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Abstract

We used a dataset of nocturnal PSG recordings, collected as part of the Healthbed study, which main aim was development

of technologies for sleep analyses. The dataset includes one clinical video-PSG recording for each subject, made according to

the AASM recommendations in Sleep Medicine Center Kempenhaeghe Heeze, the Netherlands. The study included 96 (60

females) healthy subjects, with an age between 18 and 64. The exclusion criteria were: 1) any diagnosed sleep disorder, 2) a

Pittsburgh Sleep Quality Index >= 6, or Insomnia Severity Index > 7, 3) indication of depression or anxiety disorder measured

with the Hospital Anxiety and Depression Scale (score > 8), 4) pregnancy, shift work, use of any medication except for birth

control medicine, and 5) presence of clinically relevant neurological or psychiatric disorders or other somatic disorders that

could influence sleep.
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Abstract— Sleep staging is the process of assigning sleep stage
annotations to windows of sleep recordings. Since the advent
of machine learning, and in particular deep learning, automation
of this labor-intensive job has attracted considerable attention.
Commonly used models are convolutional classification networks
that - by means of a softmax function - provide a probability for
each of the different sleep stages, from which the stage with the
largest probability is selected. Recently, it was proposed to use
these softmax predictions as a means to get more insights into the
continuous dynamics of the sleeping brain [1]. Plotted over time,
these probabilities are called a hypnodensity (graph), as opposed
to the conventional hypnogram that displays only one stage for
every 30 seconds of data. In this work we investigate how to
interpret the proposed hypnodensity by introducing a signal and
annotation model. We model the selection of a sleep stage as a
function of the contribution of five underlying (abstract) signals
aggregating the characteristics belonging to one sleep stage. We
conclude that a hypnodensity displays the distribution from which
(discrete) labels were implicitly drawn during annotation of the
training set. Moreover, we found that - despite the additional infor-
mation available in a hypnodensity with respect to a hypnogram
- potentially relevant information is still being lost due to the
non-linear normalizing softmax layer, and the label-dependency of
supervised training. As a solution, we propose to consider pre-
softmax predictions and unsupervised training.

Index Terms— Contrastive Predictive Coding, hypnoden-
sity, hypnogram, sleep, softmax

I. INTRODUCTION

EVEN though we spend a large part of our lives asleep, there
is only a marginal understanding about the processes that

happen in our brain during the night. Until the late thirties of the
previous century, it was widely believed that sleep is a passive
state of the body [2], opposed to the active state of wakefulness.
Due to this belief, and the fact that sleep could not quantitatively
be measured without disturbing the sleeper, little knowledge about
sleep was gained until that time. The decades that followed were
marked by new discoveries about the sleeping brain, mainly thanks
to the discovery of the electroencephalogram (EEG), a recording
that measures electrical activity of the brain via electrodes on the
scalp. EEG recordings, in combination with other bio-physiological
sensor modalities like elektromyography (EMG), electrooculography
(EOG), electrocardiography (ECG), measures of respiratory effort
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etc. - summarized under the term polysomnography (PSG) - have
remained the standard for clinical sleep research ever since.

Quickly after the discovery of the EEG, patterns in the sleeping
brain were described. At that time, sleep was described by high-
amplitude slow waves (0.5-2 Hz), and spindles (bursts of high
frequency), while wakefulness was related to low-amplitude alpha
rhythms (8-13 Hz) [2]. These patterns still form the basis for the way
we describe sleep nowadays. The current standard for sleep analysis
comes from the American Academy of Sleep Medicine (AASM) [3].
The AASM standard distinguishes different states through which a
sleeping brain transitions (multiple times) during the night: rapid eye
movement (REM) sleep, non-REM sleep (subdivided into N1, N2,
and N3), and wakefulness. Given a PSG recording, a sleep technician
(often manually) labels each window of 30 seconds with one of the
five possible states to create a hypnogram; a visual representation
of assigned sleep stages over the full night. The hypnogram has
served as a powerful tool to assess the quality of someone’s sleep. It
typically reveals a cyclic pattern of alternating sleep stages in ‘healthy
sleepers’ [2], and disturbed cyclicity or limited time spent in a certain
stage can thus be an indicator for the presence of ‘abnormal’ sleep
mechanisms. Moreover, presence of many transitions between states
indicates unstable sleep [2]. It should be noted, however, that no
two nights of sleep are equivalent, and both inter- and intra-personal
differences occur. The terms ‘healthy sleeper’ and ‘abnormal sleep’
should thus be used with caution.

Over the last two decades, the immense increase in compute
power and data availability has spurred a strong effort towards the
development of machine-learning-based sleep staging algorithms that
predict a hypnogram from a PSG recording (or recordings using
fewer sensors) [4]–[6]. Such algorithms may alleviate the burden
of manual data annotation, and might improve upon the intra-
rater agreement between (human) scorers, which was found to be
around 83% across 2500 scorers, as reported by the AASM inter-
scorer reliability program [7]. Beyond automation of labor-intensive
processes, machine learning can also be used to reveal intricate
patterns in the data that are currently overlooked with hypnograms.
While a hypnogram has proven clinical utility, it remains a strongly
compressed representation of the measurements, possibly suppressing
information that might be of additional clinical relevance. It is for
example to be expected that transitioning between two states yields
a more gradual pattern than represented in the hypnogram.

Recent developments in automating sleep medicine [1] could be
the answer to the quest to reveal said continuities in sleep recordings.
The authors of [1] propose to use predicted probabilities for each of
the five AASM stages of a trained sleep stage classifier. Plotting these
over the night results in, what the authors call, a hypnodensity graph.
Such plots reveal moments where the probability mass is spread over
multiple stages, giving rise to gradual transitions, something that is
not captured in the hypnogram. This hypnodensity graph has the
potential to induce a paradigm shift in sleep medicine, providing
doctors with a more detailed representation of the nocturnal recording
that might provide insights in (yet unexplained) phenomena (see
fig. 5 for an example). It was, for example, already shown that
the hypnodensity graph contains information regarding sleep stage
dissociations typically found in people with narcolepsy [1].
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The main question that arises now, is how to interpret the
probabilities in a hypnodensity graph. In the absence of a ground
truth, it is in general uncertain whether these probabilities indeed
reflect the underlying continuous processes of sleep. An 80-20%
prediction for the occurrence of stage N2 and N3, can for example
be interpreted as an 80% certain classification for N2. Alternatively,
it can be argued that 80% of the characteristics present in the
window belong to N2, while the remainder belongs to N3. The
former explanation relates to model uncertainty, while the latter is
concerned with unbiased estimation and disentanglement of mixtures
of stages. Both explanations are not necessarily mutually exclusive
and could also occur simultaneously. Said mixtures of stages, i.e.
when characteristics belonging to multiple stages are simultaneously
present in a recorded data window, may occur in practice through
co-existence of distinct phenomena in different cortical areas (known
as local sleep) [8], or due to temporal compression induced by using
30-second sleep windows.

In this paper we investigate how different parts of the
hypnodensity-prediction model contribute to the prediction, in an
attempt to facilitate interpretation, and better understand the assump-
tions and limitations. Specifically, we investigate the respective roles
of the label(-generating) distribution, the training strategy of the
encoder (supervised vs unsupervised), and the non-linear softmax
activation. Experiments are performed both with synthetic data (for
which the ground truth signal model is available), and with full-night
PSG recordings of healthy sleepers. The main contributions can be
summarized as follows:
• We propose a synthetic data set inspired by PSG recordings to

faciliate controlled experiments, in which the label distribution
can be altered, and the ground-truth signal model is known.
We define the signal model as a non-linear mixed measurement
of underlying signals (scaled with their respective mixture
coefficients) that each represent a ficticious sleep stage.

• Through simulation experiments we show that our supervised
classification model with a softmax activation predicts a prob-
ability distribution that corresponds to the label distribution.
This finding enhances interpretability of a hypnodensity graph in
sleep analysis. Moreover, we show that predictions of classifica-
tions models trained on unsupervised encodings are more label-
agnostic, and therefore better reflect data characteristics like the
mixture coefficients in a (non-linearly) mixed measurement.

• We show that the final softmax activation of a sleep stage classi-
fication model, leads to loss of potentially relevant information
in a hypnodensity graph. E.g., the pre-softmax prediction for
deep sleep (N3) much better captures the continuity of slow
waves (compared to the post-softmax prediction), which is in
turn known to correspond to deep sleep.

II. METHOD

A. Signal model
A typical PSG recording X ∈ Rch×L contains time series (of L

samples) from multiple channels (e.g. multiple EEG channels, EMG,
and EOG). We model the data generation/measurement as a non-
linear generative mixing process of C signals S ∈ RC×L, where
each signal sc ∈ RL in S aggregates typical characteristics associated
with a specific sleep stage (with c ∈ {W, N1, N2, N3, R}, where W,
N1-N3, and R respectively denote wakefulness, non-REM1-3, and
REM sleep). Moreover, we model the amplitudes ac of these signals
to vary over time, i.e. characteristics belonging to a certain sleep
stage can be fully absent in some moments, while present (with a
certain amount) at other moments. The resulting signal model yields:

X = h(A ∗ S), (1)

where A ∈ RC×L≥0 contains the (slow) time-varying amplitudes,
which we refer to as mixture coefficients, h : RC×L → Rch×L is
a non-linear spatial mixing function, and the ∗ symbol denotes an
element-wise multiplication. We introduce X = {X1,X2, . . .}, a set
of non-overlapping data windows Xw ∈ Rch×l of length l = 30×fs,
where w denotes the window’s index, and fs the sampling frequency
(in Hz). Concatenation (over the last dimension) of all matrices in
X yields X. Analogously, we define A = {A1,A2, . . .}, with
Aw ∈ RC×l≥0 the (unnormalized) amplitudes for all C classes in data
window w. We denote the normalized counterpart, i.e. the amplitudes
of all classes that sum to one at every moment in time, with Ãw (or
Ã after concatenation of the separate windows).

B. Annotation model

We introduce an annotation model g(Ãw) that assigns a label
yw ∈ {0, 1}C (i.e. a one-hot embedding of a selected sleep stage) to
a data window1. Concatenation of these labels for all windows, results
in Y ∈ {0, 1}C×L/l. The annotation model can be decomposed
into two parts: selection of a (deterministic) rule set, and (stochastic)
decision making or application of the rules. Given our signal model
from section II-A, the normalized amplitudes Ãw , or (normalized)
mixture coefficients, represent the contributions of characteristics
belonging to different sleep stages. The conversion from the mixture
coefficients to selection of one sleep stage is in practice non-linear
and fuzzy. Non-linearity arises from the rules prescribed by the
AASM standard. E.g. when a K-complex is detected, the window
should be classified as N2. Fuzziness is caused by the stochastic
nature of human decision making, which finally gives rise to a
label distribution. This distribution presents the conditional posterior
probability for selecting each of the class labels (i.e. sleep stages) for
a given window. Figure 1 depicts the described signal and annotation
model. Note that in practice, a technician selects a sleep stage directly
given the raw data, rather than first creating mixture coefficients, and
subsequently choosing the appropriate label. Though, the process of
disentangling the raw data into characteristics that describe varies
sleep stages, could be considered an implicit process that takes place
during decision making.

Given the non-linear decision rules of the AASM standard, we
define the following non-linear expression for the label distribution:

p[c|Ãw] = στ{avgl(Ãw)} ∝ exp{avgl(Ãw)/τ}, (2)

where στ denotes a tempered softmax function with temperature
parameter τ ∈ R≥0, one-hot(·) converts a scalar to a one-hot
embedding of length C, and avgl(·) returns the average over l
samples. When τ → 0+, the label distribution becomes one-hot,
i.e. all probability mass is placed on one sleep stage, and the
softmax function converts into an argmax function. For τ → ∞
the distribution converges to a uniform distribution.

This model is a simplified version of the true (but unknown) label
distribution that follows from applying the AASM standard. Never-
theless, we use it to assess the influence of non-linearly converting
mixture coefficients to a label. The temperature parameter facilitates
modelling both the AASM intention to guide decision making to-
wards a deterministic process (τ → 0+), and stochastic decision
making (τ > 0), that leads to inter- and intra-rater disagreement.

1In section II-F we also define soft labels, which are non-discrete and live
in the real domain. Since these only serve theoretical purposes, we chose to
define the labels over a discrete domain in the general definition.
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Normalized mixture
coefficients 𝑨

Label distribution
𝑝[𝒄|𝑨 ] Wake

REM

N1

N2

N3

Disentanglement Rules + scoring

Signal model Annotation model

Data window 𝑿  of
PSG measurement

Fig. 1: We distinguish a signal and annotation model. The signal model assumes that all channels are a non-linear mixture of some implicit
(or hidden) signals that each characterize one of the sleep stages. The annotation model converts the contribution of each of these ‘sleep
stage signals’ to one selected sleep stage. This model is characterized by a set of rules (e.g. the AASM standard), and application thereof, i.e.
scoring by a technician. Due to variability in annotations, we know that scoring is a stochastic process, that gives rise to a label distribution
that expresses the probability for a given window to be classified as either of the sleep stages.

C. Problem formalization
We define a model fθ(·), parameterized by θ, that maps input Xw

to a prediction ŷw = fθ(Xw) ∈ RC , of which the desired output
yw is generated through the annotation model (e.g. by applying the
AASM standard). Training/updating parameters θ is done by maxi-
mizing the log-likelihood of the annotated labels, given a (training)
set of data that originates from a data-generating distribution pdata.
The corresponding optimization problem reads:

θ∗ = argmax
θ
{E(Xw,yw)∼pdata log p(yw|Xw, fθ)}. (3)

Equation 3 is typically solved by reparameterizing fθ(·) as a (deep)
neural network, of which trainable parameters θ are optimized using
stochastic gradient descent. Under perfect optimization and sufficient
model capacity, Y ← Ŷ. Thus the model’s training, and therefore
also its predictions on new data, is influenced by the (distribution of
the) annotations.

The authors of [1] optimize eq. (3) using AASM annotations, and
interpret a prediction ŷw as a discrete probability distribution over
C classes, yielding a hypnodensity graph when depicted over time.
This probability distribution could reflect probabilities related to the
chance that a window was (manually) annotated with a certain label,
in which Ŷ would have converged to the label distribution. On the
other hand, the probabilities could also reflect the earlier introduced
mixture coefficients (in which they would have converged to Ŷ ←
Ã). Lastly, a combination of both options could also be thinkable.
In this paper we investigate which of these options is most likely the
case in order to facilitate interpretation of the hypnodensity graph.

D. Data acquisition and preprocessing
1) Polysomnographic data: We used a dataset of nocturnal PSG

recordings, collected as part of the Healthbed study, which main
aim was development of technologies for sleep analyses. The study
prototcol (W17.128) was approved by the medical ethics committee
of Maxima Medical Center, Veldhoven, the Netherlands. The dataset
includes one clinical video-PSG recording for each subject, made
according to the AASM recommendations in Sleep Medicine Center
Kempenhaeghe Heeze, the Netherlands. The data analysis protocol
for our study (CSG 2021 007 00) was approved by the medical ethics
committee of Sleep Medicine Center Kempenhaeghe (11/11/2019).

The study included 96 (60 females) healthy subjects, with an age
between 18 and 64. The exclusion criteria were: 1) any diagnosed
sleep disorder, 2) a Pittsburgh Sleep Quality Index [9] ≥ 6, or
Insomnia Severity Index [10] > 7, 3) indication of depression or

anxiety disorder measured with the Hospital Anxiety and Depression
Scale [11] (score > 8), 4) pregnancy, shift work, use of any
medication except for birth control medicine, and 5) presence of
clinically relevant neurological or psychiatric disorders or other
somatic disorders that could influence sleep.

Visual sleep staging on windows of 30 seconds was performed
according to AASM criteria [3] by an experienced and certified
sleep technician (BH) from Sleep Medicine Center Kempenhaeghe.
In a previous institutional sleep scoring reliability check, inter-scorer
reliability of BH compared to other technicians was assessed at 85.6%
on average (range 83-88%).

From the full PSG recordings, we selected EEG (F4, C4, O2, F3,
C3, O1), chin EMG (Chin2, Chin1), and EOG (E2, E1) derivations,
the same modalities as in [1]. Since the EEG and EMG derivations
contain redundancy among the left and right hemisphere, the data
was virtually doubled by considering an ‘odd’ and ‘even’ record-
ing per subject2. For simplicity, we also added only one of the
two EOG recordings per subset, even though these recordings can
not be considered fully redundant. As an example; channel data
X(k;even) ∈ R5×L - the selected even data from the PSG of subject
k - thus contained the F4, C4, O2, E2, and Chin2 derivations.

Following [1], all derivations were filtered with a zero-phase (i.e.
two-directional) 5th order Butterworth band-pass filter, with cut-off
frequencies of 0.2 and 49 Hz. It was followed by another zero-
phase 5th order Butterworth notch filter between 49 and 51 Hz, to
better suppress powerline interference. All channels were originally
recorded with a sampling rate of 512 Hz, but (after filtering) down-
sampled to 128 Hz to reduce computational complexity. Channels
were normalized within-patient and per channel, yielding mean
subtraction, followed by normalization such that amplitudes of 95%
of the samples were mapped between -1 and +1.

Finally, we randomly split the full dataset in a training, validation
and hold-out test set, comprising respectively 150, 20, and 22
recordings (each recording being either even or odd). Even and odd
recordings from the same subject were in all cases assigned to the
same subset.

2) Synthetic data: Next to the real PSG recordings, we created
synthetic data, for which we can alter the label distribution, and for
which the slow-varying amplitudes A (i.e. the mixture coefficients)
are known. We followed the signal model as introduced in eq. (1),
and modelled each channel in X as a non-linear combination of a

2EEG recordings of the left and right hemispheres are denoted with odd,
respectively, even numbers in the international 10-20 electrode positioning
[2].
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Fig. 2: A randomly generated example of the synthetic data generator.
Top: the amplitudes of the three generated signals over time. Bottom:
The normalized amplitudes that sum to one and reveal the ground-
truth normalized mixture coefficients of the three signals.

set of (C = 3) independent signals, where each signal represents a
(fictitious sleep) stage. We define the data of ‘subject k’ as X(k) =
h(A(k) ∗ S(k)).

Each signal a(k)
c ∗s

(k)
c was generated as a (discretized) sinusoidal

signal, with a frequency between fc−0.5 and fc+0.5 Hz, a random
phase, and an envelop that is described by a smoothened square wave
(sw). More specifically, per subject we defined three independent
signals, with c ∈ {0, 1, 2}:

s
(k)
c [n] = sin{2π(

fc + u[− 1
2 ,

1
2 ]

fs
)[n] + 2πu[0, 1]}, (4)

with u[a, b] being a realization of a uniform random variable between
a and b, and {f0, f1, f2} = {2.5, 6, 11} Hz. Each source’s length
equals λ = 5400 s, thereby mimicking the length of one average
sleep cycle. The data were sampled with a frequency fs = 100 Hz,
and n thus ranges from 0 to 5.4e5 samples. The amplitude of the cth

signal of subject k, was defined as:

a
(k)
c [n] =

Hanningν©∗ sw[n; Φ]

|Hanningν |
, (5)

where ©∗ denotes a convolutional operator, ν = u[ 1
20 ,

1
4 ]λfs

is the length of the applied Hanning window,
and the square wave’s parameters are given by
Φ = {period = λ, sampling freq = fs, duty cycle = 1

2 , phase =

2πu[0, 1],min value = 1
100 ,max value = u[ 12 , 1]}.

From the earlier definition of X(k) it can be seen that mixing
function h(·) is subject-independent. This results in a simplified but
valid model, since certain sleep stage characteristics are in practice
also measured more in certain channels than in others for all subjects
(e.g. slow waves are mainly recorded in the frontal EEG electrodes).
Only small deviations - resulting from inter-patient differences - are
not captured by choosing one shared setting. For brevity, we use asc
to denote a

(k)
c ∗ s(k)c here. As an arbitrary choice, we defined the

non-linear mixing in h(·) as:

h(A(k) ∗ S(k)) =

 0.3 as0 ∗ as0 + 0.7 as2
0.6 as0 + 0.4 as1 ∗ as2

0.4 as0 + 0.5 as1 + 0.1 (as2)2

 .
We finally generated 200 random ‘subjects’, which were split into a
training, validation and a hold-out test set of sizes 75, 25, and 100,
respectively. Figure 2 shows a randomly generated example, with
unnormalized amplitudes in the top, and normalized amplitudes (i.e.
the ground truth mixture coefficients) in the bottom. From the top
figure it can be seen that the heights, phases, and the steepnesses of
the amplitudes differ per signal, caused by the injected stochasticity
in the data generating process. As a result of this stochasticity, we
see that at any moment zero to three signals/sleep stages might co-
exist. Absence of characteristics belonging to any of the sleep stages,
might in practice occur when electrodes become disconnected.

E. Model design

In this section we introduce the base model as used in all exper-
iments. For some experiments, slight deviations from the presented
settings were chosen, which will be explained in the corresponding
experimental section, where needed.

An encoder converts a data window Xw to a latent representation:
zw = Enc(Xw) ∈ RF , with F the number of features in the
resulting embedding. All (non-overlapping) embeddings are part of
Z = {z1,z2, . . .}. Data and embeddings from subject k are denoted
with X (k) ⊂ X , and Z(k) ⊂ Z , respectively.

The architecture of the encoder follows standard practice in su-
pervised classification model design [12]. Enc(·) comprises three
consecutive blocks, where each block contains a 1D convolutional
layer over the time dimension, activated by a LeakyReLU (negative
slope of 0.01), followed by a 1D max pooling layer, and finally
a dropout layer (p = 0.1). After the third full block, a fourth
1D convolutional layer is added, followed by average pooling that
reduces the temporal dimension to size 1, creating a 1D embedding
of size F . All convolutional layers have a bias term, and use strides
and dilations of 1. The number of channels differs for the real data
(16, 32, 64, 128) vs synthetic data (4, 8, 16, 32) setup, to account for
the higher complexity of real data. The used kernels are of size
(15, 9, 5, 3) for the four convolutions, and the max pooling layers
use kernels of size 5 (with stride 5).

Next, we introduce a standard multi-class classification model of
the form ŷw = σ(Wzw + b), with trainable parameters W ∈
RC×F , and b ∈ RC , and σ the softmax function that maps all
class predictions between 0 and 1, with a total sum of 1.

F. Experimental setup

In this study, we investigate three factors that contribute to the
hypnodensity predictions. This section elaborates on these factors.

a) Changing the label generator: As explained in section II-C,
definition of the labels Y influences model optimization. We therefore
investigate the effect of the label distribution on the predicted class
probabilities. This is done in the synthetic setup, as the underlying
mixture coefficients Ã, from which labels can be sampled, are
unknown for real data. Nevertheless, learning about the effect of
annotations on synthetic data might provide insights in the labelling
process and the consequences thereof for the real use case. We
generated two different set of labels that followed the distribution as
described in eq. (2). First, we set τ → 0+ and generated argmax
labels. Second, sampled labels were generted by sampling from
eq. (2), using τ = 1. Moreover, we defined a third set of soft
labels (opposed to discrete/hard labels), that directly correspond to
the mixture coefficients for each class (averaged over l samples in the
window). Note, however, that such soft labels are purely theoretical
and also not caught in the model for the label distribution, as given
in eq. (2).

We hypothesize that the (unambiguous) argmax labels enhance
class separability (in the latent space), and therefore facilitate
highly-accurate classification performance with low-entropy
predicted probabilities. Both the sampled and soft labels, on the
other hand, exhibit ambiguity and are therefore expected to increase
the entropy of the predictions, and lower the classification accuracy.

b) Supervised vs unsupervised encoding: As altering the
label distribution is expected to influence the model’s predictions
in varies ways (see previous paragraph), we wonder what happens
to the predictions when training (the largest part of) the model
in an unsupervised setup, i.e. without access to label information.
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We hypothesize that in this case, the predictions will reflect data
characteristics, rather than label characteristics.

We compare the fully supervised setting, where the model is trained
using input-label pairs, to a setting in which the full encoder is trained
unsupervised. For the latter, we leverage Contrastive Predictive Cod-
ing (CPC) [13], a recently proposed framework for self-supervised
learning, which has been found useful to model EEG data [14]. CPC
is able to model slow features, i.e. slowly varying data characteristics,
like the amplitudes A in our signal model. As such we hypothesize
that a classifier (with its design as described in section II-E) - trained
on resulting ‘unsupervised embeddings’ - will predict the normalized
mixture coefficients Ã.

CPC leverages contrastive learning, which builds upon the idea to
teach the model that ‘similar data points’ should be embedded closely
together, while ‘dissimilar data points’ should be repelled. In the
framework of CPC, a similar data point (or positive sample) is defined
as a future embedding, with respect to a current causal embedding
(i.e. incorporating past information as well). Negative samples, on
the other hand, are drawn from a random moment within or between
(i.e. from a different) recordings. We use within-subject sampling,
and randomly draw three negative samples per positive sample. The
set X ′(k) ⊂ X (k) comprises these three negatives for subject k, and
is renewed in every training iteration.

In order to make the fairest comparison to the fully supervised
base model (as defined in section II-E), we do not make any
changes to the encoder’s design (except for the dropout rates in
the CPC encoding trained on synthetic data, for which lower values
appeared more beneficial: (0.1, 0.0, 0.0), neither to initialization of its
parameters. Moreover, we slightly simplify the original CPC objective
by omitting the auto-regressive module, since our supervised classifier
also classifies each window independently. Our unsupervised training
objective, being an expectation over dataset X , reads:

L =
1

J

J∑
j=1

L(j), with (6)

L(j) = −E
X

[
log

exp(zTw+jVjzw)∑
z∈Z′(k) exp(zTVjzw) + exp(zTw+jVjzw)

]
,

J = 10 the number of future windows, Z ′(k) ⊂ Z(k) (|Z ′(k)| = 3)
a set of embeddings of drawn negative samples X ′(k), zw the
current embedding, zw+j the future embedding at index w+ j, and
Vj ∈ RF×F a trainable mapping between both embeddings.

c) Pre- vs post-softmax predictions: The most widely used final
layer in multi-class classification models, is described by the softmax
function σ, as given by:

r = σ(q) =
exp q∑
c exp qc

, (7)

where q ∈ RC is the vector of unconstrained pre-softmax predictions
per class, and r ∈ {RC : 0 ≤ rc ≤ 1,

∑
c rc = 1} the vector

of post-softmax probabilities, analogous to the model prediction
ŷw , as introduced in section II-C. We investigate the effect of the
non-linearity as introduced by said softmax function, by comparing
pre-softmax (in short, pre-σ) class predictions in q, to post-softmax
(post-σ) values in r.

Training details: All supervised models were trained using the
standard categorical cross-entropy (or negative log-likelihood) loss,
and batches of 128 training pairs. Unsupervised encodings were
trained with the CPC objective as given in eq. (6), and batches of size
64. The Adam optimizer with default settings [15] was used in all

experiments, with a learning rate of 1e-4 for most experiments. Only
the supervised classifier, and CPC encoding on synthetic data were
trained with learning rates of 1e-3 and 5e-4, respectively. All models
were maximally trained for 500 epochs, where one epoch defines one
push trough of each data window in the training set. The classifiers
trained after CPC encoding, were maximally trained for 250 epochs.
In each experiment, the model with the lowest validation loss was
finally selected. All experiments were run with the same seed for
randomization.

G. Performance assessment

In order to assess classification performance, we follow the vast
majority of literature on automatic sleep staging, and use class-
balanced accuracy (bal. acc.) and Cohen’s Kappa κ [16], where the
latter corrects for agreement by chance, which can be particularly
present for class-imbalanced data. These metrics have successfully
served as interpretable metrics since both equal 1 (or 100%) in
an ideal classification model. Notwithstanding their relevance and
frequent use, information is lost on how high the predicted prob-
ability mass was distributed across classes. A high value for these
‘hard metrics’, can therefore only indicate good performance in the
classification problem, but does not inform us about the (spread of)
probabilities in the hypnodensity.

Thus, instead of selecting the class with the highest predicted
probability, we can also interpret the prediction, given a data window,
as parameters of a categorical distribution Cat(ŷw), This distribution
can be compared against a target distribution Cat(y). By slight abuse
of notation, we define ŷc and yc as, respectively, the predicted and
target probability for class c in window w. In case of discrete labels
(e.g. according to the AASM standard), the target probabilities equal
either zero or one. The Kullback-Leibler (KL) divergence provides a
measure to compare both distribution as follows:

KL
(

Cat(yw); Cat(ŷw)
)

= CE
(

Cat(yw),Cat(ŷw)
)
− H

(
Cat(yw)

)
= −

∑
c

yc log ŷc +
∑
c

yc log yc, (8)

where CE and H denote cross-entropy and entropy, respectively, and
a KL divergence of zero implies perfectly matched distributions. For
soft labels (only available in the synthetic setting), this thus implies
that the model is able to predict the mixture coefficients of the distinct
signals. Using the discrete one-hot labels (for which H(yw) = 0 and
yj = 0 for all j not being the annotated class), the KL divergence is
equal to the CE loss between the discrete label and the prediction. To
prevent confusion, we use KL-div to denote the metric that compares
the prediction to the soft label, while we use CE to denote the match
with the one-hot discrete label. To characterize the spread of the
predicted probabilities we can evaluate the entropy of the prediction
(i.e. H(ŷw)), which equals zero when all probability mass is centered
in one of the C bins, and logC in case of a uniform prediction. All
aforementioned metrics will be averaged across patients, and one
standard deviation (also across patients) will be provided as well.

Lastly, for the real PSG measurements, we assess the correlation
between the predictions for N3 and the power of slow waves (0.5-2
Hz) in the frontal EEG lead (F3 or F4). It is known that slow waves
(positively) relate to the depth of sleep [2]. As such, we can use it
as a surrogate for the contribution of the deepest sleep phase N3,
to the total mixture of characteristics belonging to different stages.
We thus consider a positive (linear) relation between the predicted
N3 contribution and delta power as an indication that the model was
well able to predict the amount of contribution of N3 characteristics
in the data window.
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Fig. 3: Performance of fully-supervised (a) and semi-supervised (b) classifiers trained on the synthetic dataset, with varying label generating
processes. The orange metrics denote ‘hard metrics’, concerned with the (discrete) predicted class, while the blue metrics denote ‘soft
metrics’, related to the predicted probabilities. The median and the 25th and 75th percentiles (denoted with the bars) are reported for all
metrics. The effect of using different label types (during training) is largest for the fully-supervised model, where argmax labels clearly
facilitate accurate, and low-entropy classifications, but at the cost of mixture prediction (seen from the high KL divergence with the soft
label).

Fig. 4: Ground truth and different predicted hypnodensities of a rep-
resentative test set sample from the synthetic dataset. The prediction
of the supervised model, trained with perfect argmax labels is of
lower entropy that the other three setups, and has a higher mismatch
with the true mixture of signals. For both type of encodings, training
with sampled labels results in the best mixture coefficient prediction.

III. RESULTS

This section provides the results of the three sub-experiments as
described in section II-F. Results on altering the label generator are
presented in section III-A. Section III-B and III-C discuss results
regarding supervised vs unsupervised encoding, and the effect of the
softmax function, respectively.

A. Changing the label generator

Figure 3a summarizes both the ‘hard’ and ‘soft’ metrics for the
supervised classifiers (on the synthetic test set) trained with the
three introduced label generators. For all cases, the hard metrics
(orange) were computed using the argmax labels, while the soft
metrics (blue) were evaluated using the soft labels. Training with
the argmax labels induced predictions with high accuracy and low
entropy, possibly explained by high separability of the classes thanks
to the unambiguity of the argmax labels. However, the KL divergence

with soft labels was very high, implying bad mixture coefficient
prediction. Note the interesting similarity between all metrics for
sampled vs soft labels, indicating that (discrete) labels sampled from
a distribution induce similar training behavior as soft labels that
represent this same distribution. Both resulting models hardly gave
up on classification performance with respect to training with argmax
labels, while their prediction of the mixture coefficients was much
better (seen from the low KL divergence with soft labels). This
makes us believe that a supervised model predicts probabilities that
correspond to the label distribution. We confirm this hypothesis by
training and testing with different label distributions, for which results
are discussed in app. I.

B. Supervised vs unsupervised encoding
The experiment with different label generators was repeated, while

performing the full encoding procedure unsupervised. Figure 3b
shows the results. Remarkably, training the classifier with argmax
labels resulted in much better mixture prediction (lower KL-div),
a direct result of being less reliant on annotations. Classification
performance, on the other hand, decreased compared to the fully
supervised setup, seen from the lower bal. acc. and κ. Figure 4
visually compares (for one representative synthetic test set sample)
the predicted hypnodensities for both encoding strategies, and argmax
vs sampled labels. In line with fig. 3a, rows II and III visually confirm
that the supervised model indeed heavily relies on the type of labels
(e.g. argmax labels induce low-entropy predictions), while the CPC-
encoded models (rows IV-V) were not that much affected by the
annotations. However, the influence of annotations when training on
unsupervised embeddings, in some cases depended on how long the
classifier was trained. Appendix II discusses this in more detail.

A visual comparison of real data hypnodensity predictions from the
two distinct encoding strategies are shown in fig. 5. At first glance the
general trend of both hypnodensities looks similar, which is remark-
able since the supervised vs unsupervised model achieved balanced
accuracies of 84.4% and 61.2% for this subject, indicating that hard
metrics do not well reflect the underlying continuous predictions
in a sleep stage classification model. Interestingly, occasions where
the (annotated) hypnogram showed rapid transitioning behavior (e.g.
at 6.2 hours), were also characterized by high entropy predictions
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Fig. 5: The ground truth hypnogram (top), and predicted hypnodensities by the supervised (middle) and unsupervised model (bottom). The
general trend looks similar, but differences are visible (indicated with the red bars), e.g. the unsupervised model in general shows smoother
transitions when transitioning in and out of REM and N3. Note that the unsupervised model does not just predict a smoothened version of
the supervised prediction: hard transitions (e.g. when leaving N3 at 1.2 hours) are still predicted as well. Balanced accuracy of these two
models (with respect to the annotated labels) are respectively 84.4% and 61.2%. This difference in accuracy seems to imply much worse
classification performance for the latter, while the hypnodensities suggest less drastically dissimilar underlying dynamics.
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Fig. 6: Scatter plots that compare label-conditional post-softmax class predictions (e.g. p(W |label = W ) of fully supervised classifiers
(y-axes) vs classifiers trained on unsupervised encodings (x-axes) (a), and the corresponding pre-softmax counterparts (b). Given the more
linear relation between both models’ pre-softmax predictions (as opposed to post-softmax predictions), it can be implied that the non-linear
softmax behaves in different regimes for both models, a direct result of the difference in pre-softmax ranges.

from both models. Despite the similar trend, differences could still
be noted (indicated with the horizontal red bars), e.g. low amounts
of N2 or N3 were sometimes predicted by the unsupervised model,
while the supervised counterpart suppressed these low contributions.
This difference in spread of predicted probabilities over the classes
was also reflected in average entropy of predictions over the full test
set, which was found to be H = 0.30 ± 0.06 for the supervised,
and H = 0.42 ± 0.09 for the unsupervised model. Note that the
unsupervised model is still able to predict abrupt transitions (e.g. at
1.2 hours), so it can not simply be considered a smoothened version of
the supervised prediction. In terms of hard metrics on the full test set,
the supervised model (bal. acc. = 82.0±0.05%, κ = 79.0±0.08%)
performed better than the unsupervised model (bal. acc. 76.0±0.09%;
κ = 71.3± 0.13%).

Figure 6a plots the class-conditional probabilities - i.e.
p(N3|label = N3) etc. - for both models against each other for the full
test set. Each dot represents one 30 seconds window from one subject.
It can be seen that conditional probabilities (i.e. post-softmax or post-
σ values, visualized in the upper row) for Wake, N2 and REM sleep,
tend to be higher for the supervised model, something that can also
visually be seen in the hypnodensities depicted in fig. 5. Moreover, the
histograms clearly indicate distinct probabilistic prediction behavior
for N1, compared to the other stages, as probabilities close to one
were rarely assigned by either of the models.

C. Pre- vs post-softmax predictions
Interestingly, comparing the pre-softmax predictions between both

models (see fig. 6b), it can be seen how both models predicted
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.

more similar values, compared to the post-softmax counterparts. This
indicates that the non-linear softmax activation, has a different effect
on both models. We demonstrate the effect of the softmax function,
using synthetic data, in fig. 7. This figure shows that the softmax
function operates in a (more) linear regime when the range of pre-
softmax values is small (here for sampled labels), while it operates in
a highly non-linear regime for a larger input range (here for argmax
labels). From fig. 6b we see how the range of pre-softmax values for
supervised vs unsupervised encoding also differs (mainly visible for
REM and N3), therefore contributing to differences in post-softmax
probability predictions between the models.

As discussed in section II-G, we can use the amount of slow
wave power in the frontal EEG lead as a proxy for the (continuous)
contribution of deep sleep (N3). Figure 8a visually compares both
pre- and post-softmax predictions to slow wave power for the full test
set. It can clearly be seen that the former better follow a linear relation
with the slow wave power, than the latter. For both models, a tail is
visible in the pre-softmax scatter plots (upper row), where a low value
for N3 is predicted, while high delta power was computed. A recheck
confirmed that this tail was not caused by a low-quality measurement
for one of the patients in the test set, but rather was present for
multiple patients. A possible explanation can be that low-frequency
content, slightly above 0.5 Hz (so included in the delta range), enters
the spectrum during wake episodes as a consequence of movement
artifacts. Figure 8b depicts the pre/post-softmax predictions for N3
and delta power over time, for the same subject as depicted in fig. 5.
In this subject we indeed also found an episode of high slow wave
power (at 3.7 hours), which was annotated as Wake. This figure also
clearly shows how (similarly as in the synthetic setup) the softmax
outputs tended to follow the annotations (in pink), whereas the pre-
softmax outputs better captured the continuity of deep sleep.

IV. DISCUSSION

In this work, we investigated different aspects that contribute to
post-softmax probabilities of a convolutional classification model
for automatic sleep staging. Recent work [1] proposed to use these
probabilities to reveal information from nocturnal recordings, which
might be dismissed in the hypnogram (in which only one sleep
stage is selected per data window). When plotted over time, these
probabilities are referred to as a hypnodensity (graph). We foresee
great potential for the hypnodensity to move sleep medicine to a
new era, as it opens up a legion of research directions about sleep
disorders that are known to be related to sleep stage dissociations.

However, to correctly leverage hypnodensity graphs in future
researches, it is of crucial importance to clearly understand their
meaning. In order to shed light on the interpretation, a controlled
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Fig. 8: (a) The frontal EEG delta power against the predicted pre-
softmax values, and post-softmax probabilities, over the full test
set. The pre-softmax predictions correspond much better with slow
wave power for both supervised and unsupervised encodings. (b)
Illustrative example that shows the pre- and post-softmax predictions
over time for the supervised model. The pink lines indicate windows
that were annotated as N3. The pre-softmax prediction better follows
the continuity of slow wave power, while the post-softmax prediction
better matches the annotations for classification.

set of experiments was performed using synthetic data, followed by
analyses on real PSG recordings. A signal model was introduced,
in which each channel comprised a non-linear measurement of
(underlying) signals, that each aggregate characteristics belonging to
one of the different sleep stages. The presence or contribution of these
signals was denoted with the (normalized) mixture coefficients. In our
annotation model, a set of scoring rules (e.g. the AASM standard) and
application thereof, finally results in a label distribution, representing
the probability for any of the sleep stages to be scored (see fig. 1). It
should be remarked that, even though the synthetic data were inspired
by PSG recordings, these data were simplified and subject to design
choices, hampering guarantees regarding full generalizability to real
data. Nevertheless, it has helped in investigating the interpretation of
the hypnodensity graph, of which conclusions are discussed below.

We found that a hypnodensity, predicted by a supervised classifica-
tion model, reflected the label distribution (see section I). In practice,
it thus represents the scoring disagreement in the data set used for
training the model, or in other words, the probability with which a
given data window was classified as being one of the different sleep
stages. This finding is line with the observation that the hypnodensity
graph corresponds well with inter-rater disagreement across multiple
scorers [1]. Given the fact that the (supervised) hypnodensities on real
PSG data showed to have a non-zero entropy on average, we conclude
that the label distribution in our dataset, which was annotated by
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one (experienced) scorer, also yielded non-zero entropy, implying
the presence of intra-rater variability as well. We can interpret this
as if a scorer (unconsciously) ‘samples’ from an (implicit) distribution
over possible stages, analogously to the synthetic case where discrete
labels were sampled from the distribution defined by the mixture
coefficients.

We make a critical note regarding our conclusion that post-
softmax predictions reflect the label distribution, as from the field
of uncertainty research, it has been known that softmax outputs of
(very) deep neural networks tend to become poorly calibrated or
overconfident [17], [18], resulting in predictions that are of lower
entropy than the corresponding label distribution. Nevertheless, our
(rather shallow) convolutional architecture did not show to suffer
from this overconfidence, seen from the fact that the normalized
mixture coefficients were predict almost perfectly (see fig. 3a and 4),
when the labels of synthetic data were sampled from a distribution,
parameterized by these coefficients. It is, however, something to take
into account when designing deeper neural networks for hypnodensity
predictions.

Moreover, it is important to realize that a (supervised) hypnoden-
sity directly reflects the annotation quality of the data set used for
training the model. E.g. a group of less experienced technicians is
likely to have rather high disagreement in their scorings, resulting
in higher-entropy hypnodensities, when the model is trained on their
annotated data compared to using annotations from more experienced
technicians. On the other hand, from synthetic experiments it was
found that training the full encoding unsupervised, gave rise to
predictions that were more label-agnostic, and had more tendency
to predict data characteristics (i.e. the mixture coefficients in our
signal model, see fig. 4). For the real PSG data, differences were
also found between predicted hypnodensities from supervised and
unsupervised encodings, where the unsupervised predictions yielded
higher entropy (also visible in fig. 5). In line with the synthetic results,
we thus conclude that an unsupervised hypnodensity might reveal
characteristics that directly relate to the data themselves, which might
be absent in the (more label-dependent) supervised hypnodensity.
Nevertheless, a ground truth for the mixture coefficients belonging to
either of the sleep stages is unavailable in practice, hampering direct
validation of the (unsupervised) hypnodensity.

In an attempt to get some more insights in the ‘ground-truth’
underlying mixture coefficients in PSG data, the problem could also
be considered a variant of independent component analysis (ICA)
[19], which is a demixing technique that guarantees identifiability
of the underlying sources (up to permutations and scaling), under
certain assumptions. The sources should be independent and linearly-
mixed, the number of measurements should at least equal the number
of sources, and maximally one source may be Gaussian distributed.
Thanks to the multi-channel setup of an EEG recording, ICA has been
a popular technique to decompose the recording in EEG, ECG, EOG,
and or EMG components [20]–[23], but direct application to predict
the mixture coefficients seemed inappropriate for three reasons. First,
the mixture of sleep-stage dependent signal characteristics is likely
non-linear, second, we can not be certain that the resolved signals
indeed correspond to the five (abstract) sleep stage signals, and third,
ICA is unidentifiable with respect to scaling, so considering the
amplitude ratios of the resolved signals does not guarantee to reveal
the true mixture ratio.

Luckily, the quest for demixing algorithms that relax (some of) the
aforementioned assumptions of ICA has spurred research efforts. The
authors of [24] e.g. empirically showed that single-channel ICA can
approximately separate different sources, provided that these sources
are reasonably spectrally disjoint. More recently, efforts have been
made in proving identifiability for non-linear ICA, under additional

assumptions on the sources (e.g. temporal non-stationarities [25],
temporal dependencies [26], or temporal sparsity [27]), or availability
of an auxiliary variable (e.g. class labels), which was researched in
a VAE [28], contrastive learning [29], and hidden Markov Model
[30] setting. The CPC model [13] - as used in our experiments for
unsupervised encoding - belongs to the class of contrastive learning
methods, and might be a suitable candidate for (approximately)
solving non-linear ICA, given its empirical successes so far [14], [31],
and recent results that show how contrastive learning objectives invert
data generating processes [32]. In the current work, it was observed
how predictions of a classifier trained on unsupervised (CPC) encod-
ings, in some cases depended on the number of training iterations
(see section II), pushing the hypnodensity more towards the label
distribution, and further away from predicting data characteristics.
This finding opens up a new research direction, in which one may
investigate how CPC embeddings can be converted to AASM class
probabilities, without relying (again too much) on the labels during
classifier training.

In our last experiment we looked at the pre-softmax (opposed to
post-softmax) predictions, to see whether these contained information
regarding the continuous dynamics (e.g. mixture coefficients over
time) of a measurement. It was found that both in the synthetic case
(see fig. 7) and for real data (see fig. 8b), these pre-softmax class
predictions indeed showed much more gradual/continuous patterns
over time, compared to their post-softmax counterparts. In fact, the
pre-softmax predictions for N3 (for both types of encoding) were
found to correlate better with slow wave power in the frontal EEG
lead, than the post-softmax predictions (fig. 8a). We conclude, that
while the non-linear effect of the softmax function might be desirable
in a classification problem, it (partially) discards continuous patterns
in the data that might be of medical relevance as well. Other work has
presented a finding in the same direction [33], by showing that class
separability (related to discreteness) in an automatic sleep staging
model highly increased after the last softmax activation. In future
work, one might therefore consider other normalizing functions in the
classifier, that may replace this (non-linear) softmax function [34].

In this research, we did not research influences of design choices
like data window length (which was fixed to 30 s), depth and width of
the models, and the number and type of measurement channels used.
Regarding the latter, the authors of [33] visually depicted (supervised)
hypnodensities predictions on one EEG channel only, and showed
that predictions did not drastically differ dependent on the chosen
channel. However, visual inspection seemed to reveal that their single-
channel hypnodensities yielded higher entropy than the presented
hypnodensities in this work and in [1]. We leave it for future research
to investigate the relation between the number of recorded channels
and the entropy of predicted hypnodensities.

To conclude, the hypnodensity graph as proposed by [1] (i.e. pre-
dicted by a supervised model), informs us about the distribution from
which (discrete) labels were (implicitly) drawn by the technicians that
annotated the data set used for training the model. We found that,
despite the revelation of ample information in a hypnodensity (with
respect to a hypnogram), potentially relevant information gets lost in
the former, due to the final (non-linear) normalizing softmax layer
and the label-dependency of supervised training. On the other hand,
consideration of pre-softmax class predictions and/or unsupervised
sleep staging models, might finally empower the sleep medicine com-
munity with a better understanding about the underlying dynamics
of the sleeping brain.

APPENDIX I
We here show the results of an additional synthetic experiment

that tests whether the post-softmax probabilities of our supervised
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classifier indeed follow the label distribution. To that end, we create
three different sets of discrete labels, on which we train three separate
models. The label sets are all sampled from the label distribution as
defined in eq. (2), with τ = [1, 12 ,

1
4 ]. For all models, we subsequently

compute the KL divergence between the soft predictions (i.e. the post-
softmax class probabilities) and the distributions, defined by different
values of τ .

Figure 9 shows a heat map of these results. The x-axis denotes
the value of τ of the distribution from which (discrete) labels
were drawn during training, and the y-axis indicates the τ of the
distribution that is used to compare the predictions against (by means
of the KL divergence). This cross-comparison shows that the KL
divergences are lowest when the evaluation distribution matches the
label distribution (seen from the low values on the diagonal).
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Fig. 9: Cross-comparison of KL divergences (evaluated over the
full synthetic test set) between post-softmax model predictions and
different evaluation distributions. The different models were trained
with labels that were sampled from a distribution with distinct values
for τ . A low KL divergence (i.e. dark green) indicates that the
model’s prediction on average corresponds well with the evaluation
distribution.

APPENDIX II

In this section, we visualize how classification and mixture coeffi-
cient prediction may be opposite objectives when the label generating
distribution is distinct from the distribution, defined by the mixture
coefficients. When training a classifier on an unsupervised encoded
latent space, using argmax labels, it can be seen from fig. 10a how
the cross-entropy with these labels continues to decrease during
training, while the KL divergence with the soft labels (which equal the
mixture coefficients) diverges. In this situation the label- and mixture
distribution were different, and predicting both at the same time was
hampered. The training epoch where the final model is selected thus
influences both the hard and soft metrics, as given in fig. 3b. Note
that, even though the KL divergence starts to diverge again, it is still
far lower than the reported KL divergence of 2.7 for the supervised
model in fig. 3a.

On the other hand, when using labels that are sampled from the
distribution defined by the mixture coefficients, it can be seen from
fig. 10b that the classification task and mixture prediction task did
not counteract anymore. Both cross-entropy with the sampled discrete
labels, and KL divergence with the soft labels converged. Note that
the initial phase of classifier training with argmax labels, results in a
minimum KL divergence that is on par with the KL divergence found
using sampled labels. Since the KL divergence between predictions
and ground truth soft labels is unknown in practice, all models in
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Fig. 10: Progression of cross-entropy with discrete labels (i.e. the
training objective), and KL divergence with the ground truth soft
labels during training a classifier on unsupervised embeddings, with
argmax (a) and sampled (b) labels.

this work were selected based on lowest validation (cross-entropy)
loss with the discrete labels.
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