
P
os
te
d
on

11
O
ct

20
20

—
C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
67
2
56
43
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

An Optimization Framework for Edge-to-Cloud Offloading of

Kubernetes Pods in V2X Scenarios

Estela Carmona 1 and Muhammad Shuaib Siddiqui 2

1i2CAT Foundation
2Affiliation not available

October 30, 2023

Abstract

Authors’ pre-print version of the following work: E. Carmona Cejudo and M. S. Siddiqui, “An Optimization Framework for

Edge-to-Cloud Offloading of Kubernetes Pods in V2X Scenarios,” 2021 IEEE Globecom Workshops (GC Wkshps).

1



An Optimization Framework for Edge-to-Cloud
Offloading of Kubernetes Pods in V2X Scenarios

Estela Carmona Cejudo, Muhammad Shuaib Siddiqui
i2CAT Foundation, Barcelona, Spain

{estela.carmona, shuaib.siddiqui}@i2cat.net

Abstract—Vehicle-to-everything V2X applications usually have
strict latency requirements that can be difficult to meet in
traditional cloud-centric networks. By pushing resources to edge
servers located closer to the users, end-to-end latency can be
greatly reduced. Task offloading in edge-cloud environments refers
to the optimization of which tasks should be offloaded between
the edge and cloud. Moreover, the use of containers to virtualize
applications can further reduce resource and time consumption
and, in turn, the latency of V2X applications. Even though
Kubernetes has become the de facto container orchestrator, the
offloading of Kubernetes pods has not been previously studied
in the literature, to the best of the authors’ knowledge. In this
paper, a theoretical optimization framework is proposed for edge-
to-cloud offloading of V2X tasks implemented as Kubernetes pods.
First, an utility function is derived in terms of the cumulative
pod response time, weighted by the priority levels and resource
usage requirements of pods. Based on the optimal theoretical
solution to this problem under memory and central processing unit
(CPU) constraints, an edge-to-cloud offloading decision algorithm
(ECODA) is proposed. Numerical simulations demonstrate that
ECODA outperforms first-in, first-served (FIFS) in terms of utility,
average pod response time, and occupancy of edge resources.
Further, ECODA achieves a good trade-off between performance
and computational complexity, and therefore it can help achieve
strict latency requirements of V2X applications.

I. INTRODUCTION

Novel fifth-generation (5G) vehicle-to-everything (V2X) ap-
plications are capable of providing road users with network
connectivity and road-safety functionalities. However, V2X
applications often have strict latency, reliability and bandwidth
requirements that pose a challenge to existing networks. The
use of containers to virtualize applications has recently gained
popularity, particularly in cloud environments. Compared to
virtual machines, containers can offer a more lightweight, and
less resource and time consuming solution, thus reducing the
overall computational cost of V2X applications. Docker [1] and
Kubernetes [2] have become the most popular solutions for

This paper is the authors’ pre-print version of the following work: E.
Carmona Cejudo and M. S. Siddiqui, “An Optimization Framework for
Edge-to-Cloud Offloading of Kubernetes Pods in V2X Scenarios,” 2021
IEEE Globecom Workshops (GC Wkshps).
This document has been provided by the contributing authors as a means
to ensure timely dissemination of scholarly and technical work on a non-
commercial basis. Copyright and all rights therein are maintained by the
authors or by other copyright holders, not withstanding that they have
offered their works here electronically. It is understood that all persons
copying this information will adhere to the terms and constraints invoked
by the corresponding copyright. This work may not be reposted without
the explicit permission of the copyright holder.

container runtime and container orchestration, respectively, due
to their high levels of maturity, resiliency and flexibility [3]. The
smallest computing units that can be deployed in Kubernetes
are referred to as pods. These are groups of application con-
tainers, with shared storage and network resources and, often,
initialization containers [2].

However, V2X applications usually have strict latency re-
quirements that can be difficult to meet in traditional cloud-
centric networks, even when applications are virtualized. In
this sense, edge computing can facilitate the achievement of
ever-growing computational demands in vehicular networks,
by extending the cloud computing capabilities to the network
edge [4]. Edge computing pushes resources to edge servers,
located closer to the users, thus reducing end-to-end latency.
Computational capabilities at the edge tier are normally smaller
than at the cloud tier. However, this can be largely addressed
by combining edge and cloud computing, and running each
task either at the cloud or the edge tier, depending on overall
network conditions and application constraints. In settings with
a large number of users, edge computing is unlikely to provide
enough resources to meet all the requirements of users’ tasks,
and it is necessary to offload some tasks to the cloud.

Task offloading in edge-cloud environments refers to the
optimization of which tasks should be offloaded between the
edge and the cloud tiers, depending on a set of optimization
parameters and system constraints. The work in [4] carried out
a thorough survey and taxonomy on existing task offloading
research, and found several challenges that have not yet been
properly addressed in the literature. For example, previous
works that have considered the task response time as an
optimization parameter mainly considered the average response
time of all tasks [5] or the long-term average response of
each task [6], which could lead to service level agreement
(SLA) violations in some cases. Moreover, only a few works
have considered multi-objective optimization. For example, [7]
optimized the minimum weighted sum of delay and consumed
energy for each user under fairness and maximum tolerable
delay constraints. However, this and other works [8] only
considered the benefit of users, and did not study the resource
usage cost optimization. [9] studied the tradeoff between end-
to-end delay of tasks and resource usage cost, but considered
separate allocation of tasks with small and large workloads.

Moreover, not many existing researches considered the off-
loading of containerized applications. While the work in [10]



assumed the use of containerized tasks, it ignored the hetero-
geneous provisioning of resources between edge and cloud. In
[11], a single-objective optimization framework was presented
in which the use of Docker containers was assumed, and
the offloading energy cost was optimized under application
completion time, computing resources and memory constraints.
To the best of the authors’ knowledge, no works have so far
considered the offloading of Kubernetes pods.

The contributions of this work are as follows. Unlike other
researches, the use of Kubernetes as a container orchestrator is
considered, and the granularity of applications to be offloaded
is defined in terms of pods. First, an utility function is derived
in terms of the cumulative pod response time, weighted by the
priority levels and resource usage requirements of pods. Then, a
theoretical optimization framework is proposed, where the sum
of the weighted pod response time is minimized under central
processing unit (CPU) and memory constraints. The modeling
of pod response time includes pod instantiation and node-to-
node latency. The optimal theoretical solution to the offloading
optimization problem is found by applying the Lagrange dual
function method [12]. An edge-to-cloud offloading decision
algorithm (ECODA) is proposed, based on the optimal solution.
Numerical simulations demonstrate that ECODA outperforms
first-in, first-served (FIFS) in terms of utility, average pod
response time, and occupancy of edge resources. Further,
ECODA achieves a good trade-off between performance and
computational complexity, and therefore it can help achieve
strict latency requirements of V2X applications.

The remainder of this paper is organized as follows. Section
II provides the system model for this study. Section III formally
elaborates the problem at hand. Section IV introduces the
proposed ECODA. Numerical results are provided in Section
V. Section VI concludes the paper.

II. SYSTEM MODEL

The system model considered in this work consists of a
Kubernetes-based cluster formed by an edge node and a cloud
connected through a fiber optic link. OpenStack [13] is used as
the virtual infrastructure manager. The OpenStack environment
is configured with one controller node and three compute nodes
in the cloud tier. Kubernetes is installed inside the three com-
pute nodes in the cloud, and in a bare-metal edge server. One
node in the cloud serves as the Kubernetes master node, and the
remaining cloud and edge nodes serve as Kubernetes worker
nodes. It is assumed that the offloading of tasks is between
the edge node and any of the cloud nodes, indistinctively, and
that the Kubernetes controller node manages the load balancing
among cloud nodes. It is also assumed that the provisioning of
cloud resources can be extended as required and, therefore, the
cloud tier is not resource constrained.

It is assumed that a central service level agreement (SLA)
module manages the memory and CPU resources of all nodes
and feeds resource usage information to a central decision
support system (DSS) module. The DSS decides which tasks
must be offloaded to the cloud and then informs the Kuber-
netes master node, which performs pod offloading as required.

SLA module DSS module

Cloud nodes

Edge  node

Image repository

Fiber optic link

Fig. 1. Architecture setup.

Further, the central cloud hosts a centralized repository of V2X
application images. Kubernetes provides container orchestration
and enables the automatic deployment of pods, which are
preferably instantiated on the edge node in order to reduce
network delays.

In our deployment, a total of N pods compete for edge
resources. Different pods may correspond to the same or
different applications, i.e. there might be multiple replicas
of a pod running simultaneously at any given time. Further,
it is assumed that applications are stateless, with no logic
dependencies among tasks. The total CPU power of the edge
server is represented by R, and its available memory is given
by M. Pod n requests a guaranteed amount of CPU, Rn, and
memory, Mn. If

∑N
n=1Rn ≤ R and

∑N
n=1Mn ≤ M, the

CPU and memory requirements of all pods are guaranteed to
be met by the edge server. Otherwise, the edge server is unable
to handle all pods’ requirements and it is necessary to offload
some pods to the cloud. It is assumed that pod images are
always pre-loaded in the edge node. At the cloud, pod images
must be downloaded first from a local image repository, unless
another equal pod has previously been instantiated.

Note that Kubernetes pods can have two types of resource
quotas: a request quota is a minimum guaranteed compute or
memory resource per pod, whereas a limit quota refers to the
maximum compute or memory resources that can be assigned to
a pod. In this work, it is assumed that pods only have a request-
type quota. When more resources are required, for example
because there is a large number of end users, additional pods are
deployed, without modifying the resources allocated to already
running pods.



III. PROBLEM FORMULATION

The problem formulation presented in this work seeks to
minimize the cumulative pod response time, weighted by the
priority levels and resource usage requirements of pods. CPU
and memory constraints are assumed.
δn models the total task response time associated to pod n

(node-to-node latency, instantiation time and pre-loading time),
and it is given by

δn = xn(ln + pn) + in, (1)

where ln is the node-to-node latency, in is the instantiation
time and pn is the pre-loading time. It is assumed that all pod
images are already pre-loaded in the edge node. Only images
of pods that have previously been offloaded to the cloud server
are pre-loaded there. Further, xn is a binary variable defined as

xn =

{
1, if pod n is offloaded to the cloud,
0, otherwise.

(2)

Note that, for simplicity, the execution time of pods is ignored
in the definition of δn.

V2X applications normally have strict latency and applica-
tion response time requirements, and can be classified according
to these requirements and their execution priority. Therefore,
the utility function to be optimized is the weighted sum of pod
reponse times, i.e.

U =
∑
n

wnδn. (3)

The weight factor wn is given by

wn =
Tn
ωn
, (4)

where Tn is the normalized resource usage of pod n, defined
as the sum of normalized memory and CPU requirements. ωn
is a discrete priority value, where a larger value of ωn models
a higher execution priority.

The problem formulation to be considered in this work is
given by

min
xn

∑
n

wnδn (5a)

s.t. xn ∈ {0, 1},∀n, (5b)∑
n

(1− xn)Rn ≤ R, (5c)∑
n

(1− xn)Mn ≤M. (5d)

Constraint (5b) indicates that pod n can only be deployed
either in the edge or in the cloud. Constraint (5c) ensures that
the sum of required CPU resources of pods running in the
edge is lower than or equal to available CPU resources at the
edge server. Constraint (5d) guarantees that the sum of required
memory resources of pods running in the edge is lower than or
equal to available memory resources at the edge server.

In order to simplify the analysis, CPU and memory resource
usage constraints (5c) and (5d) can be combined into a single

overall resource usage constraint. For this purpose, since Rn
and Mn represent units of different dimensions, it is necessary
to convert them into equivalent dimensionless units, i.e.

R̂n =
Rn
R
, (6)

and

M̂n =
Mn

M
, (7)

where 0 ≤ R̂n ≤ 1 and 0 ≤ M̂n ≤ 1. Therefore, constraints
(5c) and (5d) become∑

n

(1− xn)R̂n ≤ 1, (8)

∑
n

(1− xn)M̂n ≤ 1, (9)

respectively. Further, the linear combination of (8) and (9)
yields ∑

n

(1− xn)Tn ≤ 2, (10)

where Tn = R̂n + M̂n represents the overall normalized
resource usage by pod n.

Problem (5) has multiple solutions depending on the values
taken by the set of variables {R̂n, M̂n}. Therefore, problem
(5) is tackled by dividing it up into three equivalent single-
constrained sub-problems, where either (8), (9) or (10) are
considered as a constraint. The single-constrained sub-problem
of interest is selected dynamically depending on changing
resource usage in the system. This strategy is explained in more
detail in Section IV, where ECODA is introduced.

A. CPU-constrained system

In the scenario where the CPU constraint (8) is considered,
but not the memory constraint (9), problem (5) can be simplified
as

min
xn

∑
n

wnδn (11a)

s.t. xn ∈ {0, 1},∀n, (11b)∑
n

(1− xn)R̂n ≤ 1. (11c)

The binary nature of variable xn in constraint (5b) adds
complexity to problem (5). In order to simplify the analysis,
the binary allocation variable xn is relaxed and transformed
into an equivalent real version, x̂n ∈ R. Assuming that δ̂n is
obtained by substituting x̂n into (1), the equivalent to problem
(11) is given by

min
x̂n

∑
n

wnδ̂n (12a)

s.t.
∑
n

(1− x̂n)R̂n ≤ 1. (12b)



Problem (12) is a linear program in standard form, and it
can be solved by applying the Lagrange dual function method
[12]. The Lagrangian of (12) is given by

L =
∑
n

wnδ̂n + λ

(∑
n

(1− x̂n) R̂n − 1

)
, (13)

and the dual function is then given by

g = inf
x̂n

(
wn(ln + pn)− λR̂n

)
x̂n + wnin + λ

(
R̂n − 1

)
,

(14)
where inf denotes infimum. Therefore, g = −∞, except when(

wn(ln + pn)− λR̂n
)
= 0, (15)

or, equivalently, when

λ =
wn(ln + pn)

R̂n
. (16)

When (16) holds, the nontrivial lower bound to problem (12)
is given by

x̂n = wnin + λ
(
R̂n − 1

)
, (17)

By substituting (16) in (17), the optimal x̂n is given by

x̂n = wn

(
in + (ln + pn)

(
1− 1

R̂n

))
. (18)

Assuming
X = [x̂1, · · · , x̂n, · · · , x̂N ], (19)

the value in X that minimizes the utility function U is minX .
Thus, it is optimal to schedule on the edge the pod that yields
minX . Similarly, the value that maximizes U is maxX , and
it is optimal to offload the pod that yields maxX to the cloud.
Thus, the optimal solution to the original problem in (11) is

xn =

{
1, for n such that x̂n = maxX ,
0, otherwise.

(20)

B. Memory-constrained system

Assume that only the memory constraint in problem (5) (9)
is considered, but not the CPU constraint (8). Then, problem
(5) can be simplified as

min
xn

∑
n

wnδn (21a)

s.t. xn ∈ {0, 1},∀n, (21b)∑
n

(1− xn)M̂n ≤ 1. (21c)

Further, assume that xn is relaxed and transformed into an
equivalent real version, x̂n ∈ R, and that δ̂n is obtained by
substituting x̂n into (1). Then, (21) can be simplified as

min
x̂n

∑
n

wnδ̂n (22a)

s.t.
∑
n

(1− x̂n)M̂n ≤ 1. (22b)

By applying the same methodology of section III-A, the optimal
solution to problem (22) is found:

x̂n = wn

(
in + (ln + pn)

(
1− 1

M̂n

))
. (23)

The solution to the original problem (21) is given by replacing
(23) into (19), and the resulting set X into (20).

C. Mixed-resource-constrained system

The original problem formulation (5) can be re-written by
combining constraints (5c) and (5d) into the normalized linear
combination of both, as given by (10). Therefore, problem (5)
can be re-written as

min
xn

∑
n

wnδn (24a)

s.t.
∑
n

(1− xn)Tn ≤ 2. (24b)

By transforming xn into an equivalent real version, x̂n ∈ R,
and by writing δn in (1) as δ̂n in terms of x̂n, problem (24)
can be simplified as

min
x̂n

∑
n

wnδ̂n (25a)

s.t.
∑
n

(1− x̂n)Tn ≤ 2. (25b)

After applying the same methodology of section III-A, the
optimal solution to problem (25) is found as:

x̂n = wn

(
in + (ln + pn)

(
1− 2

Tn

))
. (26)

The solution to the original problem (21) is given by replacing
(26) into (19), and the resulting set X into (20).

IV. EDGE-TO-CLOUD OFFLOADING DECISION

The offloading optimization problem in (5) has multiple
solutions, since there are many combinations of the values R̂n
and M̂n that represent the same overall resource usage severity.

In order to deal with the distinct degrees of resource usage
severity, three different scenarios are considered:

1) R > M and R ≥ α, where α represents a given CPU
resource usage threshold: In this case, the CPU usage is more
critical than the memory usage. Therefore, in order to carry out
offloading, a CPU-constrained system as given in Section III-A
is considered, and the optimal offloading decision is found by
replacing (18) into (19), and the resulting set X into (20).

2) M > R and M≥ β, where β is a given memory usage
threshold: In this scenario, the memory usage is considered
more critical than the CPU usage, and a memory-constrained
system as given in III-B is considered. Therefore, the optimal
offloading decision is given by replacing (23) into (19), and the
resulting set X into (20).



3) R < α and M < β, or R = M: In this situation,
the memory and CPU usage constraints are deemed equally
critical, and a mixed-resource-constrained system is considered,
as given in Section III-C. Therefore, the optimal offloading
decision is found by replacing (26) into (19), and the resulting
set X into (20).

A. Edge-to-Cloud Offloading Decision Algorithm (ECODA)

After the optimal results to problems (11), (21) and (24) are
found, an ECODA is proposed, as summarized in Algorithm
1. In the proposed ECODA, the system is first classified
as CPU-constrained, memory-constrained or mixed-resource-
constrained. The system classification result depends on the
CPU and memory usage at the edge, i.e. R and M, respecti-
vely; and on the CPU and memory usage thresholds, α and β,
respectively. Based on this classification, the optimal offloading
decision is given by replacing either (18), (23) or (26) into (19),
and the resulting X into (20). ECODA iteratively calculates
the optimal edge-to-cloud offloading decision, based on the
system classification, and then performs offloading of a pod.
This procedure is repeated in a loop, and ECODA finishes when
the overall resource usage at the edge is reduced to R < α and
M < β, simultaneously.

Algorithm 1 Edge-to-cloud offloading decision algorithm
1: Known: α, β
2: Compute R, M
3: while R ≥ α or M≥ β do
4: if R >M and R ≥ α then
5: Replace (18) into (19), replace X into (20)
6: Compute R, M
7: else if M > R and M≥ β then
8: Replace (23) into (19), replace X into (20)
9: Compute R, M

10: else
11: Replace (26) into (19), replace X into (20)
12: Compute R, M
13: end if
14: end while

During each iteration, ECODA takes the optimal offloading
decision based on the problem classification. The optimal
solutions to problems (12), (22) or (25), are also optimal
solutions to the original problem (5).

B. Computational Complexity of Algorithm 1 (ECODA)

Algorithm 1 performs one single computation per offloaded
pod. In the worst case scenario, all pods are offloaded from
edge to cloud. Therefore, it is trivial that the computational
complexity of Algorithm 1 is linear with the number of pods
N , i.e. it is of order O(N).

V. NUMERICAL RESULTS

The performance of ECODA is validated through Monte
Carlo simulations, performed in Matlab with 104 repetitions
per experiment in order to guarantee statistical significance

50 75 100 125 150 175 200

0

1

2

3

4

5

ECODA

FIFS

Fig. 2. Normalized utility function vs. number of pods.

of results. Simulation parameters have been extracted from
measurements in our experimental testbed in Barcelona, and
are as follows.

The node-to-node latency is assumed to have a fixed value of
ln = 30 millisecongs, ∀n. The pre-loading time of pod images,
pn, is modeled as a uniformly distributed random variable with
values in the range between 10 seconds and 100 seconds. After
pre-loading, the additional required pod instantiation time in is
modeled as a uniformly distributed random variable with values
in the range between 200 milliseconds and 5 seconds.

It is assumed that pods are classified according to their
priority level, which is modeled as an integer variable ρn that
takes values from the range Iρ = [1, 4], with one denoting the
lowest priority value, and four denoting the highest priority
value. ωn is calculated by normalizing the priority value, i.e.
ωn = ρn/(max Iρ −min Iρ). Further, the normalized resource
requirement of pod n, Tn, is modeled as a uniformly distributed
random variable with values in the range 0.02-0.2. It is assumed
that individual normalized memory and CPU requirements per
pod are uniformly and randomly distributed between 0.01 and
0.1. In addition, it is assumed that servers in the cloud tier have
enough CPU and memory resources for all the offloaded pods.

The performance of ECODA is compared to that of a FIFS
algorithm [11]. In FIFS, pods are allocated to the edge server
in a first-come, first-saved basis; when there are no available
resources at the edge server, pods are offloaded to the cloud.
Fig. 2 shows the value of the normalized utility function,
defined as U/N , for a varying number of pods, N . It is
proved that ECODA outperforms FIFS, yielding a mean average
reduction of a 31.9% of the value of U achieved with FIFS.
The benefit is larger for a smaller N , since a larger percentage
of pods can be run on the edge, thus reducing the average pod
response time. This, in turn, reduces the value of U .

Fig. 3 represents the value of U/N for fixed N = 100 and
varying CPU and memory usage thresholds, where it is assumed
that α = β. The mean average reduction of the value of U is of
approximately 15.9%. Further, the value of U decreases faster



0.65 0.7 0.75 0.8 0.85 0.9 0.95

2.5

3

3.5

4

4.5

5

ECODA

FIFS

Fig. 3. Utility function vs. resource usage threshold.

50 75 100 125 150 175 200
0

5

10

15

20

25

30

A
v
er

ag
e 

p
o
d
 r

es
p
o
n
se

 t
im

e 
(s

)

ECODA

FIFS

Fig. 4. Average pod response time.

for ECODA than for FIFS when thresholds α and β increase.
The reason for this is that, for increasing values of α and β,
more pods are executed in the edge server, and therefore the
cumulative end-to-end delay is reduced. This, in turn, decreases
the value of U . Since ECODA allocates pods in an optimal
manner, the impact on U is larger than that yielded by the
application of FIFS.

For fixed threshold levels α and β, ECODA also improves
the pod response time with respect to that achieved with FIFS
by nearly fours seconds on average, as demonstrated in Fig. 4.
According to (3), the utility function U is directly proportional
to the response time per pod, δn. A larger benefit is obtained
for smaller N , since U decreases when a larger share of pods
are run at the edge. For N = 50, the average pod response time
is over nine seconds lower for ECODA than for FIFS.

Last, Fig. 5 compares the performance of ECODA and FIFS
in terms of average resource usage at the edge, for α = 0.8, β =
0.8 and varying N . ECODA optimizes CPU and memory usage
at the edge tier, since the total resource usage approximately
equals the threshold values set by α and β. In contrast, the

50 75 100 125 150 175 200
0.65

0.675

0.7

0.725

0.75

0.775

0.8

0.825

N
o
rm

al
iz

ed
 r

es
o
u
rc

e 
u
sa

g
e 

at
 t

h
e 

ed
g
e

CPU usage, ECODA

Memory usage, ECODA

CPU usage, FIFS

Memory usage, FIFS

Fig. 5. Normalized resource usage at the edge.

edge CPU and memory usage achieved with FIFS with respect
to ECODA are reduced by 2.86% and 2.78%, respectively. This
result implies that the cumulative response time of pods is lower
when ECODA is applied, thus lowering the value of the utility
function U .

Overall, ECODA achieves a good performance with respect
to FIFS, with a very low implementation complexity. Moreover,
in the particular case of V2X verticals, applications normally
have strict latency constraints, and it is usually preferable to
execute applications at the edge tier as much as possible, in
order to minimize end-to-end latency. In this sense, ECODA
can aid fulfilling the requirements of V2X applications, by min-
imizing the response time and maximizing the edge occupancy,
as demonstrated in Fig. 4 and Fig. 5, respectively.

VI. CONCLUSIONS

In this paper, an optimization framework was presented
for edge-to-cloud offloading of V2X tasks implemented as
Kubernetes pods. First, an utility function was derived in terms
of cumulative weighted pod response time, and a utility mini-
mization problem was proposed, under edge CPU and memory
occupancy constraints. Based on the optimal solution to this
problem, a computationally efficient ECODA was presented for
edge-to-cloud offloading of Kubernetes pods. Through numeri-
cal simulations, it was demonstrated that ECODA outperforms
FIFS in terms of utility, average pod response time, and
occupancy of edge resources. Further, it was demonstrated that
ECODA provides a good trade-off between performance and
computational complexity. Therefore, ECODA can help achieve
strict latency requirements of V2X applications.

ACKNOWLEDGMENT

This work is currently supported by the European Union’s
Horizon 2020 Research and Innovation Programme, grant
agreement No: 871536 (PLEDGER).



REFERENCES

[1] “Docker,” https://www.docker.com, accessed: 2021-06-22.
[2] “Production-grade container orchestration,” https://kubernetes.io, ac-

cessed: 2021-06-22.
[3] A. Pereira Ferreira and R. Sinnott, “A performance evaluation of contain-

ers running on managed Kubernetes services,” in 2019 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom),
2019, pp. 199–208.

[4] B. Wang, C. Wang, W. Huang, Y. Song, and X. Qin, “A survey and
taxonomy on task offloading for edge-cloud computing,” IEEE Access,
vol. 8, pp. 186 080–186 101, 2020.

[5] F. Sun, F. Hou, N. Cheng, M. Wang, H. Zhou, L. Gui, and X. Shen,
“Cooperative task scheduling for computation offloading in vehicular
cloud,” IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp.
11 049–11 061, 2018.

[6] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
“Space/aerial-assisted computing offloading for IoT applications: A
learning-based approach,” IEEE Journal on Selected Areas in Commu-
nications, vol. 37, no. 5, pp. 1117–1129, 2019.

[7] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and
resource allocation in mixed fog/cloud computing systems with min-
max fairness guarantee,” IEEE Transactions on Communications, vol. 66,
no. 4, pp. 1594–1608, 2018.

[8] R. Duan, J. Wang, C. Jiang, Y. Ren, and L. Hanzo, “The transmit-energy
vs computation-delay trade-off in gateway-selection for heterogenous
cloud aided multi-UAV systems,” IEEE Transactions on Communications,
vol. 67, no. 4, pp. 3026–3039, 2019.

[9] Z. Wang, S. Zheng, Q. Ge, and K. Li, “Online offloading scheduling
and resource allocation algorithms for vehicular edge computing system,”
IEEE Access, vol. 8, pp. 52 428–52 442, 2020.

[10] O. Chabbouh, S. B. Rejeb, Z. Choukair, and N. Agoulmine, “A strat-
egy for joint service offloading and scheduling in heterogeneous cloud
radio access networks,” EURASIP Journal on Wireless Communication
Networks, vol. 2017, no. 196, Nov. 2017.

[11] J. Tang, R. Yu, S. Liu, and J.-L. Gaudiot, “A container based edge
offloading framework for autonomous driving,” IEEE Access, vol. 8, pp.
33 713–33 726, 2020.

[12] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge Uni-
versity Press, 2004.

[13] “The most widely deployed open source cloud software in the world,”
https://www.openstack.org, accessed: 2021-06-22.


