological advancements 

facilitate the process of diagnosing the diseases, in other words, the widespread use of AI [14] 

mainly its areas such as machine learning and deep learning, are extremely constructive and 

researchers have made significant use of AI and deep learning in various medical areas [15]–

[19]. CNN architecture is one of the most prominent deep learning techniques in the medical 

imaging field, with outstanding results [20]. 

     Pre-trained neural networks are used in this paper, which is one of the most recent 

techniques. Using easily accessible pre-trained models, the proposed method extracts features 

from X-ray images. We utilize one of the feature selection methods in the second phase to 
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acquire an appropriate number of features for classification. Finally, we use the XGBoost 

classifier to classify the specified features. The rest of the paper is organized as follows: Section 

2 describes related works. In section 3, used materials and methods will be presented. In section 

4, the experimental results are reported and analyzed. Finally, section 5 will present a summary 

of the findings and conclusions. 

2. Related Works 

Researchers worldwide are now trying to fight against the Covid-19; using radiological 

imaging and deep learning has made significant progress in this approach. Wang et al. [6] 

developed COVID-Net, a deep model for COVID19 detection that categorized normal, non-

COVID pneumonia, and COVID-19 classes with 92.4 percent Accuracy. Apostolopoulos et al. 

[21] applied transfer learning and employed COVID-19, healthy, and pneumonia X-ray images 

to develop their model. Ozturk et al. [4] proposed using the DarkNet model to build a deep 

network. This model contains 17 convolution layers and utilizes the Leaky RelU activation 

function. For binary classes, this model was 98.08% accurate, and for multi-class cases, it was 

87.02% accurate. Nasiri and Hasani [22] employed DenseNet169 to extract features from X-

ray images and used XGBoost for classification; they gained 98.24% and 89.70% in binary, 

and multi-class classification, respectively. Sethy et al. [23] devised an in-depth feature 

combined support vector machine (SVM) based method for detecting coronavirus infected 

individuals using X-ray images. SVM is examined for COVID-19 identification utilizing the 

deep features of 13 different CNN models. Fareed Ahmad et al. [24] utilized X-ray images for 

training Deep CNN models like MobileNet, ResNet50, and InceptionV3 with a variety of 

options, including starting from scratch, fine-tuning with learned weights of all layers, and fine-

tuning with learned weights and augmentation. Abbas et al. [25] verified a deep CNN termed 

Decompose, Transfer, and Compose (DeTraC) for COVID-19 chest X-ray image 

classification. Zhang et al. [26] presented the Parallel Channel Attention Feature Fusion 

Module (PCAF) and a new structure of convolutional neural network MCFF-Net based on 

PCAF. The network uses three classifiers to boost recognition efficiency: 1-FC, GAP-FC, and 

Conv1-GAP.  Ucar and Korkmaz [27] developed the SqueezeNet that goes toward its light 

network design, is optimized for the COVID-19 detection with the Bayesian optimization 

additive.  

     Additionally Kang et al. [28] presented a transfer learning model that handles a dataset of 

COVID-19 infected patients' CT images. They achieved a test accuracy of 79.3%. Khan et al. 
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[1] represented CoroNet, a Deep Convolutional Neural Network model for diagnosing        

COVID-19 infection from chest X-ray images automatically. The proposed model is built on 

the Xception architecture. Narin et al. [29] proposed five models for diagnosing people with 

Pneumonia and Coronavirus using X-ray images.  

     Similarly He et al. [30] created a deep learning method to categorize COVID-19. They 

scanned 746 CT images, 349 of which were of infected patients and 397 of healthy people. The 

Self-Trans technique is proposed in this approach, which combines contrastive self-supervised 

learning with transfer learning to gain strong and unbiased feature representations while 

avoiding overfitting, resulting in a 94% accuracy rate. Xu et al. [31] applied deep learning 

techniques to create an early screening model to discriminate COVID-19 from influenza-A 

viral pneumonia and healthy cases using lung CT scans. Hemdan et al. [32] used 50 validated 

Chest X-ray images and 25 confirmed positive COVID-19 cases and developed the COVIDX-

Net, which incorporates seven distinct architectures of deep convolutional neural network 

models, such as VGG19 as well as the second version of Google MobileNet. Minaee et al. [33] 

used publicly available datasets to build a dataset of 5000 chest X-rays. A board-certified 

radiologist discovered images that showed the existence of COVID-19 virus. Four prominent 

convolutional neural networks were trained to detect COVID-19 disease, using transfer 

learning 

3. Materials and Methods 

The proposed method employs the DenseNet169 deep neural network, as well as feature 

selection and the XGBoost algorithm, which will be discussed in the following section. 

3.1. DenseNet169 

A CNN's overall architecture is composed of two core parts: a feature extractor and a classifier. 

Convolution and pooling layers are the two essential layers of CNN architecture. Each node in 

the convolution layer extracts features from the input images by performing a convolution 

operation on the input nodes. Through averaging or calculating the maximum value of input 

nodes, the max-pooling layer abstracts the feature [34], [35]. DenseNet is a highly supervised 

network that contains a 5-layer dense block with a k = 4 rate of growth and the standard ResNet 

structure. Each layer's output in a DenseNet dense block includes the output of all previous 

layers, incorporating both low-level and high-level features of the input image, making it 

suitable for object detection [36]. The ILSVRC 2012 classification dataset, which was used for 
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training DenseNet, contains 1,000 classes and 1.2 million images. The dataset images was 

cropped with the size of 224 224 before using as input for DenseNet. DenseNet presented a 

new connectivity pattern that introduced direct connections from any layer to all the following 

layers to improve information flow across layers even further [37]. In DenseNet, the l th layer, 

takes all feature maps 
0 1 2 1
, , ,...,

l
x x x x

−
from the preceding layers as input, which is described 

by Equation (1). 

1 1 0 1 2 1
([ , , ,..., ]),

l
x H x x x x

−
=  (1) 

where ( )
l
H   is a singular tensor and 

0 1 2 1
[ , , ,..., ]

l
x x x x

−
 is the concatenated features from 1l −

layers. To preserve the feature-map size constant, each side of the inputs is zero-padded by one 

pixel for convolutional layers with kernel size 3 3 . DenseNet employed 1 1  convolution and 

2 2  average pooling as transition layers between adjoining dense blocks. A global average 

pooling, in fact, is conducted at the end of the last dense block, and then a Softmax classifier 

is connected. In the three dense blocks, the feature-map sizes are 32 32 , 16 16 , and 8 8 , 

respectively. On five distinct competitive benchmarks, this innovative architecture reached 

state-of-the-art accuracy for recognising the object [34], [37]. 

3.2. Analysis of Variance Feature Selection 

New issues develop as a result of the creation of large datasets. Consequently, reliable and 

unique feature selection approaches are required [38]. Feature selection can assist with data 

visualization and understanding, as well as minimizing measurement and storage needs, 

training and utilization times, and overcoming the curse of dimensionality to enhance 

prediction performance [39], [40]. Analysis of variance (ANOVA) is a well-known statistical 

approach for comparing several independent means [41]. The ANOVA approach ranks features 

by calculating the ratio of variances between and within groups [42].  

     The ratio indicates how strongly the th feature is linked to the group variables.         

Equation (2) is used to calculate the ratioF value of th g-gap dipeptide in two benchmark 

datasets: 

2

2

( )
( )

( )
B

W

s
F

s





=  (2) 

where 
2 ( )
B
s   and 

2 ( )
W
s   are the sample variance between groups (also known as Mean Square 

Between, MSB) and within groups (also known as Mean Square Within, MSW), respectively, and can 

be calculated as Equation (3) and Equation (4). 
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
 (4) 

     The degrees of freedom for MSB and MSW are 1
B
df K= − and 

W
df N K= − , 

respectively. The number of groups and total number of samples are represented by K andN

, respectively. The frequency of the th feature in the j th sample in the i  th group is denoted 

by ( )
ij
f  . The number of samples in the i  th group is denoted by 

i
n  [43]. 

3.3. Extreme Gradient Boosting (XGBoost) 

Chen and Guestrin proposed an efficient and scalable variation of the Gradient Boosting 

algorithm called Extreme Gradient Boosting (XGBoost). XGBoost has been widely employed 

by data scientists recently, and it had desirable results in a wide range of machine learning 

competitions [44], [45]. In certain ways, XGBoost differs from GBDT. First of all, the GBDT 

algorithm only employs a first-order Taylor expansion, whereas XGBoost augments the loss 

function with a second-order Taylor expansion. Secondly, the objective function uses 

normalization to prevent overfitting and reduce the method’s complexity [46], [47]. Third, 

XGBoost is extremely adaptable, allowing users to create their own optimization objectives 

and evaluation criteria. Nevertheless, by establishing class weight and using AUC as an 

assessment criterion, the XGBoost classifier can handle unbalanced training data efficiently. 

In summary, XGBoost is a scalable and flexible tree structure improvement model that can 

manage sparse data, enhance algorithm speed, and minimize computing time and memory for 

large-scale data [48]. 

     Formally, the XGBoost algorithm can be described as follows: 

Given a training dataset of n samples 1 1 2 2{( , ),( , ),...,( , )}n nT y y yx x x , m
ix , iy , 

the objective function can be defined by: 

1
ˆ( ) ( , ) ( )

n T

i i ti t
obj l y y f

=
= +    (5) 
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where ˆ( , )
i i

l y y measures the difference between the target 
i
y and the prediction 

î
y and 

t
f denotes 

the prediction score of t th tree. The estimated loss function can be computed based on Taylor 

expansion of the objective function: 

( ) ( )1 2

1

1

2
ˆ( , ) ( ) ( ) ( )

kt t

i i t i i t i ti
L l y y g f x h f x f

−

=

 
+ + +  

 
  (6) 

where ( )

( )
1

1

ˆ
ˆ( , )

t

t

i iy
g l y y

−

−
=  denotes each sample's first derivative and ( )

( )
1

12

ˆ
ˆ( , )

t

t

i iy
h l y y

−

−
=   

denotes each sample's second derivative, and the first and second derivatives of each data 

element are all that the loss function requires [49]. 

3.4. Proposed Method  

In this study, pre-processing methods were employed on the dataset, which includes label 

encoder for classes and using normalization on images and as a result, less redundant data are 

given as the input to the network. Deeply influenced by the brain's structure, deep learning as 

a sub-field of machine learning was emerged. In the area of medical image processing, as in 

many other areas, deep learning approaches have continued to demonstrate excellent results in 

past years [29]. ImageNet is a dataset of millions of images organized into 1000 categories 

when it comes to image processing. The next step was to apply several pre-trained models that 

were trained based on this dataset. Densnet169 had the best performance among those models, 

so it was selected as the feature extractor in the proposed method. The X-ray dataset images 

scaled at a fixed size of 224 224  pixels, which is the DenseNet169 input size. 

     The final layer of the DenseNet169 network, which was used to predict ImageNet dataset 

labels, was eliminated. Global average pooling, a pooling method designed to substitute fully 

connected layers in classical CNNs, was added in the final layer of the network. One of the 

benefits of global average pooling is that there are no parameters to adjust in this layer; 

therefore, no training is needed. Additionally, because global average pooling sums up the 

dimensional information, it is more resistant to input dimensional translations [50]. The X-ray 

images were given to the network in order to extract features from DenseNet169, and 1664 

features were extracted as a result. 

     When a learning model is given many features and few samples, it is likely to overfit, 

causing its performance to degrade. Among researchers, feature selection is a widely used 

strategy for reducing dimensionality [51]. In order to reduce the classification time and increase 

the classifier performance, the ANOVA feature selection method was employed to reduce the 
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number of features. Thus, the range of 50 to 500 features was applied for the purpose of 

selecting the best number of features for classification (using validation set). Finally, the 

selected features were given to the XGBoost for detection of COVID-19. Figure 1 shows the 

general framework of the proposed method. 

Feature
vector

Covid-19

No_findings

Covid-19

No_findings

Pneumonia

CP D1 T1 D2 T2 D3 T3

56
64

56
256

128
28 28

512

14
256

14
1280

7
640

7
1664

224 * 224 * 3

XGBoost

D: Dense Block

CP : Conv + Pooling

T: Transition Layer

Feature 
selection
(ANOVA)

 

Figure 1: The architecture of proposed model. 

4. Results and Discussion 

Several performance metrics such as precision, recall, specificity, and F1-Score, as well as 

accuracy were utilized, to evaluate several deep learning models with the proposed 

methodology, because accuracy alone cannot evaluate a model's usefulness [52]. Accuracy is 

the ratio of number of correctly predicted samples to the total number of samples. The            

Equation (7) can be used to calculate accuracy. 

TP TN
Accuracy

Total
 (7) 

     Precision is the proportion of predicted true positive values to the total number of predicted 

true positive and false positive values. A model with a low precision is prone to a high false-

positive rate. Precision can be calculated using Equation (8). 

P
Precision

TP

FP T
 (8) 

     The number of true positives divided by the sum of true positives and false negatives is 

known as recall or sensitivity. When there is a large cost associated with false negatives, the 

model statistic used to pick the optimal model is recall. Recall can be computed using    

Equation (9). 

TP
Recall

TP FN
 (9) 

     Specificity is the proportion of predicted true negatives to the summation of predicted true 

negatives and false positives. Specificity can be determined using Equation (10). 
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TN
Specificity

TN FP
 (10) 

     F1-Score combines precision and recall. As a result, both false positives and false negatives 

are included while calculating this score. It is not obviously as simple as accuracy for 

comparison. However, F1-Score is generally more valuable than accuracy, particularly if the 

problem is an imbalanced classification problem. Equation (11) can be used to calculate the 

F1-Score. 

1

2
-

Recall Precision
F Score

Recall Precision
 (11) 

     In this study, the dataset that Ozturk et al. [4] collected has been employed, gathered from 

two distinct sources, and includes COVID-19, No-findings, and Pneumonia as shown in Figure 

2. This first class of dataset contained 43 women, and 82 men confirmed they were infected 

with COVID-19. The average age of 26 COVID-19 confirmed individuals is about 55 years 

old, according to the age info supplied. The remaining two classes were chosen randomly from 

the Wang et al. [53] ChestX-ray8 dataset, which included 500 No-findings and 500 Pneumonia 

images. 

     Two distinct perspectives were conducted to identify and classify COVID-19. First, the 

proposed technique was validated in order to classify binary classes labelled COVID-19 and 

No-findings. Second, the proposed approach was used to classify three different groups: 

COVID-19, No-findings, and Pneumonia. In the first aspect, the two-class problem, the 

proposed method effectiveness is measured using the 5-fold cross-validation. A total of 80% 

of the dataset was used for training and 20% for testing. Following the extraction of features 

by Densenet-169, ANOVA selected 67 features from 1664 as an optimal number for 

classification, as a result, about 96% of features are reduced, and the XGBoost classification 

process was significantly sped up. 

     The 5-fold cross-validation had an average accuracy of 98.72%, and the confusion matrix 

was computed for each fold and overlapped, as shown in Figure 3. The total of the confusion 

matrix entries acquired in all folds is used to generate the overlapping confusion matrix. As a 

consequence, the goal is to get a sense of the model's general patterns [4]. It shows that the 

proposed architecture correctly identified COVID-19 and No-findings with 100% and 98.43% 

accuracy, respectively. In other words, the proposed method performs better at detecting true-

positive samples. 
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(a) 

 

(b) 

 

(c) 

 

   

Figure 2: Representation of lungs X-ray in COVID-19 patients (a), No-findings (b), and patients with 

Pneumonia (c). 

     Precision, recall, specificity, and F1-Score values achieved are 99.21%, 93.35%, 100%, and 

97.87%, respectively. Table 1 represents the comparison of the proposed method with Ozturk 

et al. [4] and Nasiri and Hasani [22] in terms of accuracy, precision, recall, specificity, and     

F1-Score values for each fold and the average of all folds, which Nasiri and Hasani [22] had 

better results than Ozturk et al. [4] and the proposed method outperforms them all except recall. 

     In the multi-class problem, 80% of X-ray images dataset was used for training and the 20% 

remaining employed for evaluation of proposed architecture. ANOVA was used to select 275 

features out of 1664 as the ideal number for classification. As a consequence, almost 84% of 

features are decreased, and XGBoost classification process was substantially ramped up and 

performance improved. The accuracy of validation set achieved 92% and the confusion matrix 

was illustrated as Figure 4. Like binary class problem, this confusion matrix indicates that the 

proposed method had a stronger result in finding COVID-19 rather than No-findings, and 

Pneumonia. Precision, recall, specificity, and F1-Score values of 94.07 %, 88.46%, 100%, and 

92.42%, were reached respectively. In terms of accuracy, precision, recall, specificity, and     

F1-Score values of the validation set, Table 2 compares the proposed approach to Ozturk et al. 

[4] and Nasiri and Hasani [22].  
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Figure 3: Confusion matrix for binary class problem. 

Table 1 Comparison of the proposed method with other methods in binary class problem 

Performance 

metrics (%) 
Methods Folds-1 Folds-2 Folds-3 Folds-4 Folds-5 Average 

 Proposed method 94.73 90.47 92.00 96.96 92.59 93.33 

Recall Ozturk et al. 100 96.42 90.47 93.75 93.18 95.13 

 Nasiri and Hasani 95.20 95.40 96.70 81.40 91.40 92.08 

 Proposed method 100 100 100 100 100 100 

Specificity Ozturk et al. 100 96.42 90.47 93.75 93.18 95.30 

 Nasiri and Hasani 100 100 100 89.90 100 99.78 

 Proposed method 99.53 99.05 99.01 99.46 99.00 99.21 

Precision Ozturk et al. 100 94.52 98.14 98.57 98.58 98.03 

 Nasiri and Hasani 99.50 99.50 99.40 95.30 99.02 98.54 

 Proposed method 98.41 97.02 97.42 98.96 97.57 97.87 

F1-Score Ozturk et al. 100 95.52 93.79 95.93 95.62 96.51 

 Nasiri and Hasani 98.50 98.50 98.20 92.50 97.30 97.00 

 Proposed method 99.20 98.40 98.40 99.20 98.40 98.72 

Accuracy Ozturk et al. 100 97.60 96.80 97.60 97.60 98.08 

 Nasiri and Hasani 99.20 99.20 99.20 95.20 98.40 98.24 
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     The proposed method applied on ten pre-trained networks for both binary and multi-class 

problem. As shown in Table 3, The average of 5-fold cross-validation accuracy employed to 

compare approaches in two class problem whereas the best fold accuracy was used to compare 

approaches on multi-class problem. DenseNet169 outperforms other pre-trained networks in 

both binary and multi-class problem. Additionally, the gradient-based class activation mapping 

(Grad-CAM) [54] was used to represent the decision area on a heatmap. Figure 4 illustrates the 

heatmaps for three COVID-19 cases, confirming that the proposed method extracted correct 

features for detection of COVID-19, and the model is mostly concentrated on the lung area. 

Radiologists might use these heatmaps to evaluate the chest area more accurately.  

 

       

Figure 4: The heatmap of three confirmed COVID-19 X-ray images. 

  
Figure 5: Confusion matrix for three-class problem. 

 

Table 2 Comparison of the proposed method with other methods in multi-class problem 

 Performance metrics (%) 

Methods Recall Specificity Precision F1-score Accuracy 

Proposed method 88.46 100 94.07 92.42 92.00 

Ozturk et al. 88.17 93.66 90.97 89.44 89.33 

Nasiri and Hasani 95.20 100 92.50 91.20 89.70 
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Table 3 Comparison of different deep neural networks 

DNN Binary Class Accuracy Multi Class Accuracy 

DenseNet169 98.72% 92% 

InceptionV3 92.96% 82.22% 

NASNetLarge 94.88% 84.00% 

ResNet152 94.71% 77.33% 

VGG16 97.43% 88.88% 

VGG19 97.28% 88.88% 

Xception 95.68% 80.88% 

EfficientNetB0 97.92% 88.88% 

InceptionResNetV2 94.88% 83.11% 

     The proposed method was compared to relevant works in Table 4. Wang et al. [6] applied 

16,756 X-ray chest images from diverse sources to develop COVID-Net and achieved a 92.4% 

accuracy rate on 3-class classification problem. Sethy et al. [23] utilized ResNet150 to extract 

features from 25 COVID-19 positives and 25 healthy chest X-ray images, then used SVM to 

classify them, achieving a 95.38 percent accuracy rate. Wang et al. [26] proposed M-Inception 

for 195 COVID-19 infected patients and 258 regular cases, and as a result, 92.8% accuracy 

rate was achieved. Hemdan et al. [32] trained and evaluated COVIDX-Net using 25 confirmed 

COVID-19 and 25 non-infected cases X-ray images, achieving a 90% Accuracy rate. 

     Narin et al. [29] used 50 public source COVID-19 chest X-ray images and 50 normal images 

from another source to test three alternative CNN models, obtaining a 98% accuracy rate. Sethy 

et al. [23] reached 95.38% accuracy using ResNet50 and SVM which was evaluated by 50      

X-ray images. Ying et al. [55] employed 777 confirmed COVID-19 patients and 708 normal 

cases CT images to develop their deep model base on the pre-trained network model, 

ResNet50, which reached 86% accuracy rate. Apostolopoulos et al. [21] scored 98.75% and 

93.84% success for binary and multi-class classification problem, respectively. They used 224 

confirmed COVID-19, 700 pneumonia, and 504 normal X-ray images to evaluate their model 

based on the pre-trained model, VGG-16, and transfer learning. 

     Zheng et al. [56] gained 90.8% accuracy employing CT images of 313 positive COVID-19 

and 229 normal cases to develop their model. Xu et al. [31] applied ResNet on the dataset of  

219 confirmed COVID-19 and 224  pneumonia and 175 normal CT images, scoring 86.7% 

performance. Ozturk et al. [4] used 125 positive COVID-19, 500 No-findings, and 500 

pneumonia X-ray images to develop their model, resulting in 98.08%  for binary-class and 

87.02%  multi-class accuracy rate. The dataset that Ozturk et al. [4] gathered from various 
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sources has been used in this paper. For two-class and multi-class classification problem, 92% 

and 98.72% accuracy are obtained, respectively, in this paper. Table 4 shows that the proposed 

approach outperforms most of the existing deep learning-based models in terms of accuracy. 

However, it should be emphasized that the findings in Table 4 were derived from different 

datasets and different experimental setups. 

Table 4 Comparison of the proposed method with other DNN based methods 

Study Type of Images   Number of Cases Method Used Accuracy (%) 

Apostolopoulos et al. [21] 

Chest X-ray 224 COVID-19 (+)  

700 Pneumonia  

504 Healthy 

VGG-19 93.48 

Wang et al. [6] 
Chest X-ray 53 COVID-19 (+)  

5526 COVID-19 (−) 
COVID-Net 92.4 

Sethy et al. [23] 
Chest X-ray 25 COVID-19 (+)  

25 COVID-19 (−) 
ResNet50+SVM 95.38 

Hemdan et al. [32] Chest X-ray 25 COVID-19 (+) COVIDX-Net 90.0 

Narin et al. [29] 
Chest X-ray 50 COVID-19 (+)  

50 COVID-19 (−) 

Deep CNN  

ResNet50 
98 

Ying et al. [55] 
Chest CT 777 COVID-19 (+)  

708 Healthy 
DRE-Net 86 

Wang et al. [26] 
Chest CT 195 COVID-19 (+)  

258 COVID-19 (−) 
M-Inception 82.9 

 Zheng et al. [56] 
Chest CT 313 COVID-19 (+)  

229 COVID-19 (−) 

UNet+3D Deep  

Network 
90.8 

Xu et al. [31] 

Chest CT 219 COVID-19 (+)  

224 Viral Pneumonia  

175 Healthy 

ResNet +Location  

Attention 
86.7 

Ozturk et al. [4] Chest X-ray 

125 COVID-19 (+)  

500 No-Findings 

DarkCovidNet 

98.08 

125 COVID-19 (+)  

500 No-Findings 

500 Pneumonia 

87.02 

Proposed Method Chest X-ray 

125 COVID-19 (+)  

500 No-Findings 
DenseNet169+ 

ANOVA+XGBoost 

98.72 

125 COVID-19 (+)  

500 No-Findings 

500 Pneumonia 

92.0 

5. Conclusion  

Early diagnosing COVID-19 is a crucial step to prevent mortality and transmission of the virus. 

RT-PCR is the most accessible tool to identify COVID-19, but finding other alternatives for 

this problem is essential due to false-negative outcomes and time limitations. Chest CT and   

X-ray images are suitable substitutes for RT-PCR, but because of the lack of CT hardware, 

X-ray images are a superior tool for diagnosing COVID-19. AI and machine learning 

technologies play a virtual role in the quicker detection of COVID-19. In this study, a              

pre-trained model, DenseNet169, was utilized to extract features from X-ray images, and 
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ANOVA was employed to select features to decrease classification time and improve 

performance. And finally, selected features were classified using XGBoost. The ChestX-ray8 

dataset was used to evaluate the proposed method. Experimental results show that the proposed 

method obtained 98.72% and 92% accuracy in two and three-class problems, respectively, and 

outperforms other state-of-the-art methods. 
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