
P
os
te
d
on

20
O
ct

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
67
77
61
8
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
ot

b
..
.

A Survey on Software-Defined Wireless Sensor Networks: Current

status, machine learning approaches and major challenges

Fabian Fernando Jurado Lasso 1, Letizia Marchegiani 2, Jesus Fabian Jurado 2, Adnan Abu
Mahfouz 2, and Xenofon Fafoutis 2

1Technical University of Denmark
2Affiliation not available

October 30, 2023

Abstract

This paper is aimed to present a comprehensive survey of relevant research over the period 2012-2021 of Software-Defined

Wireless Sensor Network (SDWSN) proposals and Machine Learning (ML) techniques to perform network management, policy

enforcement, and network configuration functions. This survey provides helpful information and insights to the scientific and

industrial communities, and professional organisations interested in SDWSNs, mainly the current state-of-art, machine learning

techniques, and open issues.

1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Survey on Software-Defined Wireless
Sensor Networks: Current status,
machine learning approaches and major
challenges
F. FERNANDO JURADO-LASSO1,2, (Member, IEEE), LETIZIA MARCHEGIANI3,
(Member, IEEE), J. F. JURADO4, ADNAN M. ABU-MAHFOUZ5,6, (Senior Member, IEEE), and
XENOFON FAFOUTIS1, (Senior Member, IEEE),
1Embedded Systems Engineering section, DTU Compute, Technical University of Denmark, 2800 Lyngby, Denmark
2Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
3Department of Electronic Systems, Aalborg University, 9220 Aalborg Ø, Denmark
4Faculty of Engineering and Administration of the Department of Basic Science, Universidad Nacional de Colombia sede Palmira, Palmira, Colombia
5Council for Scientific and Industrial Research (CSIR), Pretoria 0184, South Africa
6Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 0001, South

Corresponding author: F. Fernando Jurado-Lasso (e-mail: ffjla@dtu.dk).

ABSTRACT Wireless Sensor Networks (WSNs), which are enablers of the Internet of Things (IoT)
technology, are typically used en-masse in widely physically distributed applications to monitor the dynamic
conditions of the environment. They collect raw sensor data, which are further processed in a centralised
manner. With the current traditional techniques of state-of-art WSNs programmed for specific tasks, it is
hard to react to any dynamic change in the conditions of the environment beyond the scope of the intended
task. To solve this problem, a synergised research effort between Software-Defined Networking (SDN)
and WSNs has been proposed. This paper is aimed to present a comprehensive survey of relevant research
over the period 2012-2021 of Software-Defined Wireless Sensor Network (SDWSN) proposals and Machine
Learning (ML) techniques to perform network management, policy enforcement, and network configuration
functions. This survey provides helpful information and insights to the scientific and industrial communities,
and professional organisations interested in SDWSNs, mainly the current state-of-art, machine learning
techniques, and open issues.

INDEX TERMS Wireless Sensor Networks (WSNs), Internet of Things (IoT), Machine Learning (ML),
Software-Defined Wireless Sensor Networks (SDWSNs), Machine Learning Software-Defined Wireless
Sensor Networks (ML-SDWSNs).

I. INTRODUCTION

THE Internet of Things (IoT) is an emerging technology
that has caught tremendous attention from the scientific

and industry communities and professional organisations due
to its diverse benefits: including financial, efficiency, man-
agement, etc. It is a key enabling technology of the so-called
industry 4.0. IoT stakeholders (e.g., governments, industry),
which have recently acknowledged that IoT is a real business
opportunity. Forecasts estimate that the IoT business can
grow into a market worth $7.1 trillion USD by 2025 [1]
and that the number of connected “things” will exceed the
75 billion devices [2]. The exponential growth of connected

devices implies a huge variety of IoT vendors and protocols.
Despite this variety of vendors and protocols, the IoT must,
somehow, deliver seamless services to users. The emerging
IoT applications including smart agriculture, transportation
systems, health systems, etc., expand the scope of the internet
to include sensing technologies such as Wireless Sensor
Networks (WSNs).

WSNs are built upon the interconnection of large number
of Networked Embedded Systems (NESs). A NES, which is
also called wireless sensor node, is a tiny energy-constrained
device that comprises of a processing unit, a memory unit, a
communication transceiver, and some sort of power supply.

VOLUME 4, 2016 1

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

TABLE 1. Related survey articles on SDN

SDN SDN-IoT SDWSNs SDN-SG SDN-UWSNs ML-SDWSNs
[3] X
[4] X
[5] X
[6] X X
[7] X X
[8] X
[9] X

[10] X
[11] X
[12] X
[13] X
[14] X
[15] X
[16] X

Survey article Topic

They are usually deployed to measure physical variables
such as humidity, temperature, pressure, air quality, etc.,
and they work cooperatively to achieve a common goal.
The main characteristics of NES are the low cost, size, and
limited resources [17], [18]. WSNs are used in range of
applications that enable integration of the physical world into
the computer-based world, resulting in benefits and improve-
ments in remotely managing the physical world, keeping an
electronic record of physical variables, early detection of
potential threats, predictions, and economical benefits. Their
low cost and ease of deployment make WSNs attractive
in the practical implementation of the IoT. However, their
small size and low cost lead to limitations on resources
such as energy supply, memory size, computational speed
and communication bandwidth. Therefore, limited resources
in WSNs need to be managed effectively so that they can
perform optimally for the longest period of time possible.

The Software-Defined Networking (SDN) paradigm has
been proposed to alleviate the management complexity cur-
rently found in wired networks. SDN breaks the vertical
integration of the network by separating it in application-
, control- and data-planes. The application plane hosts user
applications and programs that explicitly, directly, and pro-
grammatically convey information regarding the network
requirements and desire network behaviour to the SDN con-
troller. The control plane consists of a logically centralised
entity that process requirements from the application plane
and deploy them in the data plane, and provides to the
application plane with a global view of the network. The data
plane is the network infrastructure that consist of networking
devices that become forwarding devices with no intelligence.
The introduction of SDN abstractions into the WSN forms
what we call Software-Defined Wireless Sensor Networks
(SDWSNs).

The SDWSN paradigm emerges to solve the manage-
ment complexity in current WSNs deployments. This new
paradigm allows adding new functionalities into the network,
no different from adding another application to the control
plane [9]. In large WSNs, with thousands of sensor nodes,

it is critical to consider and implement management solu-
tions [19]. The SDWSNs centralise the network intelligence
in an SDWSN controller, leaving sensor nodes acting as
simple forwarding devices. Sensor nodes forward packets to
the destination based upon the reprogrammable forwarding
table managed by the controller. SDWSN controller lever-
ages the global information of the network (e.g., network
statistics, energy levels, interference, etc.) to come up with
new powerful and intelligent protocols to achieve the desired
network performance.

A. CONTRIBUTION

Despite the diverse benefits brought by SDN to WSNs, with-
out proper countermeasures to minimise the management
overhead introduced, it can greatly negatively impact the
network performance of the WSN and lead to high energy
cost. This paper conducts an extensive literature review by
exploring relevant research articles on SDWSNs and Ma-
chine Learning Software-Defined Wireless Sensor Networks
(ML-SDWSNs) approaches.

Research works that have reviewed papers on SDN are
listed in Table 1. Topics on these surveys include SDN basics,
SDN for IoT, SDWSNs, SDN for Smart Grids (SG), SDN
for underwater WSNs (UWSNs), and ML-SDWSNs. As can
be seen from the table, existing surveys have paid little
attention to the use of Machine Learning (ML) techniques
in SDWSNs. In particular, the article in [11], which was
published in 2017, only briefly discusses the use of ML
algorithms in SDN, while SDWSN papers were not surveyed.
Their article surveys papers mostly based on the use of ML
algorithms in SDN in general. Papers that take advantage of
the global view of the controller in SDWSNs to improve
the network performance were not discussed. The survey
in [16], published in 2019, briefly reviews papers that use
Artificial Intelligence (AI) for intrusion detection in SD-
WSNs. It mainly discusses how the security vulnerabilities
of SDWSNs can be counteracted by combining cryptography
schemes and AI techniques. In contrast, the contributions of
this survey article are as follows.

2 VOLUME 4, 2016

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

TABLE 2. List of Acronyms

Acronym Description
µIP micro Internet Protocol
µIPv6 micro Internet Protocol version 6
6LoWPAN IPv6 over Low-Power Wireless Personal Area

Networks
AE Autoencoder
AI Artificial Intelligence
API Application Program Interface
BLIP Berkeley Low-power IP
CNN Convolutional Neural Networks
CTP Collection Tree Protocol
DL Deep Learning
DRL Deep Reinforcement Learning
DT Decision Tree
EOS Embedded Operating System
FPGA Field-Programmable Gate Array
FSM Finite State Machine
IA Intelligent Agent
IDS Intrusion Detection System
IoT Internet of Things
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
k-NN K-Nearest Neighbour
KPI Key Performance Indicator
LoRaWAN Long Range Wide Area Network
MCU Microcontroller Unit
MDP Markov Decision Process
ML Machine Learning
ML-SDWSN Machine Learning Software-Defined Wireless Sensor

Network
NES Networked Embedded System
NN Neural Network
OS Operating System
PCA Principal Component Analysis
PDR Packet Delivery Ratio
PLR Packet Loss Rate
PSO Particle Swarm Optimisation
QoS Quality of Service
RL Reinforcement Learning
RNN Recurrent Neural Network
RPL Routing Protocol for Low-Power and Lossy Networks
RSSI Received Signal Strength Indicator
RTT Round-Trip Time
SDN Software-Defined Networking
SDWSN Software-Defined Wireless Sensor Network
SVM Support Vector Machine
TCP Transmission Control Protocol
TSCH Time Slotted Channel Hopping
UDP User Datagram Protocol
WPAN Wireless Personal Area Network
WSAN Wireless Sensor and Actuator Network
WSN Wireless Sensor Network

1) We firstly provide a comprehensive background on
WSNs including evolution of MCU-sensor nodes, net-
working and standards, and challenges of WSNs.

2) We provide a systematic review of SDWSN proposals
found in the current state-of-art and categorised them
into general frameworks, proposals that seek to improve
KPIs (QoS-related works), research works that repro-
gram both hardware and software of sensor nodes (fully
programmable mechanisms & EOS), scientific articles
that leverage the global view of the controller to devise
new routing and management protocols (network topol-
ogy and management proposals), and research papers

that seek to solve the controller placement problem
(Controller placement works).

3) The nature of the SDWSN centralised architecture
opens up new research opportunities to experiment with
AI/ML algorithms embedded in the SDWSN controller
to improve the overall WSN performance. Therefore,
we provide a comprehensive background on the most
widely used ML techniques, and we perform a system-
atic review of research papers that have combined re-
search efforts of ML and SDWSNs, to improve network
performance.

4) We discuss open issues and research directions in SD-
WSNs.

This review will serve to produce a better understanding and
clarify the current status and the potential research directions
regarding the open issues of SDWSNs. To the best of our
knowledge, there does not exist a survey that covers in-
depth the state of the art of SDWSN research works and ML
techniques used in SDWSNs.

The remaining of this paper is organised as follows. Sec-
tion II provides a detailed background on WSNs. Section III
provides a background on SDN, SDWSNs and presents the
early adopters of SDWSNs. Section IV presents research
works that have expanded the state-of-art of SDWSNs.
Section V presents a detailed overview of ML techniques.
Section VI presents research efforts that have adopted ML
techniques in SDWSN. Section VII summarises SDWSN
research works. Section VIII discusses SDWSN open re-
search issues. Finally, in Section IX conclusions are drawn.
Acronyms used throughout this paper are summarised in
Table 2.

II. BACKGROUND
The introduction of WSNs has opened new opportunities
for monitoring applications. These can be summarised as
follows.

• Home monitoring: This is an example of a Wireless
Sensor and Actuator Network (WSAN). This kind of
network can collect sensed data such as temperature,
humidity and states of other sensors such as magnetic
sensor or switches, and is also capable of changing the
environment and physical world through actuators such
as servos, motors or switches.

• Environmental monitoring: The goal of this WSN is
to maintain the sink informed of any environmental
changes at the deployed location and surroundings. This
term has evolved to cover many monitoring applications
of the environment such as sea, volcanoes and forest
monitoring, etc.

• Event detection: Thousands of sensor nodes can be
deployed in a specific field to detect early hazards to the
ecosystem. For example, sensor nodes embedded with
temperature, humidity and gas sensors can be used to
detect the presence of fire. Early detection of hazards
can prevent the loss of lives and valuable resources.

VOLUME 4, 2016 3

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

TABLE 3. Historical wireless sensor nodes development platforms

Type RAM [KB] Flash [KB] E2PROM [KB]
2000 Rene 2 [20] Atmega 163 1 16 32 TinyOS TR1000
2000 µAMPS [21] Strong ARM - 1M 4M µOS National LMX3162
2001 BTnode [22] Atmega 128L 4 up to 128 4 Nut/OS CC1000
2003 Mica2 [23] Atmega 128 4 128 512 TinyOS CC1000

2004 TelosB [24] MSP 430 10 48 1M TinyOS, Contikia,
RIOTb CC2420

2006 MicaZ [24] Atmega 128 4 128 512 TinyOS, Contikic CC2420
2011 WiSMote [25] MSP 430 16 sram up to 256 up to 8M Contiki CC2520
2013 WiSense [26] MSP 430 4 56 128 - CC2520
2013 CC2541DK [27] CC2541 8 up to 256 - - 2.4 GHz
2015 CC2538DK [28] CC2538 32 512 4 Contikia, RIOTb 2.4 GHz

2015 OpenMote [29] CC2538 32 512 4 Contikia, OpenWSN,
FreeRTOS, RIOT 2.4 GHz

2015 CC2650STK [27] CC2650 20 128 - Contikia 2.4 GHz

2015 Re mote [30] CC2538 32 512 4 Contikia,d, RIOTc,
MansOS

2.4 GHz, Sub-1 GHz

2017 CC1350STK [31] CC1350 20 128 - Contiki-NGd 2.4 GHz, Sub-1 GHz

2019 LPSTK-
CC1352R [32] CC1352R 80 352 256 Contiki-NGd 2.4 GHz, Sub-1 GHz

Year Name
µC

OS Radio

a It is also supported by Contiki-NG
b Basic support
c Partially supported
d Dynamically switching, at run-time, between the two bands is not supported

• Physical variable monitoring: WSNs can be also used in
a simple task such as data logging information of a phys-
ical variable of interest. For examples, keeping track of
simple things like the temperature of a refrigerator, all
the way up to monitoring the water level and flow of a
nuclear power plant [33].

As mentioned above, the use of WSNs covers a range of
applications that enables integration of the physical world
into the computer-based world, resulting in benefits and
improvements in our quality of life. Also, a wide variety
of wireless sensor devices have been developed to enable
wireless connectivity and sensing capabilities in tiny objects,
a historical and most popular WSN platforms available in the
market are shown in Table 3.

A. NETWORKING AND STANDARDS FOR WSNS
Networking technology sets the form of communications
between sensor nodes. Here, the most current Wireless IoT
Network Protocols are presented, and it only covers radio
waves which are the most common communication tech-
nology found in IoT applications. Other forms of wireless
communications methods are surveyed in [34].

The most commonly used communication transceiver for
WSNs is the low-power radio and the most popular frequency
band is the 2.4 GHz as shown in Table 3. 2.4 GHz radios are
popular, low-cost, well-supported and the frequency band is
standardised in the IEEE 802.15.4 [35]. Among communica-
tion protocols, used in this frequency band, are ZigBee [36],
Bluetooth [37], [38], and 6LoWPAN [39].

A brief comparison of different communication technolo-
gies used in WSNs is shown in Table 4. There is no such
thing as the best communication technology for WSNs as

the optimum communication protocol largely depends on the
application. For home monitoring or smart home, Zigbee and
6LoWPAN can be the appropriate technology as they provide
good data rates and support multiple network topologies. For
industrial monitoring, 6LoWPAN or LoRaWAN technologies
are good solutions, however, 6LoWPAN works better when
frequent measurements are needed, and LoRaWAN fits better
for large fields, multiple sources of interference, or for infre-
quent interaction with the gateway.

B. CHALLENGES IN WSNS
The challenges associated with WSNs and IoT can be divided
into three different categories: sensor node hardware, hetero-
geneity and inflexibility.

1) Sensor node hardware
As mentioned before, the main challenges presented in sensor
nodes are due to their constrained resources.

• Energy source: due to the communication nature of
sensor nodes is wireless, most of the applications require
sensor nodes to operate in harsh environments or areas
with limited access [40], [41]. Thus, it is envisaged that
sensor nodes operate without any battery renewal or
human intervention for a long time. The power source
and individual energy consumption are vital for the
Network Lifetime (NL) of WSNs.

• Memory size: the memory of sensor nodes stores in-
formation regarding the protocol stack and applications
running in the node. The integration of the protocol
stack, routing protocols and applications into the node
imposes a challenge when adding new features in the
already constrained memory. The memory has to be

4 VOLUME 4, 2016

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

TABLE 4. Examples of popular communication technologies for WSNs

Wireless Technology Frequency [MHz] Data Rates [kbps] Range (LoS) Network Topology Power consumption
IEEE 802.15.4 2400, 915, 868 250, 40, 20 100 m+ star low
Zigbee 2400, 915, 868 250, 40, 20 100 m+ star, tree, mesh low
Bluetooth/BLE 2400 125-2000 10-100 m P2P, star, mesh high/low
6LoWPAN 2400 250 100 m+ star, tree, mesh low
LoRaWAN Sub-GHz 0.250-11 10 km+ star low

managed effectively to assure all applications and pro-
gram code run efficiently and that the node can host new
features as required.

• Computational speed: the nature of WSNs is to use
low-power microcontrollers which work well for non-
resource-intensive tasks such as sensing and radio com-
munications. The use of more powerful processing units
directly affects the sensor node size, power consumption
and price. However, the use of low-power microcon-
trollers limits the sensor node when executing tasks of
significantly different intensities as occurs with most
Internet Protocols (IPs) which require a scheduler and
run on top of the firmware. Basically, the IoT requires
more processing power to handle the communication
overhead involved. On top of this, sensor nodes, con-
sidered to be autonomous systems, use complex routing
algorithms that add a processing cost to the already
constrained device.

• Communication bandwidth: when a number of sensor
nodes need to transmit in real-time, bandwidth limita-
tions impose restrictions on how many sensor nodes can
transmit and the rate at which they can post their data
in real-time [42]. Furthermore, wireless communication
can take up to 75% of the total energy in some applica-
tions [43]. The communications between sensor nodes
have to be managed in a way that sensor nodes reliably
transmit their data and that the energy consumption does
not compromise the NL.

2) Heterogeneity

The IoT enables the interconnection of a large number of
heterogeneous devices that creates new user applications to
improve the quality of our lives. However, engineers working
on the development of new applications face challenges when
setting up a network of heterogeneous devices and systems.
These heterogeneous devices include a variety of networking
devices, manufacturers and software. The wide variety of
networking connectivity technologies, protocols and com-
munication methods can present difficulties to engineers
and developers when implementing new network designs or
protocols. Thus, the IoT must bring seamlessly together all
heterogeneous devices to provide services to users.

3) Inflexibility

Since IoT enables the interconnection of objects to the in-
ternet, the number of connected devices increases dramati-
cally. WSNs extended the scope of IoT by introducing net-

worked sensing technologies. Currently, state-of-art WSNs
are deployed with an inflexible firmware. Where, once the
WSN is deployed, any modification to the firmware (e.g.,
tasks, behaviour in sensor nodes) requires an on-site visit or
Over-The-Air (OTA) programming technology to reprogram
sensor nodes’ firmware. On site-visit, such as the example
given in [5], of a WSN that comprises 100 sensor nodes
that measures pollution in a lake, that demands for task
reprogramming would require taking sensor nodes out of the
lake and reprogram their firmware to modify such task, which
is not practical and increases the management costs. Whereas
OTA permits firmware updates without taking sensor nodes
out of the environment and without interrupting the normal
operation of sensor nodes, the time required to update an
entire WSN is an issue in time-sensitive applications. A smart
building application, which has 69 end devices, needs on
average seven hours to complete transferring a 125 KB image
file to all sensor nodes [44].

Overall, WSNs enable a range of applications from home
monitoring to hazard detection in remote areas with diffi-
cult access and strict operational requirements such as NL.
Wireless sensor nodes are designed to be small, cheap and
wireless, so they can be easily embedded, even into the small-
est things and used en-masse in widely physically-distributed
applications. Such design requirements impose several con-
straints in the power supply, memory size, processing power
and communication bandwidth, making smart management
of these resources a high priority in the design of practi-
cal and cost-efficient WSN applications. The WSN has to
work seamlessly with other network devices independently
of the vendor who produced it. Furthermore, it must also
manage limited resources and provide easy updates of real-
time applications. Hence, there is a genuine, real-world need
for innovative research efforts into the smart management of
resources in wireless sensor networks. Solutions should be
independent of the practical application, and the behaviour
of sensor nodes and the software running on them easily
modified. Therefore, there is a need to tackle the above-
mentioned challenges inherent to WSNs and the IoT. SDN
has been proposed as a prospective solution to overcoming
these challenges.

III. SOFTWARE-DEFINED WIRELESS SENSOR
NETWORK (SDWSN)
The SDWSN paradigm is inspired by the SDN technology,
which a network management approach that enables to dy-
namically and programmatically reconfigure the network,

VOLUME 4, 2016 5

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

Application
Plane

Control
Plane

Data Plane

APP 1 APP 2 APP 3 APP 4

SDN CONTROLLER

Northbound API

Southbound API

FIGURE 1. A simple representation of an SDN architecture.

that is introduced below.

A. SOFTWARE-DEFINED NETWORKING
SDN is a network paradigm solution to the current wired net-
work limitations. It first breaks the vertical integration of the
network by separating the control plane or the “control logic”
from the underlying networking devices such as routers and
switches. Then, the networking devices become a forward-
ing device with little or no intelligence. The intelligence is
instead logically centralised in a controller, facilitating pol-
icy enforcement and network reconfiguration [3]. A simple
representation of an SDN architecture is shown in Fig 1.

SDN is an approach to network management that enables
dynamic network configuration that improves network per-
formance and oversees the network status. SDN is currently
widely used in wired networks where architectures are de-
centralised and complex, and emerging network applications
require more flexibility and easy troubleshooting. Although
SDN centralises the network intelligence in the control plane,
it does not necessarily mean that the data plane depends on a
single controller. In fact, the control plane can be built upon
multiple controllers which can be physically distributed but
logically centralised.

Apart from the three SDN layers, data plane or infrastruc-
ture, control plane and application plane, multiple Applica-
tion Program Interfaces (APIs) also exist: northbound, south-
bound, eastbound, and westbound. The Northbound API en-
ables the communication between the application and control
plane. Using this API, the control plane provides a global
view of the network to the application plane. The southbound
API is the communication channel between the data- and
control-plane. This API is used by the controller to deploy
different policies and network management configurations in
devices of the data plane. Network devices of the data plane
report network status to controllers using the southbound
API. The eastbound and westbound APIs are responsible for
orchestrating the communication channel between multiple
controllers, so they can make coordinated decisions [10].

Southbound API
Data plane

…

Northbound APIControl plane

Application plane

Mem

Sensor

RadioCPU

Power supply

Wireless link

Topology
Mgmt

Data
Generation

SDWSN node

MATCH
SRC DST ACTION

App 1 App 2 Application n

Tx power
Mgmt

Web
Server

Task
Mgmt

FIGURE 2. Simple representation of an SDWSN architecture.

The most well-known protocol used in the southbound API
is OpenFlow [45]. Researchers have recently applied SDN
concepts into WSNs to perform network management, policy
enforcement and network reconfiguration functions. The syn-
ergy between WSNs and SDN forms the so-called SDWSN
paradigm.

B. SOFTWARE-DEFINED WIRELESS SENSOR
NETWORK PARADIGM
The SDWSN paradigm emerges to solve the management
complexity currently found in state-of-art WSNs. This new
paradigm allows adding new functionalities into the network,
no different from adding another application to the control
plane [9]. In large WSNs, with thousands of sensor nodes,
it is critical to consider and implement management solu-
tions [19].

A simple representation of an SDWSN architecture is
shown in Fig. 2. The SDWSN architecture differs from
the SDN architecture mainly in the data plane. The data
plane is based upon wireless sensor nodes that are NESs
with constrained resources. SDWSNs centralise the network
intelligence in an SDWSN controller, leaving sensor nodes
acting as simple forwarding devices. Sensor nodes forward
packets to the destination based upon the reprogrammable
forwarding table managed by the controller.

1) Challenges of SDWSNs
The main challenge of SDWSN architectures are the shared
communication medium and constrained resources. SDN
was initially conceived for wired networks, where control
packets typically flow through a dedicate communication
channel, whereas in WSNs the control packets flow through
the same medium. Control packets share the bandwidth with
data packets, therefore the bandwidth has to be managed
smartly to prevent congestion in the SDWSN. The flexibility
of changing the behaviour of sensor nodes implies the intro-
duction of control overhead in the network that may incur in-
creased overhead and energy consumption, and a decrease in
the Packet Delivery Ratio (PDR) which is a Key Performance
Indicator (KPI) that discloses the amount of data delivered

6 VOLUME 4, 2016

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

successfully. The most common principal requirement of
WSN applications is to prolong the NL, thus the constrained
resources of sensor nodes have to be managed in a way that
the NL is not drastically reduced. Control packets flowing
in the network will increase network energy consumption;
therefore, novel control overhead reduction techniques are
required to minimise the amount of control overhead and
interaction between sensor nodes and the controller, as the
work presented in [46].

C. PIONEERS OF SDWSNS
As the SDWSN paradigm is still at its infancy stage, few
researchers have started exploring potential architectures for
SDWSNs. The introduction of SDN abstractions into WSNs
was first introduced by two early adopters: SOF [47] and
SDWN [48].

1) Sensor OpenFlow (SOF)
Luo et al. [47] introduced SOF as a Southbound API to
facilitate the communication between the control and data
planes. The main objective is to make the WSN infrastructure
reprogrammable by customising the flow tables. SOF is
motivated by the standard SDN protocol for wired networks,
namely OpenFlow [45].

Since WSNs are usually thought to be attribute-based and
data-centric networks in comparison to conventional address-
centric networks, they offer two approaches for flow creation:
(i) compact network-unique addresses (ZigBee addressing),
and concatenated attribute-value pairs that routes packets
based on the data attributes, and (ii) the use of the Internet
Protocol (IP) in WSNs, and they suggest two IP stacks: µIP
or µIPv6 [49], and Berkeley Low-power IP (BLIP) [50].
In comparison to OpenFlow, SOF provides in-networking
processing functionalities, but there is no evidence of any
type of improvement in network performance with their
proposed protocol. Their paper mainly presents SOF as the
first research effort that synergizes SDN and WSN; therefore,
it lacks specification and details.

2) SDWN
Costanzo et al. [48] introduce SDWN. Their approach differs
from SOF in many ways: (i) it proposes a Southbound API,
namely a flow table, (ii) it states the requirements for the
SDWN, such as support for duty cycling and in-network data
aggregation, to minimise the overall energy expenditure of
the network, (iii) it presents the protocol architectures for
the generic and sink nodes, and (iv) it describes the packet
format for all packets flowing in the network. Generic nodes
are sensor devices in the data plane that forward packets
as instructed by the centralised controller. The sink node is
the SDN controller which defines the rules for forwarding
packets. Their paper tries to analyse the benefits of SDN in
WSNs with emphasis on Wireless Personal Area Networks
(WPANs).

A brief comparison of the two early adopters is shown
in Table 5. SOF and SDWN are considered as the first step

TABLE 5. Comparison of early adopters of SDWSNs based on the type of
networking technology, Network Operating System (NOS) and energy-aware
functionalities

FW Networking NOS EAF
SOF IEEE 802.15.4, IP - in-net-proca

SDWSN IEEE 802.15.4 X in-net-proc, duty-cycle
a in-net-proc: in-network processing; data aggregation, etc.

towards reprogrammable WSNs, since then multiple research
papers have used them as their foundation for new research
works.

IV. EXISTING SDWSNS PROPOSALS
To tackle shortcomings in SOF and SDWN, and the lack
of performance evaluation, several authors have proposed
SDWSN approaches that aim to improve the overall SDWSN
architecture design and performance. This section provides
a systematic review of research works found in the current
state-of-art of SDWSNs. We group them into five different
categories.
• General frameworks: This category contains SDWSN

research papers that have been proposed to advance in
the state-of-art of SDWSNs, but they lack any form of
evaluation.

• Quality of Service (QoS)-related works: Here, we group
research works that guarantee a certain level of service.
These works aim to improve KPIs; including energy
consumption, control overhead, delay, traffic conges-
tion, packet loss, throughput, etc.

• Fully reprogrammable mechanisms and EOS: SDN pro-
vides flexibility to reprogram individual sensor nodes
functionalities or behaviour; however, there exist re-
search works that extend this to a fully programmable
sensor node including both hardware and software.

• Network topology and management proposals: This cat-
egory presents research works that leverage the global
view of the controller to devise new topology and man-
agement protocols.

• Controller placement works: Research works that seek
to solve the controller placement in SDWSNs are
grouped in this category.

A. GENERAL FRAMEWORKS
It is worth mentioning that the below works are general
frameworks that are the first step to synergy research efforts
of SDN and WSNs, but they lack evaluation performance.
However, some authors have extended these frameworks into
a mature and tested framework which we will discuss later in
this review.

Previously discussed research works: SOF [47] and
SDWN [48], fit in this category. Alves et al. [51] proposed IT-
SDN as an open-source SDWSN tool to provide a clear sep-
aration of protocols: southbound communication, neighbour
and controller discovery. IT-SDN is implemented in Contiki
and the controller runs on Linux with Qt. This framework

VOLUME 4, 2016 7

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

TABLE 6. Comparison of general SDWSN frameworks based on the type of operating system used, controllers, demonstration, and availability to the public

Ref. Advantage/Disadvantage EOS Controller Availability

TinySDN

First research work that uses TinyOS. It permits the use of multiple controllers, eliminating
the dependency on a single controller. Although a demonstration was performed in Cooja
to provide an overview of the TinySDN main features, there are no shreds of evidence of
improvement with traditional WSNs.

TinyOS Multiple X

IT-SDN
It is an open SDWSN tool inspired by TinySDN. The architecture is independent of the OS
and provides detail packet types and formats, and workflow. Although a demonstration was
performed in Cooja; it lacks piece of evidence of improvements related to state-of-art WSNs.

Contiki X

SDCSN
Cluster head (CH) and multi-controller approach. It provides good architectural design
details and security concerns on CHs. The main drawbacks are the lack of details of the
implementation and not evidence of performance evaluation provided.

- Multiple -

CORAL-SDN

It provides detailed information of the architecture proposed. Tasks handled by the controller
and its implementation are explained; but, it lacks details. The demonstration, which is
performed in w-iLab.2 and SWN, is well explained; however, it lacks evidence of the
evaluation. No charts provided.

Contiki Single X

is intended to be used by researchers to experiment with
SDWSNs. Even though there is no evidence of evaluation
performance, the authors organised a demonstration of IT-
SDN running in Cooja, i.e., the simulator of the Contiki.

De Oliveira et al. [52] present TinySDN which is a
TinyOS-based [50] SDWSN implementation. TinySDN of-
fers two types of network devices: SDN-enabled node which
comprises of a switch and end-user node, and a SDN con-
troller where the all the intelligence resides. This work was
presented as an initial step towards the use of SDN concepts
into WSNs using TinyOS. It also details the components
and functionalities considered. TinySDN was presented in
the form of demonstration, but the paper lacks performance
evaluation.

Olivier et al. [53] proposed a Software-Defined Clus-
tered Sensor Network (SDCSN), a cluster-based architecture
which has multiple base stations. Base stations host both
control plane and cluster heads functionalities. They provide
information on design, implementation and security details
of SDWSN architectures. They use multiple controllers in
their architecture by interconnecting SDN domains. This is
a first step towards discovering opportunities and challenges
of using cluster techniques in WSNs.

Theodorou et al. proposed CORAL-SDN [54] which is
presented as a SDN-based solution for IoT. The architec-
ture design comprises a CORAL-SDN node, a CORAL-
SDN controller, and a CORAL Dashboard. The network
stack is entirely programmed in C (Compatible with Contiki
3.0). It has a proprietary forwarding protocol that maintains
the forwarding table. The CORAL-SDN controller, which
is programmed in Java, is designed in a modular scalable
approach to easy introduce new algorithms. The CORAL
Dashboard is a flexible visualisation tool based on the
NODE-RED platform (i.e., https://nodered.org). It has been
demonstrated in two testbeds: IMEC w-iLab.2 [55] and SWN
(https://www.emulab.swn.uom.gr/). Even though there is not
evidence of any evaluation performance, the authors state that
experimental results show that CORAL-SDN can improve
network control in IoT networks.

A brief comparison of general frameworks is shown in
Table 6. The table compares general frameworks stating

their advantages and disadvantages, Embedded Operating
System (EOS) used, type of controller architecture, and their
availability to the research and professional community. We
can see that they are also the first research works towards
SDN-based WSNs as they seek to provide a practical, fully
functional SDWSN architecture and implementation but with
little or no evidence of evaluation. These research works have
evolved and been used by the research community to further
investigate SDWSNs.

B. QUALITY OF SERVICE (QOS) RELATED WORKS
1) Energy consumption
This a well-studied metric in WSNs. Sensor nodes are usually
deployed in harsh environments where physical access to
sensor nodes is difficult; therefore, WSNs require to smartly
manage their energy resources in a way that they could
achieve the longest lifetime possible.

Table 7 presents and compares research works currently
found in the literature whose main objective is to achieve a
reduced energy consumption in WSNs by means of SDN. We
can see that new research works consider SDN as a viable so-
lution to improve energy consumption in traditional wireless
sensor-based networks; however, a common drawback is a
lack of demonstrating improvement against traditional WSNs
and the viability in real-world deployments i.e. the study
of control overhead, WSN architecture setup, to include all
protocol stack layers and computational complexities. Also,
they lack evaluation with other SDWSN protocols, which can
be tightly related to the limited amount of publicly available
SDWSN approaches. Moreover, the development of energy
consumption algorithms involve a large number of mathe-
matical models, and their evaluation is frequently made using
mathematical tools rather than network simulators. Network
simulators allow capturing of all physical events happening
in a real network i.e. collision, packet loss, etc., and at the
hardware level.

2) Security
This is a concern in IoT networks. It is also in centralised
architectures such as SDN. This is especially true in SDWSN
architectures with a single controller, whereby an attacker

8 VOLUME 4, 2016

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

TABLE 7. Relevant SDWSN research works that aim to achieve a reduced energy consumption

Ref. Specific aim Approach Main drawback Type of
evaluation

Comparison
with other
protocols

[41]
To design an energy-efficient rout-
ing algorithm, where the WSN is
divided into clusters

To use a Particle Swarm Optimisation
(PSO) algorithm to solve the selection of
control nodes

An NP-hard problem no
suitable for real-time appli-
cations

MATLAB LEACH

[46]

To design an energy-aware routing
algorithm that balances the energy
across the network and reduce the
control overhead

To select paths with the highest remaining
energy level, aggregate packets to com-
mon destination and compute checksum
over known routes at the controller

The controller can exhaust
its resources quickly as it
is embedded in one of the
sensor nodes

Cooja SP

[56]

To design an energy-efficient SD-
WSN using wireless power transfer.
To minimise the energy consump-
tion of energy transmitters while
keeping sensor nodes sufficiently
charged.

Network with energy transmitters. To find
the minimum number of energy transmit-
ters by solving an optimisation problem
satisfying the constraint of minimum en-
ergy charge per node.

The practicality of deploy-
ments in real large-scale
SDWSN needs to be stud-
ied in terms of scalability-
cost ratio

Numerical
no
specified

Traditional
WSN

[57]
To design an energy-efficient sensor
scheduling and management strat-
egy with certain quality-of-sensing

Formulation of an optimisation problem
with three objectives; sensor activation,
task mapping and sensing scheduling.

Network connectivity and
communication energy
consumption are not
considered

Numerical
no
specified

None

[58] To mathematically express the en-
ergy expenditure of SDWSNs

To break down the functions involved,
namely; neighbor discovery, neighbor ad-
vertisement, network configuration and
data collection

No performance improve-
ment demonstrated MATLAB None

[59] To design an energy-efficient rout-
ing algorithm

To use a multidimensional energy space.
The network uses CHs and Layer Heads
(LHs), which have direct communication
with the controller

No performance evaluation
against architectures with-
out LHs

MATLAB None

[60] To design an multidimensional en-
ergy space algorithm

Sensor nodes are classified into different
energy-space dimensions based on their
remaining energy. Nodes with scarce en-
ergy are moved to a lower energy-space
dimension

MAC layer and TDMA
mechanism are considered
perfect

MATLAB SP, energy
aware

[61]
To design an energy-efficient rout-
ing algorithm that minimises the
overhead transmitting data

A sorted distance queue model that allows
data to be transmitted to the closest neigh-
bour

The model assumes that all
sensor nodes are one hop
away from the controller

MATLAB LEACH-
PSO

[62] To minimise the data generated at
the data plane (network traffic)

The controller manages sensor nodes
transmissions and implements a learning
function of the behaviour for each sensor
to replace data transmitted by sensors

No performance
improvement, against
other approaches, was
demonstrated

Computer-
based None

[63]
To design an energy-aware routing
protocol and a sleep management
mechanism

A clustered network managed by the con-
troller. It finds the best energy-efficient
path between any sensor pair and manages
sensors’ sleep time

No performance evaluation
against other SDWSN ap-
proaches. Control overhead
not considered

Mininet
LEACH,
SPIN, [56],
[41]

[64] To design an energy-efficient multi-
cast protocol

Leverages overhearing to deliver a multi-
cast message. To control the transmission
range of sensor nodes

No performance improve-
ment against other SDWSN
protocols

Mininet Multicast
protocols

[65] To design a dynamic routing proto-
col for SDWSNs

An optimisation problem to find the best
relay node

High computational com-
plexity. Evaluation is based
on different parameters of
the algorithm and SP

MATLAB,
NS-3 SP

[66] To reduced the energy expenditure
in localisation algorithms

To formulate a binary programming prob-
lem on the premise of energy satisfaction

No performance improve-
ment demonstrated

Numerical
no
specified

None

[67] To address overhearing in asyn-
chronous SDWSNs

Mathematically express the effects of
multi-channel operations and control the
transmitting range

No performance evaluation
against other SDWSN ap-
proaches

Numerical
no
specified

None

[68]

To develop an energy-optimised
congestion control algorithm for
Wireless Body Area Networks
(WBANs)

A routing algorithm that considers the
thermal dissipation of nodes, and selects
relay nodes considering the temperature
and energy

No SDWSN KPIs effects
were evaluated including
control overhead

MATLAB
Other
WBANs
protocols

may compromised the entire network by targeting it. Also,
securing a large WSN is a high energy intensive task which
can lead to sensor nodes deplete their energy faster. However,
SDWSN permits the controller to build a global view of
the network which help in identifying malicious devices and
activities. Table 8 details research works that aim to identify

and improve security issues SDWSNs. Cybersecurity in IoT
is surveyed in [78].

Security is a critical aspect to consider when design IoT
solutions. As seen from Table 8, security in SDWSNs has
not been received proper attention as much of the research
efforts focus on discussing security through survey papers

VOLUME 4, 2016 9

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

TABLE 8. Relevant SDWSN research works that aim to identify and improve security issues

Ref. Type Description

[69] Survey paper It provides information on the security challenges present in WSNs and SDN, which are transferable to SDWSNs. Threats
and countermeasure techniques are also presented.

[14] Survey paper
This is a survey paper on SDWSNs. However, this paper provides a security section that surveys security challenges of WSNs,
discusses security challenges brought by the introduction of SDN into WSNs, and provides information on the security threats
present in SDWSNs and their consequences.

[70] Research paper This paper performs an analysis of security issues in SDWSNs. It discusses the security issues that need to be addressed and
the already proposed solutions. They provide a summary of challenges, countermeasures actions, tools and research directions

[71] Research paper It presents a group key distribution scheme based on physical unclonable functions (PUFs) for SDWSNs. They minimised the
communication overhead and latency for securely distributing secret keys. They run their experiments using SDN-WISE [72].

[73] Research paper

They proposed ETMRM, which is an energy-efficient trust management and routing method for SDWSNs. The design goals
are to address security and energy aspects simultaneously. ETMRM handles malicious forwarding attacks including new-
flow and selective forwarding attack. Simulation results, based on the SDN-WISE project, show that ETMRM detects and
responds to forwarding attacks, and improve KPIs including control overhead, NL, and PDR.

TABLE 9. Relevant SDWSN research works that minimise the delay

Ref. Specific aim Approach Disadvantage

[74] Eliminate dependency on a single controller
and minimise the delay A multi-controller architecture CTP outperformed TinySDN when packets

are sent to the sink after setting up the flow

[75]
To study the viability of fragmented con-
troller architecture as a method for dis-
tributed controllers

A fragmentation method that uses a two-
level control structure

Higher network traffic than distributed and
centralised architectures

[76] To compare different protocols for the IoT
including SDWSN, ZigBee and 6LoWPAN

Experimentally evaluate the protocols based
on Packet Loss Rate (PLR), RTT, overhead
and throughput

SDWN outperforms ZigBee and 6LoWPAN
in terms of RTT and PLR; however, SDWSN
showed poor performance in dynamic envi-
ronments

[77] The main goal is to reduce redundant data
and minimise the latency in the IoT network

A predictive data selection module that
makes use of historical data and Mutual In-
formation (MI) as feature selector, an event
identification module, and data sensing mod-
ule with time constraints

Edge servers can increase deployment costs

rather than designing and implementing security schemes
in SDWSNs. Also, most research works discuss security
from the SDN and WSN perspectives, where some of these
concepts can be easily adapted, whereas others might be
unfeasible to apply. In WSNs, security solutions are mainly
implemented at sensor level where resources are scarce;
therefore, such protocols, which tend to be energy-hungry,
are not practical. Security aspects in SDWSNs can be ad-
dressed individually at each API. At the northbound API,
a misconfiguration can open up new channels of attacks or
execute a command that leads to abnormal behaviour of
the target application or exposed the information flowing
between the controller and the application [79]. At the south-
bound API, most WSN applications share raw environmental
data that can be easily secured centralised at the controller.
However, if sensitive data need to be secured at the data
plane level, then secure communication schemes should be
considered such as SSL/TLS, at the expense of an increase
in energy consumption. At west- and east-bound APIs, we
can find networked devices with ample resources, e.g. con-
trollers; therefore, secure communication channels can be
easily created using traditional security schemes. However,
this needs to be studied in detail. Readers interested in an
extended discussion on SDN and WSN security from the
SDWSN perspective can refer to [9], whereas SDN security
is discussed in [80].

3) Delay
This metric is of great importance in sensitive applications
such as health monitoring, target tracking, control systems
and fire hazard monitoring applications that require prompt
reactions to prevent loss of lives and valuable resources. Ta-
ble 9 compares research works that strive to reduce the delay
in SDWSNs. We can see that few papers addressed the delay
in SDWSNs directly, it is addressed indirectly in other works.
Overall, it has been demonstrated that SDN-based WSNs has
the potential of reducing the network delay in comparison
with traditional WSNs, as most of the processing has been
removed from the sensor nodes. However, it has been also
demonstrated that SDWSN works better for static or quasi-
static WSN deployments than in dynamic environments as
the increased overhead. There is a call for research efforts to
make the most of SDWSNs and take advantage of the global
view of the network to create new approaches that minimise
the delay even in dynamic environments while maintaining a
low control overhead.

4) Reliability
This metric assures that the collected data is delivered cor-
rectly to the receiver. Table 10 compares research works that
aim to improve the reliability of SDWSNs. Similar to the
network delay, the network reliability has also been addresses
indirectly in other research works. SDWSN architectures
grant centralised network monitoring to anticipate potential

10 VOLUME 4, 2016

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

TABLE 10. Relevant SDWSN research works that improves the reliability of SDWSNs

Ref. Specific aim Approach Disadvantage

[81] To address mobility management in indus-
trial WSNs

They use the Time Slotted Channel Hopping
(TSCH) protocol, which has fixed length times-
lots, where multiple pair of nodes communicate
without collisions by using different channels

Network growth implies higher delays and
scheduling complexities. Offline scheduling

[82] To minimise the traffic load
Optimisation problem that selects optimal relay
sensor nodes and minimise the transmission of
redundant packets.

No improvements demonstrated against
other SDWSN and WSN approaches

[83] To maximise the network reliability by
adopting adapting flow schemes

They formulate an integer linear programming
problem to obtain the optimal number of APs
and the flow manager implements the flow rules
at the APs

Redundant flows and increased overhead due
to wrong location predictions

TABLE 11. Relevant SDWSN research works that address control overhead

Ref. Aim Approach Disadvantage

[46] To reduce the control overhead

Aggregate packets to common destination and a
checksum function that prevents the controller
from sending configuration packets with routes
that are already known by the destination

A single communication dead link can trig-
ger a generation of a new control packet

[84] To reduce both control and data packets re-
sulting in an improved network lifetime

A threshold function whose value is automat-
ically calculated using the data collected from
the network. Nodes forward flow setup request
packets whose data value is equal to or greater
than the calculated threshold value

The threshold function can compromise the
network performance, e.g. delay of the con-
troller’s response to a change in the network

[85] To reduce the control overhead traffic in
topology discovery and packet forwarding

CHs and neighbouring nodes discover the con-
troller using its nearest CH. Sensor nodes send
data packets through CH nodes

CHs can exhaust their resources faster

[72] To reduce the control overhead
Sensor nodes are programmed as Finite State
Machines (FSMs) so they can still make deci-
sions without contacting the controller

The controller may not react to changes
promptly

[86]
To minimise the control overhead and to bal-
ance the sender waiting time and duplicate
packets when sensor nodes are in duty-cycle

MINI-FLOW southbound protocol. Control
overhead is reduced using a heuristic algorithm
that manages up-, down- and intra-links flows

Periodically flow update increases network
consumption

[87] To reduce the control overhead in SDWSN
A hybrid approach where each sensor node
runs an in-cluster routing mechanism and the
controller manages routing among clusters

The controller does not have full control of
individual sensor nodes

issues that may impact negatively the network reliability. We
can see that an increase in network reliability compromises
the performance of other key network metrics. There exist
a trade-off between network reliability and other KPIs (this
also applies to traditional WSNs) such as energy consump-
tion, control overhead, delay, etc. This has to be studied in
detail to evaluate and quantify the impact on network per-
formance when increasing network reliability. However, it is
expected that centralised architectures such as SDWSN bring
more advantages over traditional WSNs to come up with
new innovative algorithms to predict network performance
indicators to make better network decisions.

Other research has studied distributed control plane ar-
chitectures for SDWSNs [88], [89]. These works investigate
the viability of distributed hierarchical architectures for SD-
WSNs to reduce the control traffic and dependency on a
single controller.

5) Control overhead

Since control packets in SDWSNs share the same communi-
cation medium with data packets, it is of great importance to
maintain a low level of control packets to avoid negatively
impact KPIs such as residual energy of sensor nodes and the

PDR. Many research works [53], [88], [89] have indirectly
addressed this metric.

Control overhead is a key performance metric to consider
when designing SDN-based WSNs. From Table 11, we can
see that there exist multiple approaches to minimise the con-
trol overhead. They can range from architectural designs such
as cluster based architectures, intra-cluster routing and SDN
control routing, and techniques to avoid the extra control
overhead such as routes checksum, FSMs, threshold func-
tions, etc. The best technique for control overhead reduction
is closely related to the application requirements as there ex-
ist evident performance trade-offs between them. The overall
benefit that SDN brings to WSNs can be overshadowed by
the unmanageable control overhead that can be generated if
not proper design measures are put in place.

C. FULLY REPROGRAMMABLE MECHANISMS AND
EMBEDDED OPERATING SYSTEMS (EOSS)

There are other research works that considered alternative
architectures where the WSN can be fully reprogrammable,
which includes both software and hardware.

Portilla et al. [90] proposed a modular architecture for
wireless sensor nodes using a microcontroller and a Field-

VOLUME 4, 2016 11

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

Programmable Gate Array (FPGA) for the processing layer,
and Bluetooth radio for communications. The microcon-
troller manages the radio communications and the analog
and digital sensors, whereas the FPGA processes complex
operations. Natheswaran et al. [91] proposed a remote recon-
figurable wireless sensor node with a soft processor which is
a microprocessor core that can be implemented using logic
synthesis. Miyazaki et al. [92] proposed an SDWSN that uses
a role generation and delivery system in a reconfigurable
WSN. They used a combination of FPGA and MCU to
avoid overloading the MCU. The MCU handles the network
behaviour while the FPGA performs energy-intensive func-
tions. Although these works bring flexibility to reconfigure
sensor nodes, the utilisation of reprogrammable hardware
enlarges the complexity of the design and cost. Besides, en-
ergy consumption in FPGAs is an issue as discussed in [93].
However, the greatest advances in FPGAs with ultra-low
power consumption characteristics have extended their use
to WSNs [94]–[96].

In order to achieve the full promise of SDWSNs, the
wireless sensor nodes should allow top-layer applications
to reconfigure their functionalities by executing different
programs. In this way, sensor nodes can be seen as small-
scale computers with multiple sensing capabilities. However,
due to the limited resources available, sensor nodes require a
lightweight OS [8], [97]. The two EOSs that have achieved
most attention by the research SDWSN community so far are:
(i) Contiki, which is an open-source OS for IoT, designed
for resource-constrained sensor nodes [49]. In its core uses
C language and has three network stacks; RIME, Internet
Protocol version 4 (IPv4) and Internet Protocol version 6
(IPv6). Contiki-NG [98] has been presented as a new version
of the Contiki project. Contiki-NG started as a fork of the
Contiki project and preserves part of its original charac-
teristics. Contiki-NG provides an overall clean-up, updated
support for IPv6 over the TSCH mode of IEEE 802.15.4e
(6TiSCH), streamlined RPL implementation, and other fea-
tures for resource-constrained IoT devices. (ii) TinyOS is also
designed for resource-constrained sensor nodes but in its core
uses the nesC programming language [50] and supports IPv6
in its protocol stack, namely, BLIP.

There exist a number of EOSs that have not been yet used
in SDWSNs: FreeRTOS [99] is an open-source real-time
OS kernel for NESs, designed to be small and simple. The
footprint can be as low as 9KB and supports over 40 MCU
architectures. Key features include a small memory footprint,
low overhead, and very fast execution. Zephyr [100] is an
stable and open-source real-time OS for resource-constrained
embedded systems. It supports multitasking, multiple net-
work stacks, and multiple architectures. One of the net-
work function provided by Zephyr is the dual-stack that
enables simultaneously use of IPv4 and IPv6. OpenWSN
is not an operating system, but an open-source implemen-
tation of a fully standards-based protocol stack for short-
range networks, such as the IEEE802.15.4e Time-slotted
Channel Hopping standard [101]. IEE802.15.4e, along with

IoT protocols, such as 6LoWPAN, Routing Protocol for
Low-Power and Lossy Networks (RPL) and CoAP, allows
ultra-low power and highly reliable mesh networks that are
fully merged into the Internet. RIOT presented as an open-
source real-time multi-threading OS that supports a wide
range of IoT devices such as low-power sensor boards and
microcontrollers including 8-, 16- and 32-bit architectures,
that are normally used in the IoT [102]. The RIOT design
principle is to be energy-efficient and reliable that supports
real-time and small memory applications. It also provides an
API access, which is independent of the hardware. Multiple
open standard protocols have been ported to RIOT such as
the IPv6 network protocol stack that includes the IETF for
connecting constrained systems to the Internet (6LoWPAN,
IPv6, RPL, Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP)).

A brief comparison of the above mentioned operating
systems is presented in Table 12. The table shows a compar-
ison of the MCUs supported, the memory footprint, support
for RPL, UDP and TCP. Although the memory footprint is
platform-dependent, the memory values given in the table
can be used as references to perceive how low the memory
footprint can be for the specified operating system to run.
It shows that Contiki, Contiki-NG, OpenWSN, RIOT and
Zephyr are the only operating systems that provide full
support for TCP over 6LoWPAN and that FreeRTOS and
Contiki support the largest range of MCUs. TinyOS currently
supports 8- and 16-bit CPU architectures and the support
for TCP still in the experimental phase, which limits the
sensor nodes in supporting higher application protocols such
as HTTP.

D. NETWORK TOPOLOGY AND MANAGEMENT
PROPOSALS

Network management is complex and challenging in net-
works. Some functionalities include network provisioning,
configuration, and maintenance [103]. The implementation
of management tasks can lead to a steep increase in the use
of sensor resources. But, SDN was introduced to facilitate
network management.

One of the main goals of SDN is to facilitate network
management. It is envisaged that SDN architectures can help
to make smarter decisions and improve the management
of vital WSN resources. From Table 13, we can see that
implementing network management solutions implies an in-
crement in control overhead. For example, add-on systems on
top of 6LoWPAN grant a global view of network resources
but large and complex processing functions still are in the
protocol stack. Besides, 6LoWPAN are IP-enabled WSNs;
therefore, they present a large overhead in their packet for-
mats. Also, some works lack control overhead analysis and
the implication in network performance when making the
WSN manageable using SDN concepts.

12 VOLUME 4, 2016

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

TABLE 12. Comparison of operating systems for WSNs

OS Contiki Contiki-NG TinyOS FreeRTOS OpenWSN RIOT Zephyr
MSP430 MSP430 MSP430 MSP430 MSP430 MSP430 ARM

AVR Cortex-M AVR AVR Cortex-M ARM 7 x86
Cortex-M JN516x Cortex-M Cortex-M Xtensa
ARM 7 Cortex-A x86 RISC-V

8051 ARM7 AVR ARC
RL78 Cyclone V SOC ESP8266 Nios II
6502 ARM9 RISC-V POSIX/NATIVE
x86 PIC32 SPARC

NIOS II
8051
x86

Microblaze
APS3

78K0R
TMS570

RAM [KB] 10 10 10 4-8 - 1.5 8
Flash [KB] 30 ∼100 48 32-64 - 5 -
RPL X X X X X X
UDP X X X X X X X
TCP X X Experimental X X X

MCU

TABLE 13. Relevant SDWSN research works that address network topology management

Ref. Aim Approach Disadvantage

[104] A management system for IoT
Device management to control sensor nodes indi-
vidually and topology management to control rout-
ing paths

Different communication technologies IEEE
802.15.4 [35] and IEEE 802.11 [105] can
lead to an increased network design com-
plexities and energy consumption

[103] An SDN-based management solution
for WSNs Controller placements at base stations Preliminary proposal with no evidence of

improving network management

[106]
To facilitate network service adaptabil-
ity and network management in mission
critical applications

A practical implementation in NS-3 based on the
OpenFlow protocol

No evidence of network performance im-
provement achieved related to traditional
WSNs

[107] To enable network management in
6LoWPANs Network management over 6LoWPAN layer

High energy-intensive functions still reside
in the 6LoWPAN layer. Large control over-
head

[108] Network management for 6LoWPANs

To avoid altering the working principles of nodes,
SD-6LN installs SDN features in the existing net-
work infrastructure as an add-on system. SD-6LN
merges common features of the SDN and 6LoW-
PAN protocol stack to manage nodes and process
packets more efficiently

High energy-intensive functions still reside
in the 6LoWPAN layer. Large control over-
head

[109] A generic SDN-based modular manage-
ment system for WSNs

They introduced the concept of management modu-
larity using a Management Service Interface (MSI)
that eases the insertion of management units as
modules

Control overhead still an issue: fusion and
flow-rule aggregation techniques needs to be
studied in-depth

[110] A SDN-based measurement architecture
for WSNs

Practical implementation, on TinyOS, of the man-
agement of multiple measurement tasks

No evidence of network performance im-
provement achieved related to traditional
WSNs

[111]
An SDN-base management solution de-
signed for edge computing multidomain
WSNs

Dynamically provision devices, detects operational
failures and control devices over the IoT network. It
is deployed at the edge computing nodes and uses
the cloud

No control overhead analysis and improve-
ment achieved related to traditional WSNs

[112] A QoS-based technique to actively man-
age network resources in SDWSNs

It dynamically performs path computation to con-
trol network traffic. It provides flexibility to perform
resource alignment on different network tasks

No control overhead analysis and and im-
provement achieved related to traditional
WSNs

E. CONTROLLER PLACEMENT WORKS

The placement of the controller directly influences the WSN
performance. Among the most important performance met-
rics to optimise are energy consumption and NL. The SDN
controller can be placed in such a way that minimises the en-
ergy consumption of sensor nodes; however, this not always
the optimal solution to prolong the NL of the network be-

cause the solution to this optimisation problem can be found
in a low density area, resulting in an inefficient resource
management in the neighbourhood of the controller [117].
Therefore, sensor nodes that lie in the proximity of the con-
troller drain their energy first, resulting in a shorter NL. Ta-
ble 14 presents research works that aim to solve the controller
placement to improve network performance in SDWSNs.

VOLUME 4, 2016 13

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

TABLE 14. Relevant SDWSNs research works that address the controller placement problem

la
te

nc
y

re
lia

bi
lit

y

fa
ul

tt
ol

er
an

ce

sy
n.

ov
er

he
ad

[113] X X Finding the exact number of controllers required for a specific network topology using GA and GRASP algorithms.
[114] X X X Placement optimisation problem using thee Cuckoo optimisation algorithm.
[115] X X X X Optimal controller placement using the Cuckoo optimisation algorithm.
[116] X X Two approaches for optimal placement were discussed: k-means for local controllers and k-centre for global controller.

FW

Aim

Approach

As we can see, the controller placement in SDWSNs has
not been widely studied in the current state of the art; this
can be largely influenced as SDWSN is still at the proof-
of-concept stage where most of the research efforts lie in
the conceptualisation of it. Besides, the controller placement
has been extensively studied in SDN; however, it should
be studied in detail for SDWSNs as they impose different
resource requirements. A survey on controller placement in
SDN can be found in [118], [119], a study on performance
evaluation in [120].

V. MACHINE LEARNING OVERVIEW
ML is part of AI that studies computer algorithms to mimic
human learning and gradually improving its accuracy. ML is
a hot topic and a growing field that has caught tremendous
attention among IoT stakeholders. ML algorithms are trained
to perform prediction and classification tasks, uncovering
vital characteristics within the data. Typical tasks involved
in the solution of a ML problem are:

(i) Data collection: it usually requires a considerable
amount of time to complete this task. It can consist of
data acquisition tasks, data labelling and adding new
data to already existing datasets.

(ii) Data preparation: it is a key step to process raw data
and turn it into meaningful and clean data before any
training is performed (training is explained in (iv)).
Feature engineering is often used to make the collected
data better suited to the problem at hand. Tasks include
data normalisation, dealing with missing values, data
transformation, etc.

(iii) Choosing a model: this step consists of selecting the
right model for the problem. There exist multiple ML
models for different purposes. Some are introduced in
this section.

(iv) Training: training the model is the bulk task in ML.
This is an iterative task that aims to use the training
set to improve the prediction of the model at each
cycle. Supervised learning uses labelled sample data,
whereas unsupervised learning makes inferences from
unlabelled data.

(v) Testing: it evaluates the accuracy of the learned function
using test dataset. The test dataset is a slice of the dataset
and is used to evaluate the accuracy of the model.

(vi) Parameter tuning: testing multiple algorithm param-
eters (e.g., learning rate) and selecting the one that
improves the model precision.

(vii) Deployment: deploy the model and test the prediction
outcomes of unforeseen data.

The above are generic steps to follow to solve ML problems;
however, some ML techniques such as AutoML and Deep
Learning (DL) automates much of these tasks.

This section introduces the reader to the most widely
used ML techniques currently found in the state-of-art of
ML. Readers interested in thorough discussions on ML the-
ory please refer to [121]. ML techniques can be grouped
into four different groups: supervised, unsupervised, semi-
supervised and Reinforcement Learning (RL). Given their
current widespread usage, in a separate subsection, we in-
troduce Deep Learning (DL), which can be employed in
supervised, unsupervised and semi-supervised paradigms.

A. SUPERVISED LEARNING
Supervised learning uses a set of input data X and a set of
labels Y . For every sample x, a label y has been assigned,
where x ∈ X and y ∈ Y , and these can be represented
in pairs (x1, y1)...(xn, yn). The goal of supervised learning
is to learn a mapping function that matches a given input
(xn+1) to a label yi. Since the labels in the training set are
known, this set of algorithms are called supervised learning.
Supervised learning requires a huge burden when it comes
to data labelling, but there are efforts out there to reduce this
burden by relying, for instance, on weak supervision. This
set of algorithms can be further classified into regression
and classification depending on the type of output label.
Regression algorithms are used to predict continuous values
such as salary, cost, etc., whereas classification algorithms
are used to assign a class label to a given input. Below we
introduce the most popular supervised learning algorithms.

1) K-Nearest Neighbour
The K-Nearest Neighbour (k-NN) algorithm is used to solve
both classification and regression problems. The k-NN algo-
rithm calculates the distance between the query point (new
data sample) and feature vectors of the examples in the
data. The algorithm then retrieves k number of examples in
the data that are nearest to the query, where k is a given

14 VOLUME 4, 2016

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

h1 h2 hn

x1

x2

xi

w1
1,1

w1
i,j

w2
1,1

w2
j,k

wn
1,1

wn
k,l

wn+1
1,1

wn+1
l,m

y1

ym

b11

b12

b13

b1j

b21

b22

b23

b2k

bn1

bn2

bn3

bnl

bn+1
1

bn+1
m

Input layer Hidden layers Output layer

FIGURE 3. Architecture of a deep neural network. The weights between the
output of the ith neuron in the n− 1 layer and the input of j neuron in the nth
layer is represented as wn

i,j . The bias of the ith neuron in the nth layer is
represented as bni .

parameter. It then assigns the class label according to a
majority vote among the k examples, in case of classification;
or calculates the average of the k number of examples in the
data in the case of regression. One of the most common ways
to determine the nearest nodes is by calculating the Euclidean
distance between the query point and all feature vectors of the
examples in the data. The size of the training data directly
affects the performance of the k-NN algorithm.

2) Decision Tree (DT)
This is one of the most popular and powerful algorithms
for classification and prediction in supervised learning. It
creates a tree-like structure that comprises of (i) internal
nodes (no-leaf) that test input data X on specific attributes,
(ii) branches that represent an outcome of the test, and
(iii) leaf nodes that are labelled with a class, for classification
trees, or with a meaningful continuous output, for regression
trees. A DT is built upon splitting the data, establishing the
root node, into subsets. The splitting is based on classification
features. This process is then repeated on each individual
subset until the splitting no longer adds value to the predic-
tion. This process of building optimal learning trees is NP-
complete. In this type of algorithm falls the Random Forest
Tree [122] which builds multiple DTs. The output is the mean
of each individual tree for regression tasks or the most voted
label for classification tasks. In general, random forest trees
have greater prediction accuracy than single DTs.

3) Neural Networks
Neural Networks (NNs) are a type of computing system
inspired by biological learning systems, and they are the base

of deep learning algorithms.. NNs are formed by a collection
of nodes called artificial neurons that models neurons in a
biological brain. NNs learn to perform tasks by process-
ing examples of the form (x1, y1), ..., (xn, yn). The general
structure of an NN comprises three layers; input, hidden and
output layer. The input layers receives the external data. The
output layer produces the final result, and the neurons in be-
tween are the hidden layers. Each artificial neuron can relay
a signal to other neurons. Each neuron processes the received
signals and transmits them to other connected neurons. The
signal received at each neuron is a real number, and the output
is computed using non-linear functions of the sum of the
given inputs. A neural network with a single hidden layer
is conventionally called “shallow”, whereas a neural network
with multiple hidden layers, shown in Fig. 3, is called a deep
neural network. The training of NNs aims to retrieve the
values of the weights w1,1, wj,k, ..., wl,m of the connections
between neurons to best approximate a target function f(X),
where X is the input of the network. The values of the
weights are obtained by minimising the error between the
target output Y = f(X) and the prediction of the network
f̂(X). The number of training samples directly affects the
prediction accuracy. Overfitting may occur when a model
performs too well to the given training dataset, learning the
detail and noise in the input data; therefore, the model may
fail to fit unforeseen data, significantly dropping the accuracy
of predictions. Underfitting is the opposite of overfitting,
where the model fails to fit both the training dataset and
the test dataset. As an underfitted model does not perform
well in the training set, it will also have poor performance in
the test set. The training stage is finalised based on certain
termination criteria. One of the algorithms based on NNs is
Deep Learning (DL) [123] which is becoming very popular
because of its capability to learn complex relationships. DL
uses modularity to build complex network from simpler
functional units.

B. UNSUPERVISED LEARNING
In comparison with supervised learning, unsupervised learn-
ing algorithms just relies on the input data X . The input
data is presented to the algorithm without any tags or labels
(unlabelled examples). The goal of unsupervised learning is
to create a model that automatically learns from the sample
data and identify patterns (features) in order to classify
them into groups. Data points within groups share similar
characteristics (e.g., highest energy level, malicious nodes,
etc.). Unsupervised learning uses a probability distribution
P (x) given x, whereas supervised learning uses conditional
probability distribution P (x|y) given the target vector y.
Unsupervised learning is often applied to solve three main
applications: (i) clustering groups data points that share simi-
lar characteristics, (ii) outlier detection (anomaly detection)
that predicts how far a given feature vector is from the
unlabelled examples. (iii) reduced dimensionality that aims
to reduce the number of features in the input vector. Below
we introduce two of the most widely used unsupervised

VOLUME 4, 2016 15

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

learning algorithms.

1) K-means clustering
K-means algorithm classifies new data entries into different
clusters, where each data point within a cluster share similar
characteristics. K-means creates clusters by deploying k data
points, called centroids, within the feature space (X). Each
feature vector (x ∈ X) is assigned to the closest centroid. K
is a parameter given by the data scientist. K-means essentially
creates a Voronoi tessallation that partitions the feature space
into regions close to each x ∈ X . The algorithm is simple
and involves the following steps. (i) The algorithm randomly
initialises k clusters, (ii) it then assigns each x ∈ X to
the nearest cluster, (iii) centroids are moved to minimise the
distance to its x, (iv) iterate over the last two steps until it
reaches a convergence condition or until it reaches the max-
imum number of iterations. The initial random position of
centroids can lead to poor clustering, therefore, the algorithm
runs multiple times and returns the clustering with the least
total distance between x and its near cluster.

2) Principal Component Analysis (PCA)
This method is one of the most popular for data compression
and dimensionality reduction. PCA extracts the most rele-
vant features by performing a rotation of the feature space,
this rotation is presented as new orthogonal variables called
principal components of the data. The first component is
the one that has the highest variance in the data, and the
consecutive component will take the orthogonal direction
to the previous component. Components with the least data
variance can be discarded as they provide the least significant
information. Therefore, PCA is key for preprocessing data
for ML applications to turn a highly dimensional data into
intelligent, actionable information.

Overall, supervised learning uses labelled data to train the
model. Labelling the data may be a complex and time-
consuming task as it requires human intervention, special
instrumentation, experiments, etc. It also requires more com-
puting resources for training, especially for large datasets.
Whereas unsupervised learning learns the data, classifies and
make inferences of it without any labels (unlabelled data is
easy to collect). It is less complex than supervised learning as
it is not required to fully understand the data. It is very useful
in finding patterns. But, it has less accuracy than supervised
learning.

C. SEMI-SUPERVISED LEARNING
Semi-supervised learning is a ML technique that is built-
upon a synergy between supervised and unsupervised learn-
ing. In its feature space, semi-supervised learning uses a
small set of labelled data (x1, ..., xn ∈ X) along with a large
set of unlabelled data (xn+1, ..., xn+u ∈ X). The used of la-
belled and unlabelled data can significantly improve learning
accuracy. It is often found that the collection of labelled data
is a costly task as it requires skilled human intervention. It

can lead to large and fully training sets infeasible. In contrast,
the collection of unlabelled data is relatively inexpensive.
In such applications, the use of semi-supervised learning
is a good choice. Semi-supervised learning strategies focus
on extending either supervised or unsupervised learning by
using information known by the other learning paradigm. It
can be used in two main settings:

1) Semi-supervised classification: this can be seen as an
extension of the supervised classification problem that
assumes there are much less labelled data than unla-
belled data. The main goal is to train a model from
both data types (labelled and unlabelled) such that the
resulting accuracy is much better than the supervised
model trained on the labelled data only.

2) Constrained clustering: this can be seen as an extension
of unsupervised clustering. It uses some supervised
information about the clusters as well as unlabelled
data. The main goal is to form better clusters than the
clustering obtained using unlabelled data only.

There exist other semi-supervised learning settings such
as regression, dimensionality reduction, etc. [124]. Overall,
semi-supervised learning may achieve the same or better
performance than supervised learning but using less amount
of labelled data leading to a reduction in costs, and better
clustering than other clustering algorithms that rely on unla-
belled data only. But, semi-supervised learning may increase
computational resources as it process more data and it re-
quires more memory. In addition, the outcome accuracy may
deteriorate with the use of unlabelled data as the use of more
data does not necessary means that the algorithm will per-
form better. More detailed information on semi-supervised
learning can be found in [124].

D. REINFORCEMENT LEARNING (RL)
In contrast with supervised and unsupervised learning, RL
uses Intelligent Agents (IAs) to take actions in the envi-
ronment so it can maximise the notion of the accumulative
reward. Also, it does not need labelled examples as in super-
vised learning. RL uses the trial and error approach, where
decisions are made sequential (one after the other). RL is
typically modeled as a Markov Decision Process (MDP),
where the set of environment and agent states is defined as
S, the set of actions taken by the IA is defined as A, the
probability of transition from state s to state s′ under action
a is defined as Pa(s, s

′), and the immediate reward after the
previous transition is defined as Ra(s, s

′). The main goal of
RL is to learn an optimised policy that maximises the reward
function [125].

E. DEEP LEARNING (DL)
DL can be seen as an extension of NNs. In general, a NN
with an input layer, multiple hidden layers with non-linear
activation functions and an output layer is considered a DL
network. Here, the use of non-linear activation functions is
key as it allows the network to solve complex non-liner prob-
lems. As in NNs, each layer in DL contains units (neurons).

16 VOLUME 4, 2016

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

1
Flow tables Algorithms ML module

APP 1 APP 2 ML module
2

Control plane

Application plane

Northbound API

Southbound API

Data plane

ML Module

Data
preparation/
Processing

Data collection

Database

Training

ML model

Testing Tuning

Deployment

SDWSN

FIGURE 4. A simple representation of an ML-SDWSN architecture with (1) the ML module embedded in the control plane and (2) the ML module embedded in the
application plane.

They can have multiple inputs and make weight associations
that are updated based on the error and learning rules. DL
architectures that have been applied to WSN applications
include Convolutional Neural Networks (CNN) [126], Re-
current Neural Networks (RNNs) [127], and Autoencoder
(AE) [128].

VI. MACHINE LEARNING SOFTWARE-DEFINED
WIRELESS SENSOR NETWORK (ML-SDWSN)
A typical ML-SDWSN architecture comprises of the three
SDN planes and a machine learning module. The ML module
works as an add-on system that can be easily installed within
the SDWSN architecture as shown in Fig. 4. It can be found
in two distinct locations: at the control plane (1) or the
application plane (2). The location of the ML module within
the SDWSN architecture is upon the network designer, user-
and application-specific requirements, and available network
resources. Installing the ML module at the control plane,
which can be built upon multiple controllers, will require
the layer to supply all the resources needed for the correct
functioning of the network such as enough CPU power to
cope with the ML processing needs and memory require-
ments. The module relies entirely on a single plane; there-
fore, minimising system failure and network latency as it
removes eventual communication outages at upper layers and
reducing communication bottlenecks. Whereas, installing the
ML module at the application plane frees computing re-
sources at the control plane. It also permits to compute
of high processing-intensive functions in a remote location
with higher processing resources, therefore, reducing the
processing delay. However, the network outage at the upper
layers can limit the ML-SDWSN system to act immediately
to changes in the data plane; therefore, impacting negatively
the network performance.

This section provides relevant research efforts in theo-
retical works and strategies of adopting ML techniques in
the context of SDWSNs. The nature of the SDWSN cen-
tralised architecture opens up new research opportunities to
experiment with ML techniques embedded in the SDWSN
architecture to improve the overall WSN performance. Here,
we first group research works based on the specific network
problem they address. At the end of this section, we discuss
and compare the surveyed ML-SDWSN approaches. Readers
interested in ML techniques applied to SDN please refer
to [129].

A. MOBILITY

Technological advances and the introduction of the IoT
have enabled new emerging mobile IoT applications such as
monitoring and tracking systems for a variety of everyday
human activities including sports, health care and entertain-
ment [130]. Current routing protocols of choice for IoT
have not been designed for such applications. Researchers
have lately used ML techniques to tackle mobility in WSNs
through SDN.

Theodorou et al. [131] proposed SD-MIoT, which is an
SDN-based solution for mobile IoT applications. SD-MIoT
aims to reduce the control overhead by detecting the mo-
bility behaviour of sensor nodes. The mobility detector uses
network adjacency matrices built upon collected sensor data
at the controller. Given a simple mobility scenario as shown
in Fig 5, the mobility detector build a connected graph
G = (N,E) whereN is the set of sensor nodes andE the set
of communication links between sensor nodes. It then builds
the adjacent matrix At, at time t, of G. Where each element

VOLUME 4, 2016 17

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

1

2 3

4 4 4 4

𝑽

1

2 3

4 4 4 4

𝑽

t=1 t=2

FIGURE 5. Mobility detector scenario [131].

of At(i,j) is defined as:

At(i,j) =

{
1 ∀i, j if node i and j are connected
0 otherwise

(1)

To detect connectivity changes, a square transition matrix is
calculated at two subsequent adjacent matrices as follows:

Tt = ||At −At−1||
...

Tt−(k−2) = ||At−(k−2) −At−(k−1)||

(2)

The transition matrix will contain rows, which represents
sensor nodes, with connectivity changes. If all elements of
a particular row have a zero value indicates that there are
no changes for that row (node); therefore, it is assumed
that the sensor node is a fixed node. When multiple con-
nectivity changes are detected in a row (sensor node), it is
assumed to be a mobile node. When a single connectivity
change is detected, the mobility status of the sensor cannot
be defined; however, a simple moving average is tuned to
find the best window to allow early connectivity detection
while minimising the number of false positives. Then, the
mobility detector applies the k-means cluster algorithm to
separate static nodes from mobile nodes. The routing pro-
tocol proactively and constantly deploys forwarding rules to
mobile nodes, therefore, reducing the control overhead. The
decision module based on ML is placed in the application
plane of the SDWSN architecture.

SDN-(UAV)ISE is introduced in [132] for WSNs with data
mules. The network architecture, shown in Fig. 6, comprises
a data plane based on low power sensor nodes, a cellular
network base station to enable communication with the UAV
and the control plane that host the ML module. The drone,
which acts as a mobile node, serves as a relay node to the
SDN controller. The ‘set cover problem’ is used to find
the optimal position to reduce the number of destination to
visit, thus, minimising energy consumption and time. A DT

Data plane

Control plane

Cellular network

IEEE 802.15.4

UAV

ML module

FIGURE 6. An ML-SDWSN architecture with an Unmanned aerial vehicle
(UAV).

algorithm is used to predict the medium-long term mobility
of the drone. The training dataset is constantly update using
the collected data of sensor nodes. The forecasted movements
of the drone permit to forecast of the topology changes, so
the flow table is created beforehand to reach the drone, thus,
reducing the number of control packets generated. SDN-
(UAV)ISE reduces the control overhead specially when the
topology changes.

Roy et al. [133] proposed a Reinforcement Learning (RL)
based adaptive topology control approach. This approach
is used in a WSN with mobile nodes to improve network
latency, PDR and energy efficiency. It is then demonstrated
that RL presents poor overall QoS when mobility is erratic.
They then discuss the use of supervised learning algorithms
(e.g. Recurrent Neural Network (RNN)) to identify nodes
with low periodicity to mitigate their impacts on QoS.

B. SECURITY
The broadcast nature of WSNs imposes unique challenges.
Traditional security solutions cannot be applied directly. Sen-
sor nodes are resource-constrained devices, while most of the
traditional techniques require processing-intensive functions.
Sensor nodes are also deployed in harsh environments, mak-
ing them susceptible to physical attacks, and finally, sensor
nodes often interact closely with the physical environment
and people, creating new security issues [134]. A simple rep-
resentation of an ML-SDWSN architecture with watermark
enabled is depicted in Fig. 7. SDN-based approaches open up
new opportunities to solve the above-mentioned challenges in
WSNs.

Miranda et al. [135] proposed a collaborative security
framework for SDWSNs. It includes an Intrusion Detection
System (IDS) in the data plane and an anomaly detection
solution near the data plane. A smart monitoring system
along with an Support Vector Machine (SVM) algorithm
is used to improve anomaly detection and mitigation by
isolating malicious nodes. At the data plane, CHs generate
and embed watermark to data and the sink node runs a
watermark detection algorithm to ensure the accuracy of

18 VOLUME 4, 2016

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

Cluster head

Relay node
Watermark

Sink Watermark extraction

SDWSN controller ML module

Wireless sensor node

FIGURE 7. A simple representation of an ML-SDWSN architecture with watermark enabled.

recurrent authentications while implementing data integrity
inspections. Kgogo et al. [136] also proposed an IDS using
ML to identify which ML algorithm performs better in the
detection of threats and attacks. The algorithms tested were
DT, SVM, and logistic regression. Results demonstrated that
the SVM model is the most effective in detecting both
normal and anomaly instances, followed by DT. However,
DT is the most efficient and effective in detecting net-
work intrusion in real-time, so the SDWSN can react to
any intrusion instantaneously. Chen et al. [137] presented
a ML-based DDoS attack detection system. They deployed
various wireless sensor nodes in eight poles to collect the
data. They extracted the features based on the execution of
multiple DDoS attacks including ICMP flood, SYN flood,
and UDP flood, with different periods and duration times.
Results show that DT achieved over 97% in accuracy. Zhao
et al. [138] proposed a trusted link-separation method for
SDWSNs in adversarial environments. They consider both
routing efficiency and security. They use a Bayesian-based
model to evaluate sensor nodes’ trustworthiness based on
their communication interactions. They formulate a multi-
objective optimisation problem for the trusted link-separation
multipath. The optimisation problem is solved using greedy
algorithm.

C. ENERGY EFFICIENCY

This metric has been previously introduced in Section IV-B1.
Here, we group research works that use ML techniques to
improve energy efficiency in SDWSNs.

Huang et al. [139] proposed an SDWSN prototype to im-
prove energy efficiency in environmental monitoring appli-
cations. They use RL to perform value-redundancy filtering
and load-balancing routing that can adapt to environmental
variations and network status, improving energy efficiency
and adaptability of WSNs for environmental monitoring ap-
plications.

Banerjee et al. [140] proposed an RL approach to control
the transmission range of SDWSNs with moving nodes.

Sensor nodes have multiple transmission power levels, and
to decide the optimum power level an Epsilon(ε)-greedy
algorithm is used. This RL approach gains knowledge from
velocities of successors and link quality metrics such as
Received Signal Strength Indicator (RSSI), packet reception
rate, and attenuation.

To prolong the NL of the SDWSN, an RL approach that
trains the SDN controller to optimise the routing paths is
proposed in [141]. The controller gets the rewards in terms
of estimated path lifetime loss. The RL uses four reward
functions aimed to extend the NL and reduce energy con-
sumption. Results show a NL improvement of 23%-30% as
compared to RL-based WSN.

Abdolmaleki et al. [142] proposed a Fuzzy topology dis-
covery protocol for SDWSNs. They implemented a fuzzy
logic based SDN controller to improve network performance.
The fuzzy logic controller considers the neighbours, traffic,
workload level, and remaining energy of each sensor node
to choose the best forwarding node. Results show that the
proposed approach extended the NL by 45% and the PLR by
50%.

A reduced energy consumption and control overhead can
be achieved by using a model that predict the energy con-
sumption of each sensor node. Rahimifar et al. [143] pro-
posed a Markov-based model to predict future energy con-
sumption of sensor nodes. The controller predicts individual
energy consumption of sensor nodes; thus, sensor nodes
avoid reporting energy levels to the controller.

D. RELIABILITY

In order to minimise power outage, which are due to per-
sistent fault and over utilisation of distribution transform-
ers (DTs), of electrical distribution systems, a remote IoT
monitoring and fault prediction system is proposed in [144].
Their approach is a low-cost implementation of a distributed
controller architecture with wireless sensor nodes attached
to transformers. The LoRa sensor nodes are equipped with
a temperature, oil level, humming noise, and overloading

VOLUME 4, 2016 19

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

sensor. They act as a health tracker of the transformers.
The prediction system uses an NN algorithm, which runs
on the management plane for prediction on real-time sensor
traffic, to improve the smart-grid reliability, transformers
health check, and maintenance practises. This is a practical
implementation of SDN-based WSNs, and the use of ML to
improve the overall system performance.

Leveraging the global view of the controller, monitoring
the network infrastructure allows employing suitable traffic
engineering techniques to improve network performance. An
SDN-based IoT architecture is presented in [145] to perform
time granular analysis of network traffic for efficient network
management. They used different supervised learning algo-
rithms including DT, SVM, and k-NN to examine the net-
work traffic. Results showed an overall accuracy rate of over
90%, but k-NN achieved 98% accuracy. Other research work
that addresses network traffic by means of non-supervised
DL but from the wireless medium perspective, in general, can
be found in [151].

With the advent of Internet technologies, new applications
have emerged. Each application impose different bandwidth
requirements. It is of great importance to have network
resources balanced to comply with strict QoS requirements.
The research work presented in [146] aims to minimise
the number of unsatisfied user equipment while maximising
the throughput of the network by means of load balancing.
They used an NN, which was improved using the fruit fly
optimisation (FOA) algorithm, to solve this problem.

Since the network infrastructure should dynamically adapt
to the user requirements, there should be a decision-making
stage that chooses the routing protocol that meets the user-
specific requirements. Misra et al. [147] proposed a situation-
aware protocol switching for SDWSNs. They designed an
adaptive controller that deploys the appropriate routing pro-
tocol based on the network conditions and application-
specific requirements. The decision-making stage is based on
a supervised learning algorithm, which trains the SDN con-
troller, therefore, it can dynamically switch among routing
protocols, as per user-specific requirements.

As the location of SDWSN controllers is key to enhance
the network performance, it is of paramount importance to
find the best location that satisfies the user requirements. ML
has been recently being used to solve the multi-controller
placement problem in SDWSNs. In [148] an energy-aware
multi-controller placement solution using a PSO for min-
imising energy consumption is presented. Moreover, a Deep
Reinforcement Learning (DRL) algorithm resource allocation
strategy is conceived to reduce the waiting time of tasks.

Researchers have realised that cognitive radio technology
can be effectively used along with SDN abstractions to en-
hance the utilisation of spectrum resources. In [149] a sus-
tainable SDWSN architecture with cognitive radio technol-
ogy for efficient power management, channel handoffs and
spectrum utilisation is proposed. The proposed work has an
RL algorithm for efficient spectrum utilisation. The network
performance is improved by introducing new capabilities

such as dynamically adaptation to spectrum and interference
conditions. Orfanidis et al. [150] also intended to refine the
robustness of the network by identifying multiple sources
of interference altering the network. They planned to use
a supervised statistical ML approach. A multivariate linear
regression algorithm was planned to use which runs in the
SDN controller. A testbed with multiple sources of inter-
ference, such as Bluetooth [35] and WiFi [105] networks,
was proposed. The feature vector for the statistical model
proposed includes PDR, energy consumption, interference,
RSSI, end-to-end delay, and noise.

E. DISCUSSION
ML-SDWSN is a new paradigm that has emerged due to
(i) the increasing popularity and demonstrated capability of
SDWSNs to enhance network performance, (ii) the ML po-
tential to further improve network performance of SDWSNs,
and (iii) the ML potential to overcome the concerns raised
when introducing SDN concepts in WSNs. From Table 15,
we can observe that ML-SDWSNs are still in an early devel-
opment stage. However, a notable exploration has been al-
ready achieved. ML techniques has been applied to a range of
network issues. To highlight, ML has been shown great abil-
ity to reduce the amount of control overhead (packets) flow-
ing in the network. Given the global view, granted through
the SDWSN architecture, ML provides accurate predictions,
so the controller can act promptly to changes in the network,
reconfiguring proactively network resources, thus, reducing
the control overhead and energy consumption. Security, the
collected data e.g. network statistics, raw data, etc., give
the ML the necessary data to make precise predictions and
decisions in identifying network pitfalls, intrusions, etc., and
mitigate their impact promptly. Energy is one of the most
popular metric to consider in low power sensor networks, ML
has been used to balance the overall energy consumption to
prolong the NL. ML shows good performance in predicting
sensor nodes remaining energy, relay nodes, transmission
range; therefore, minimising the control overhead and en-
ergy consumption. The logically centralised architecture of
SDWSN and the power of ML in predicting network traffic,
selecting the best routing protocol, and spectrum utilisation
make ML-SDWSN a good candidate for enhancing WSN
reliability.

Overall, ML-SDWSN is built upon a multidisciplinary
area that puts together the best of communication networks,
software-defined networking and machine learning concepts
to go beyond the current state-of-art knowledge in SDWSNs
to facilitate WSN programmability without putting at risk
the network performance. However, there still is room to
explore ML techniques in SDWSNs, but, most importantly to
evaluate the benefits that ML brings to SDWSN, especially,
against traditional WSN.

VII. SUMMARY OF SDWSN PROPOSALS
In this section, we provide simple statistics of previously
discussed SDWSN proposals. This will allow us to uncover

20 VOLUME 4, 2016

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

TABLE 15. Comparison of relevant ML-SDWSN approaches

Ref. Aim ML technique Improvement Main drawback

[131] Mobility K-means to categorise static
and mobile nodes

Reduced control overhead and improved PDR by
proactively deploying flow rules to sensor nodes Mobility false positives

[132] Mobility &
reliability

DT to predict mobility of the
drone

Reduced control overhead and energy consumption
and improved PDR

Additional complexities involved in
the operation of the drone

[133] Periodic mo-
bility

RL for periodic mobility &
nearest centroid Lower network latency Considerable learning time for move-

ments of high periodicity

[135] Security SVM for anomaly detection
and mitigation

Improves anomaly detection rate, lower computa-
tional complexity, and reduces false alarms

An increase in packet sizes and com-
putational resources at sensor nodes

[136] Security
(IDS)

DT, SVM, & logistic regres-
sion

Evaluation of ML algorithms that perform better in
detecting threats and attacks. Real-time detection Detection rate relatively low

[137] Security
(DDoS)

DT to identify different types
of DDoS attacks

A ML-SDWSN system that detects and mitigates
three types of attacks with high accuracy

A relative high packet overhead due
to the use of IP-enabled network

[138] Security
(trust)

Bayesian approach to compute
nodes’ reputation

Improved routing security and efficiency of trans-
mission paths Problem complexity

[139] Energy
RL for value-redundancy filter-
ing and balancing the routing
path

Improved energy Scalability issues

[140] Energy (Tx
range)

RL for transmission range con-
trol

Improved energy consumption, delay and through-
put

Network reliability due to the adap-
tive transmission range

[141] Energy (NL) RL for extended NL Extended NL A relative high packet overhead due
to the use of IP-enabled network

[142] Energy Fuzzy logic to choose the best
relay node Extended NL and reduced PLR Relatively high control overhead due

to sensor reporting

[143]
Energy
& control
overhead

Markov model to predict the
energy consumption of sensor
nodes

Reduced control overhead Higher processing energy and mem-
ory use in sensor nodes

[144] Reliability NN that predicts network traf-
fic

Improved reliability for DTs by handling future
interruption and faults

Locating the SDN controller in sen-
sor nodes can lead to exhaust its re-
sources faster

[145] Network
traffic

DT, SVM and K-NN to inspect
network traffic Timely decisions based on the ML predictions Tasks were not reprogrammed at the

sensor level

[146] Throughput
NN to minimise unsatisfied
user equipment and maximise
the throughput

Resources balanced to improve the QoS It lacks experimental validation

[147] Dynamic/real-
time routing

Multiple supervised learning
algorithms

Improves network performance by selecting the best
candidate for routing protocol given the current
network status

A drop in PDR performance due to
retransmitted packets in the switching
phase

[148]
Multi-
controller
placement

RL (DRL), and PSO Reduced waiting tasks and energy consumption for
controllers It lacks experimental validation

[149] Spectrum RL for spectrum utilisation Eliminates channel handoffs, which are energy-
intensive tasks, by predicting users traffic

Static CHs can exhaust their re-
sources faster

[150] Interference Multivariate linear regression
An improvement in network reliability by taking
prompt actions when identifying sources of inter-
ference

It lacks practical details regarding
physical implementation and perfor-
mance metrics.

research open issues and future trends in SDWSNs.

A. SUMMARY
Fig. 8a shows the percentage of research works for each
category. This let us discover where most of the research ef-
forts in SDWSN has focused. Most of the proposed research
works leverage SDN concepts to reduce energy consumption
and management complexities currently found in WSNs. In
contrast, the least number of research works focused on
making the sensors fully reprogrammable.

The most popular embedded operating system used in
SDWSN is Contiki as shown in Fig. 8b. Research works
that have not used any type of operating system are largely
influenced by research works that aim to reduce energy
consumption in SDWSNs in which most of them used a
numerical tool such as MATLAB.

It is of great importance to identify the most used perfor-

mance metrics as they also help to pinpoint where most of the
research effort resides. Similar to WSNs, the most popular
performance metric to improve is energy consumption as
shown in Fig. 8c. The control overhead, which is among
the most important metrics, is considered in the 11% of the
surveyed works. Packet delivery metrics such as PDR and
PLR are considered in the 8% of the proposals.

Fig. 8d shows the percentage of number of research works
that have used any type of evaluation. Even though most
of the research efforts aim to reduce energy consumption,
which largely influences numerical evaluation methods, in
SDWSNs, the most popular network simulator is Cooja,
which is the Contiki network simulator. Mininet and NS-
3 that offer add-on modules (e.g., WiFi, OpenFlow, etc.)
to reduce the time to design a simulation environment was
used in 6% and 4% of the surveyed works, respectively. 10%
of the research works did not have any form of simulation

VOLUME 4, 2016 21

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

Energy
33%

Network topology
and management

14%Security
11%

Reliability
10%

Delay
8%

General
Framework

7%

Control overhead
7%

Controller placement
6%

Fully reprogrammable
4%

(a) Percentage of research works per category.

None
74%

Contiki
19%

TinyOS
3%

Linux-based
4%

(b) Most popular embedded operating systems.

0 5 10 15 20

Memory

Latency

Jitter

RTT

Throughput

PLR

PDR

Overhead

NL

Delay

Energy

% research works
(c) Most popular performance metrics.

0 5 10 15 20

Java

Computer-based

NS-2

NS-3

Numerical

Mininet

Unknown

None

MATLAB

Testbed

Cooja

% research works
(d) Most popular type of evaluation platforms.

nor experimental evaluation. Overall, 41% of the surveyed
works were evaluated using simulations tools, 22% through
testbeds, 21% employing numerical approaches. The remain-
ing 16% of the works did not use any evaluation method or it
is unknown.

B. POPULARITY OF SDWSN AND VENUES OF
PUBLICATION

The first research works that start exploring the use of SDN
concepts in the WSN architecture appeared around 2012.
Then, a number of research works start appearing to extend
the use of SDWSNs to a vast variety of IoT applications.
However, exponential growth is perceived from 2017. This
agrees with the number of research works on ML techniques
in SDWSNs that started to emerge. In 2019 and 2020+, the
growth continued exponentially. This is influenced by the
number of research works that have used previous works,

which have their code freely available, to devise new so-
lutions to improve network performance. This exponential
growth shows that the research community sees SDWSNs as
a potential pathway to overcome the management complexity
currently found in the current state-of-art WSNs.

The publication venues of scientific publications reporting
on SDWSNs is shown in Fig. 8. As can be seen from the
figure, the most popular dissemination method, by far, is
journals, followed by conference proceedings. Workshops
and forums are the least popular dissemination methods. The
journal publications are widespread across different venues.
However, looking at specific journals venues, not shown
here due to space constraints, the most popular journals
are IEEE Internet of Things Journal with 9 publications,
followed by IEEE Systems Journal with 6 publications and
Sensors (MDPI), IEEE Sensors Journal and Journal of Am-
bient Intelligence and Humanized Computing (JAIHC) with

22 VOLUME 4, 2016

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

80

26

8
2 1

0

10

20

30

40

50

60

70

80

90

Journal Conference Symposium Workshop Forum

N
o.

 o
f p

ub
lic

at
io

ns

FIGURE 8. Publication venues of scientific articles reporting on SDWSNs.

5 publications.

VIII. MAJOR CHALLENGES
SDWSNs is a relative new and continuous evolving research
area. Previous sections provided a comprehensive review and
discussions of SDWSN and ML-SDWSN research works.
The objective of this section is to group and discuss open
issues currently found in state-of-art SDWSNs.

A. STANDARDISATION

SDWSNs have to deal with the exponential growth of wire-
less sensor devices, a vast variety of manufacturers, and
protocols. The creation of standards for such rapidly evolving
technology, with various group of stakeholders, is not an easy
task [152]. Some SDWSN papers share similar architectural
designs and protocols, while others have their own new
architectures and protocols. The standardisation of SDWSN
should be seen as a holistic architecture that covers all layers
involved in the model. The exponential growth of scientific
articles calls for an urgent standardisation. Otherwise, this
will result in incompatible architectures, and protocols that
will go against the SDN principles [9]. Therefore, affecting
the rate at which new SDWSN proposals are emerging.

B. CONTROL OVERHEAD

One major concern of adopting SDN principles in WSNs
is the control overhead. SDN was originally designed for
wired networks where control packets flow through a dedi-
cated control channel. In contrast, SDWSNs share the same
communication medium for both control packets and data
packets. Even though control overhead has been indirectly
addressed in many research works (see Fig. 8c), papers that
specifically focus on reducing the control overhead is still
low as shown in Fig. 8a. Minimising the number of control
packets is of a great deal to avoid impacting the network
performance negatively.

Research works have applied multiple techniques to re-
duce the control overhead as shown in Table 11. Research
works that synergy all those techniques simultaneously with
ML techniques can lead to a significant improvement in
control overhead. For example, the use of ML techniques
to tackle mobility in WSNs can greatly reduce the control
overhead by proactively and constantly setting the path for
packets generated by mobile nodes. This reduces the amount
of packet-in messages, which are flow setup request sent
by sensor nodes to the controller to seek instructions on
how to handle an incoming packet that is not present in its
forwarding table.

1) Neighbour advertisement and network configuration
SDWSNs have two main functions that generate control
packets [58]. (i) Neighbour advertisement (NA) which is
a key function in the initial phase of the SDWSNs setup.
Sensor nodes use NA messages to advertise their current and
neighbour status. The SDN controller builds a global view of
the network using NA messages. Sensor nodes also use NA
message to keep the controller updated on any change in the
network. The frequency of NA messages directly affects the
network performance. Frequent NA messages immediately
warn the controller about any change in the network (e.g.,
dead node, interference, battery depletion, etc.) but at the
cost of increased control overhead and energy consumption,
while infrequent NA messages reduce the impact on network
performance, the controller would not be able to react imme-
diately to changes in the network. (ii) Network Configuration
(NC) is used by the controller to manage and control the
overall behaviour of the network. Literature review reveals
that NC packets are mainly used to dynamically program
forwarding tables of sensor nodes. Overall, there still are
research gaps to reduce control overhead in SDWSNs. What
should be the optimal frequency of NA messages without
affecting the network performance, also how to deliver NC
messages effectively and at the right timing while minimising
the impacts on network performance.

C. SECURITY
Along with the control overhead, security is one of the
main concerns in SDWSNs. Security in WSNs, in general,
is one of the research areas that have caught most of the
researchers’ attention. WSNs impose unique challenges due
to the dynamic behaviour of communication links. Moreover,
sensors nodes have limited resources that restrain the use
of traditional security solutions. However, the centralised
architecture of SDN brings advantages when devising new
countermeasure solutions for security threats. The global
view of the network at the controller facilitates constantly
and proactively detecting changes in the network. Also, the
centralised network information calls for the use of ML-
based solutions. Security in SDWSN is still in its initial stage
as shown in this survey. But, it makes sense to use ML algo-
rithms in SDWSNs due to the centralised architecture. The
centralised architecture offloads the power-intensive compu-

VOLUME 4, 2016 23

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

tational tasks from the network infrastructure, then security
applications can be easily implemented at the controller. The
advantages and disadvantages of centralised or distributed
security solutions based on ML need to be studied in detail.
Centralised architectures have an overall view of the net-
work facilitating the detection of abnormal behaviours but
at the expenses of more network information. In contrast,
in distributed architectures sensor nodes can also perform
some amount of processing to run lightweight ML solutions,
which minimises the control overhead, but it may increase
the energy consumption due to the processing.

D. CONTROLLER PLACEMENT
The location of the controller in the network directly affects
the network performance. Controller placement has been
widely studied in SDN [118], whereas controller placement
in SDWSNs still in its infancy stage. Although SDWSN is
inspired by SDN, the communication medium differs. There-
fore, the optimal placement of the SDWSN controller can
be based on previous research works on SDN, however, the
placement has to be subject to specific characteristics of the
transmission medium, in this case, wireless. The controller
placement is also tightly related to scalability problems in
SDWSNs.

E. EMBEDDED OPERATING SYSTEM (EOS)
Fig. 8d reveals that most of the research works, in this survey,
did not adopt any type of EOS. In fact, there still are a
number of EOSs that have not been yet used in SDWSNs. For
instance, there is not evidence of any SDWSN solution that
have used a Real Time Operating System (RTOS). An RTOS
works on strict processing time requirements. This can serve
for SDWSN applications that require some level of reliability.
In general, the use of EOSs aligns with SDN principles. It
brings flexibility when adding new applications to sensors’
programs. The use of EOSs makes sensor nodes to be seen
as small-scale computers with multiple sensing capabilities,
and they are also supported in a variety of sensor platforms,
shrinking the interoperability breach.

F. SCALABILITY
This is another big concern in centralised architectures such
as SDN. It is known that the management overhead increases
as the network increases. Several techniques have been pro-
posed to address scalability issues in SDWSNs. Among the
most widely used techniques is the use of multiple con-
trollers. The control plane may include physically distributed
controllers. The location of the controllers directly affects
the network performance, as discussed in Section IV-E. The
network management load can be balanced across multiple
controllers. Each controller oversees a specific zone of the
network topology. However, one concern that rises up is
to find the optimal number of controllers required before
affecting network performance. Also, how to cope with the
dynamic nature of WSNs. The use of static controllers can
directly affect the NL.

G. MACHINE LEARNING (ML)
The 25% of the research works surveyed here adopted ML
techniques in their proposals. The first ML-SDWSN articles
started appearing in 2015; however, ML-based works took off
in 2018. The year with the most numbers of publications in
ML-SDWSN was 2020+ with 9 publications. This increasing
popularity shows that ML has been seen as an attractive
solution to improve network performance on SDWSNs. The
adoption of ML in SDWSNs has shown good performance
in reducing control overhead, prolonging NL, and intrusion
detection. However, there still areas to explore and ML
techniques to use. For example, the dynamic nature of WSNs
unfolds new opportunities to envision ML techniques that
automatically continuous learning including AutoML and
transfer learning. The use of an online AutoML structure
will allow the system to continuously adapt to new situations
while reducing the need for a long training phase on a big
dataset that might not even be available. Transfer learning
will permit learning from simulation or controlled environ-
ments and deploy them in real-world applications, which
might improve the learning rate, accuracy or the need for
less training data. DL could be useful in unveiling which
kind of features or parameters are actually more relevant to
the specific user application. Besides, the use of multiple
architectures such as centralised or distributed ML tech-
niques should be studied in depth. The time complexity of
algorithms should be also considered, especially for real-
time applications with strict time constraints and resource-
constrained IoT devices.

H. TESTBEDS FOR SDWSNS
SDWSNs have different network topologies. Some topolo-
gies have the controller embedded in one of the sensor nodes.
This imposes strict hardware requirements such as sensor
nodes with enough resources to run centralised protocols,
store network information and with access to main pow-
ers. Other topologies require multiple embedded controllers;
therefore, the network infrastructure must provide multiple
sensor nodes with large resources. In contrast, SDWSN
topologies with the controller connected directly to the sink
node (e.g. via serial interface, USB) requires fewer resources
from sensor nodes but requires a higher computing machine
connected to the sensor node such as a PC, Raspberry Pi,
etc. Therefore, a testbed for SDWSNs needs to account for
different network topologies, provide an accurate and high
dynamic range for power measurements, CPU resources,
multiple sensor platforms and EOSs, and debug tools includ-
ing packet sniffer.

IX. CONCLUSION
The SDWSN paradigm is built upon the synergies research
efforts between SDN and WSNs. SDWSN has been en-
visioned to solve the management complexities currently
found in the current state-of-art WSNs. Overall, SDWSN
will help industrial and research organisations accelerate the
designing, building, and testing of emerging IoT applica-

24 VOLUME 4, 2016

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

tions, by simplifying the introduction of new abstractions,
removing the management complexities, and costs. This pa-
per presented a comprehensive review of SDWSN research
works and ML techniques to perform network management
and reconfiguration, and policy enforcement. Additionally,
we also provided helpful information and insights to stake-
holders interested in state-of-art SDWSNs, ML techniques,
testbeds and open issues. This survey has unveiled that al-
though the introduction of SDN abstractions into WSNs is
a relatively new topic, notable exploration has already been
achieved. The surveyed scientific articles have demonstrated
that SDWSN is an effective solution for improving network
performance and management, which would not have been
possible with traditional WSN architectures. Despite these
major achievements, there are several open issues such as
standardisation, control overhead, scalability and security
that need to be addressed adequately to reach the real promise
of a fully reprogrammable network for IoT applications. This
survey also reveals that the use of ML algorithms over the
SDWSN is becoming popular and shows good performance
in tackling the major issues in SDWSN. According to the
surveyed articles and statistics performed, we believe that the
synergy between ML and SDWSNs can shape networking
decisions smarter and robust, and that ML will play a major
role in the creation of new applications and protocols for
SDWSNs.

REFERENCES
[1] F. Wortmann and K. Flüchter, “Internet of Things,” Business & Informa-

tion Systems Engineering, vol. 57, no. 3, pp. 221–224, 2015.
[2] F. Computing, “The Internet of Things: Extend the cloud to where the

things are,” Cisco Syst., San Jose, CA, USA, Report, 2016.
[3] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-

molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[4] Y. Jarraya, T. Madi, and M. Debbabi, “A survey and a layered taxonomy
of software-defined networking,” IEEE communications surveys and
tutorials, vol. 16, no. 4, pp. 1955–1980, 2014.

[5] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network
and openflow: From concept to implementation,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 4, pp. 2181–2206, 2014.

[6] I. T. Haque and N. Abu-Ghazaleh, “Wireless software defined net-
working: A survey and taxonomy,” IEEE Communications Surveys and
Tutorials, vol. 18, no. 4, pp. 2713–2737, 2016.

[7] K. Sood, S. Yu, and Y. Xiang, “Software-defined wireless networking
opportunities and challenges for Internet-of-Things: A review,” IEEE
Internet of Things Journal, vol. 3, no. 4, pp. 453–463, 2015.

[8] M. Ndiaye, G. P. Hancke, and A. M. Abu-Mahfouz, “Software defined
networking for improved wireless sensor network management: A sur-
vey,” Sensors, vol. 17, no. 5:1031, pp. 1–32, 2017.

[9] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “A survey on
software-defined wireless sensor networks: Challenges and design re-
quirements,” IEEE Access, vol. 5, pp. 1872–1899, 2017.

[10] S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined networking for
Internet of Things: A survey,” IEEE Internet of Things Journal, vol. 4,
no. 6, pp. 1994–2008, 2017.

[11] O. G. Matlou and A. M. Abu-Mahfouz, “Utilising artificial intelligence in
software defined wireless sensor network,” in IECON 2017-43rd Annual
Conference of the IEEE Industrial Electronics Society. IEEE, 2017,
Conference Proceedings, pp. 6131–6136.

[12] H. Luo, K. Wu, R. Ruby, Y. Liang, Z. Guo, and L. M. Ni, “Software-
defined architectures and technologies for underwater wireless sensor
networks: A survey,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 4, pp. 2855–2888, 2018.

[13] K. M. Modieginyane, B. B. Letswamotse, R. Malekian, and A. M.
Abu-Mahfouz, “Software defined wireless sensor networks application
opportunities for efficient network management: A survey,” Computers
& Electrical Engineering, vol. 66, pp. 274–287, 2018.

[14] H. Mostafaei and M. Menth, “Software-defined wireless sensor networks:
A survey,” Journal of Network and Computer Applications, vol. 119, pp.
42–56, 2018.

[15] M. Abujubbeh, F. Al-Turjman, and M. Fahrioglu, “Software-defined
wireless sensor networks in smart grids: An overview,” Sustainable Cities
and Society, vol. 51, p. 101754, 2019.

[16] S. M. W. Umba, A. M. Abu-Mahfouz, T. Ramotsoela, and G. P. Hancke,
“A review of artificial intelligence based intrusion detection for software-
defined wireless sensor networks,” in 2019 IEEE 28th International
Symposium on Industrial Electronics (ISIE). IEEE, 2019, Conference
Proceedings, pp. 1277–1282.

[17] W. Dargie and C. Poellabauer, Fundamentals of wireless sensor net-
works: theory and practice. John Wiley & Sons, 2010.

[18] K. Sohraby, D. Minoli, and T. Znati, Wireless sensor networks: technol-
ogy, protocols, and applications. John wiley & sons, 2007.

[19] L. B. Ruiz, J. M. Nogueira, and A. A. Loureiro, “Manna: A management
architecture for wireless sensor networks,” IEEE communications Maga-
zine, vol. 41, no. 2, pp. 116–125, 2003.

[20] F. Karray, M. W. Jmal, A. Garcia-Ortiz, M. Abid, and A. M. Obeid,
“A comprehensive survey on wireless sensor node hardware platforms,”
Computer Networks, vol. 144, pp. 89–110, 2018.

[21] N. Ickes, F. Lee, and P. Phanaphat, “Hardware architecture for a power-
aware microsensor node.”

[22] J. Beutel, O. Kasten, and M. Ringwald, “BTnodes–a distributed platform
for sensor nodes,” in Proceedings of the 1st international conference on
Embedded networked sensor systems, 2003, Conference Proceedings, pp.
292–293.

[23] M. Healy, T. Newe, and E. Lewis, “Wireless sensor node hardware: A re-
view,” in SENSORS, 2008 IEEE. IEEE, 2008, Conference Proceedings,
pp. 621–624.

[24] T. Datasheet, “Crossbow inc,” 2013.
[25] A. Systems, “Wismote.” [Online]. Available:

http://www.aragosystems.com/produits/wisnet/wismote/
[26] WiSense, “System overview,” 2020. [Online]. Available:

https://wisense.in/
[27] T. Instruments, “CC2541DK-SENSOR Development kit,” 2013.

[Online]. Available: https://www.ti.com/tool/CC2541DK-SENSOR
[28] ——, “CC2538 powerful wireless microcontroller system-on-chip for

2.4-GHz IEEE 802.15. 4, 6LoWPAN, and Zigbee applications,” CC2538
datasheet (April 2015), 2015.

[29] X. Vilajosana, P. Tuset, T. Watteyne, and K. Pister, “OpenMote: Open-
source prototyping platform for the industrial IoT,” in International Con-
ference on Ad Hoc Networks. Springer, 2015, Conference Proceedings,
pp. 211–222.

[30] Zolertia, “Re-mote.” [Online]. Available: https://zolertia.io/product/re-
mote/

[31] T. Instruments, “CC1350STK Development kit,” 2017. [Online].
Available: https://www.ti.com/tool/CC1350STK

[32] ——, “LPSTK-CC1352R Evaluation board,” 2019. [Online]. Available:
https://www.ti.com/tool/LPSTK-CC1352R

[33] M. A. Alwadi, “Energy efficient wireless sensor networks based on
machine learning,” Thesis, 2015.

[34] G. M. Bragg, “Standards-based Internet of Things sub-GHz environmen-
tal sensor networks,” Thesis, 2017.

[35] IEEE, “Wireless medium access control (MAC) and physical layer (PHY)
specifications for wireless personal area networks (WPAN),” 2004.

[36] Z. Specification, “ZigBee alliance IEEE standard 802.15.4k2013,”
2014. [Online]. Available: https://www.zigbee.org/zigbee-for-
developers/network-specifications/

[37] V. C. Gungor and G. P. Hancke, “Industrial wireless sensor networks:
Challenges, design principles, and technical approaches,” IEEE Transac-
tions on industrial electronics, vol. 56, no. 10, pp. 4258–4265, 2009.

[38] M. Ehrlich, L. Wisniewski, and J. Jasperneite, State of the art and future
applications of industrial wireless sensor networks. Springer, 2018, pp.
28–39.

[39] I. L. W. Group, “IPv6 over low power WPAN (6LoWPAN).” [Online].
Available: https://datatracker.ietf.org/wg/6lowpan/charter/

[40] L. Militano, M. Erdelj, A. Molinaro, N. Mitton, and A. Iera, “Recharging
versus replacing sensor nodes using mobile robots for network mainte-
nance,” Telecommunication Systems, vol. 63, no. 4, pp. 625–642, 2016.

VOLUME 4, 2016 25

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

[41] W. Xiang, N. Wang, and Y. Zhou, “An energy-efficient routing algorithm
for software-defined wireless sensor networks,” IEEE Sensors Journal,
vol. 16, no. 20, pp. 7393–7400, 2016.

[42] J. Beuchert, F. Solowjow, S. Trimpe, and T. Seel, “Overcoming band-
width limitations in wireless sensor networks by exploitation of cyclic
signal patterns: An event-triggered learning approach,” Sensors, vol. 20,
no. 1, p. 260, 2020.

[43] H.-L. Shi, K. M. Hou, H.-Y. Zhou, and X. Liu, “Energy efficient and
fault tolerant multicore wireless sensor network: E²MWSN,” in 2011 7th
International Conference on Wireless Communications, Networking and
Mobile Computing. IEEE, 2011, Conference Proceedings, pp. 1–4.

[44] W. Xu, J. Zhang, J. Y. Kim, W. Huang, S. S. Kanhere, S. K. Jha, and
W. Hu, “The design, implementation, and deployment of a smart lighting
system for smart buildings,” IEEE Internet of Things Journal, vol. 6,
no. 4, pp. 7266–7281, 2019.

[45] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[46] F. F. Jurado-Lasso, K. Clarke, A. N. Cadavid, and A. Nirmalathas,
“Energy-aware routing for software-defined multihop wireless sensor
networks,” IEEE Sensors Journal, vol. 21, no. 8, pp. 10 174–10 182,
2021.

[47] T. Luo, H.-P. Tan, and T. Q. Quek, “Sensor OpenFlow: Enabling
software-defined wireless sensor networks,” IEEE Communications let-
ters, vol. 16, no. 11, pp. 1896–1899, 2012.

[48] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, “Software de-
fined wireless networks: Unbridling SDNs,” in 2012 European Workshop
on Software Defined Networking. IEEE, 2012, Conference Proceedings,
pp. 1–6.

[49] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and flex-
ible operating system for tiny networked sensors,” in Local Computer
Networks, 2004. 29th Annual IEEE International Conference on. IEEE,
2004, Conference Proceedings, pp. 455–462.

[50] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, and E. Brewer, “TinyOS: An operating system
for sensor networks,” Ambient intelligence, vol. 35, pp. 115–148, 2005.

[51] R. Alves, D. Oliveira, G. A. Núñez, and C. B. Margi, “IT-SDN: Improved
architecture for SDWSN,” in XXXV Brazilian Symposium on Computer
Networks and Distributed Systems, 2017, Conference Proceedings.

[52] B. T. de Oliveira and C. B. Margi, “TinySDN: enabling TinyOS
to software-defined wireless sensor networks,” in XXXIV Simpósio
Brasileiro de Redes de Computadores. Bahia, 2016, Conference Proceed-
ings, pp. 1229–1237.

[53] F. Olivier, G. Carlos, and N. Florent, “SDN based architecture for
clustered WSN,” in 2015 9th International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing. IEEE, 2015,
Conference Proceedings, pp. 342–347.

[54] T. Theodorou and L. Mamatas, “CORAL-SDN: A software-defined net-
working solution for the Internet of Things,” in 2017 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-
SDN). IEEE, 2017, Conference Proceedings, pp. 1–2.

[55] i. iLab.t, “Wireless testlab and officelab,” 2021. [Online]. Available:
https://doc.ilabt.imec.be/ilabt/wilab/index.html

[56] W. Ejaz, M. Naeem, M. Basharat, A. Anpalagan, and S. Kandeepan,
“Efficient wireless power transfer in software-defined wireless sensor
networks,” IEEE Sensors Journal, vol. 16, no. 20, pp. 7409–7420, 2016.

[57] D. Zeng, P. Li, S. Guo, T. Miyazaki, J. Hu, and Y. Xiang, “Energy
minimization in multi-task software-defined sensor networks,” IEEE
transactions on computers, vol. 64, no. 11, pp. 3128–3139, 2015.

[58] F. F. Jurado-Lasso, K. Clarke, and A. Nirmalathas, “Performance analysis
of software-defined multihop wireless sensor networks,” IEEE Systems
Journal, vol. 14, no. 4, pp. 4653–4662, 2019.

[59] R. Tumuluri, A. Kovi, and B. K. R. Alluri, “An energy-efficient algorithm
using layer heads for software-defined wireless sensor networks,” in
2018 International Conference on Recent Trends in Advance Computing
(ICRTAC). IEEE, 2018, Conference Proceedings, pp. 103–108.

[60] L. Wenxing, W. Muqing, and W. Yuewei, “Energy-efficient algorithm
based on multi-dimensional energy space for software-defined wireless
sensor networks,” in 2016 International Symposium on Wireless Commu-
nication Systems (ISWCS). IEEE, 2016, Conference Proceedings, pp.
309–314.

[61] F. Junli, W. Yawen, and S. Haibin, “An improved energy-efficient routing
algorithm in software defined wireless sensor network,” in 2017 IEEE

International Conference on Signal Processing, Communications and
Computing (ICSPCC). IEEE, 2017, Conference Proceedings, pp. 1–5.

[62] H. Bo, W. Muqing, Z. Min, and L. Wenxing, “An energy aware
routing algorithm for software defined wireless sensor networks,” in
2017 IEEE/CIC International Conference on Communications in China
(ICCC). IEEE, 2017, Conference Proceedings, pp. 1–6.

[63] A. Banerjee and D. Hussain, “SD-EAR: Energy aware routing in software
defined wireless sensor networks,” Applied Sciences, vol. 8, no. 7, p.
1013, 2018.

[64] A. Banerjee and A. Sufian, “Smart-Green-Mult (SGM): overhear from
topological kingpins in software defined wireless sensor networks,” Jour-
nal of Ambient Intelligence and Humanized Computing, pp. 1–18, 2020.

[65] Z. Ding, L. Shen, H. Chen, F. Yan, and N. Ansari, “Energy-efficient relay-
selection-based dynamic routing algorithm for IoT-oriented Software-
Defined WSNs,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 9050–
9065, 2020.

[66] Y. Zhu, Y. Zhang, W. Xia, and L. Shen, “A software-defined network
based node selection algorithm in WSN localization,” in 2016 IEEE
83rd Vehicular Technology Conference (VTC Spring). IEEE, 2016,
Conference Proceedings, pp. 1–5.

[67] A. Pal and A. Jolfaei, “On the lifetime of asynchronous software-defined
wireless sensor networks,” IEEE Internet of Things Journal, vol. 7, no. 7,
pp. 6069–6077, 2020.

[68] O. Ahmed, F. Ren, A. Hawbani, and Y. Al-Sharabi, “Energy optimized
congestion control-based temperature aware routing algorithm for soft-
ware defined wireless body area networks,” IEEE Access, vol. 8, pp.
41 085–41 099, 2020.

[69] T. Kgogo, B. Isong, and A. M. Abu-Mahfouz, “Software defined wireless
sensor networks security challenges,” in AFRICON, 2017 IEEE. IEEE,
2017, Conference Proceedings, pp. 1508–1513.

[70] M. Manuel, B. Isong, M. Esiefarienrhe, and A. M. Abu-Mahfouz, “Anal-
ysis of notable security issues in SDWSN,” in IECON 2018-44th Annual
Conference of the IEEE Industrial Electronics Society. IEEE, 2018,
Conference Proceedings, pp. 4706–4711.

[71] M. Huang, B. Yu, and S. Li, “PUF-assisted group key distribution scheme
for software-defined wireless sensor networks,” IEEE Communications
Letters, vol. 22, no. 2, pp. 404–407, 2017.

[72] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution for
WIreless SEnsor networks,” in Computer Communications (INFOCOM),
2015 IEEE Conference on. IEEE, 2015, Conference Proceedings, pp.
513–521.

[73] R. Wang, Z. Zhang, Z. Zhang, and Z. Jia, “ETMRM: an energy-efficient
trust management and routing mechanism for SDWSNs,” Computer
Networks, vol. 139, pp. 119–135, 2018.

[74] B. T. De Oliveira, L. B. Gabriel, and C. B. Margi, “TinySDN: Enabling
multiple controllers for software-defined wireless sensor networks,”
IEEE Latin America Transactions, vol. 13, no. 11, pp. 3690–3696, 2015.

[75] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “Fragmentation-
based distributed control system for software-defined wireless sensor
networks,” IEEE transactions on industrial informatics, vol. 15, no. 2,
pp. 901–910, 2018.

[76] C. Buratti, A. Stajkic, G. Gardasevic, S. Milardo, M. D. Abrignani,
S. Mijovic, G. Morabito, and R. Verdone, “Testing protocols for the
Internet of Things on the EuWIn platform,” IEEE Internet of Things
Journal, vol. 3, no. 1, pp. 124–133, 2016.

[77] X. Li, Z. Ma, J. Zheng, Y. Liu, L. Zhu, and N. Zhou, “An effective edge-
assisted data collection approach for critical events in the SDWSN-based
agricultural Internet of Things,” Electronics, vol. 9, no. 6, p. 907, 2020.

[78] Y. Lu and L. Da Xu, “Internet of Things (IoT) cybersecurity research:
A review of current research topics,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 2103–2115, 2018.

[79] J. C. C. Chica, J. C. Imbachi, and J. F. B. Vega, “Security in SDN: A
comprehensive survey,” Journal of Network and Computer Applications,
vol. 159, p. 102595, 2020.

[80] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti, “A sur-
vey on the security of stateful SDN data planes,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 3, pp. 1701–1725, 2017.

[81] L. L. Bello, A. Lombardo, S. Milardo, G. Patti, and M. Reno, “Ex-
perimental assessments and analysis of an SDN framework to integrate
mobility management in industrial wireless sensor networks,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5586–5595,
2020.

26 VOLUME 4, 2016

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

[82] G. Li, S. Guo, Y. Yang, and Y. Yang, “Traffic load minimization in
software defined wireless sensor networks,” IEEE Internet of Things
Journal, vol. 5, no. 3, pp. 1370–1378, 2018.

[83] S. Bera, S. Misra, and M. S. Obaidat, “Mobi-flow: Mobility-aware
adaptive flow-rule placement in software-defined access network,” IEEE
Transactions on Mobile Computing, vol. 18, no. 8, pp. 1831–1842, 2018.

[84] S. S. G. Shiny and K. Murugan, “TSDN-WISE: Automatic threshold
based low control-flow communication protocol for SDWSN,” IEEE
Sensors Journal, 2021.

[85] S. A. Asakipaam, J. J. Kponyo, J. O. Agyemang, and F. Appiah-Twum,
“Design of a minimal overhead control traffic topology discovery and
data forwarding protocol for software-defined wireless sensor networks,”
International Journal of Communication Networks and Information Se-
curity, vol. 12, no. 3, pp. 450–458, 2020.

[86] A. Hawbani, X. Wang, L. Zhao, A. Al-Dubai, G. Min, and O. Busaileh,
“Novel architecture and heuristic algorithms for software-defined wire-
less sensor networks,” IEEE/ACM Transactions on Networking, vol. 28,
no. 6, pp. 2809–2822, 2020.

[87] Q. Liu, L. Cheng, R. Alves, T. Ozcelebi, F. Kuipers, G. Xu, J. Lukkien,
and S. Chen, “Cluster-based flow control in hybrid software-defined
wireless sensor networks,” Computer Networks, vol. 187, p. 107788,
2021.

[88] H. I. Kobo, G. P. Hancke, and A. M. Abu-Mahfouz, “Towards a dis-
tributed control system for software defined wireless sensor networks,” in
IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics
Society. IEEE, 2017, Conference Proceedings, pp. 6125–6130.

[89] H. Yao, C. Qiu, C. Zhao, and L. Shi, “A multicontroller load balancing
approach in software-defined wireless networks,” International Journal
of Distributed Sensor Networks, vol. 11, no. 10, p. 454159, 2015.

[90] J. Portilla, A. De Castro, E. De La Torre, and T. Riesgo, “A modular
architecture for nodes in wireless sensor networks,” J. UCS, vol. 12, no. 3,
pp. 328–339, 2006.

[91] S. Natheswaran and G. Athisha, “Remote reconfigurable wireless sensor
node design for wireless sensor network,” in Communications and Signal
Processing (ICCSP), 2014 International Conference on. IEEE, 2014,
Conference Proceedings, pp. 649–652.

[92] T. Miyazaki, S. Yamaguchi, K. Kobayashi, J. Kitamichi, S. Guo,
T. Tsukahara, and T. Hayashi, “A software defined wireless sensor
network,” in 2014 International Conference on Computing, Networking
and Communications (ICNC). IEEE, 2014, Conference Proceedings,
pp. 847–852.

[93] K. Goh, S. Ong, Y. Joe, P. Kusolpalin, W. Moh, and K. V. Ling, “FPGA
based wireless sensor node for distributed process monitoring,” in Indus-
trial Electronics and Applications (ICIEA), 2012 7th IEEE Conference
on. IEEE, 2012, Conference Proceedings, pp. 1934–1939.

[94] H. Qi, O. Ayorinde, and B. H. Calhoun, “An ultra-low-power FPGA for
IoT applications,” in 2017 IEEE SOI-3D-Subthreshold Microelectronics
Technology Unified Conference (S3S). IEEE, 2017, Conference Pro-
ceedings, pp. 1–3.

[95] A. Razzaq, S. R. Sani, and A. G. Ye, “Designing efficient FPGA tiles
for power-constrained ultra-low-power applications,” Integration, vol. 78,
pp. 124–134, 2021.

[96] R. Chéour, S. Khriji, D. El Houssaini, M. Baklouti, M. Abid, and
O. Kanoun, “Recent trends of FPGA used for low-power wireless sensor
network,” IEEE Aerospace and Electronic Systems Magazine, vol. 34,
no. 10, pp. 28–38, 2019.

[97] D. Zeng, T. Miyazaki, S. Guo, T. Tsukahara, J. Kitamichi, and T. Hayashi,
“Evolution of software-defined sensor networks,” in Mobile Ad-hoc and
Sensor Networks (MSN), 2013 IEEE Ninth International Conference on.
IEEE, 2013, Conference Proceedings, pp. 410–413.

[98] S. Duquennoy, “Contiki-NG: The OS for next generation IoT devices,”
2019. [Online]. Available: https://github.com/contiki-ng/contiki-ng

[99] R. Barry, “Freertos,” Internet, Oct, 2008. [Online]. Available:
https://www.freertos.org/RTOS.html

[100] T. L. F. Projects, “Zephyr project,” 2021. [Online]. Available:
https://www.zephyrproject.org/

[101] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, and K. Pister, “OpenWSN: a standards-based low-power
wireless development environment,” Transactions on Emerging Telecom-
munications Technologies, vol. 23, no. 5, pp. 480–493, 2012.

[102] E. Baccelli, C. Gündoğan, O. Hahm, P. Kietzmann, M. S. Lenders,
H. Petersen, K. Schleiser, T. C. Schmidt, and M. Wählisch, “RIOT: an
open source operating system for low-end embedded devices in the IoT,”
IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4428–4440, 2018.

[103] A. De Gante, M. Aslan, and A. Matrawy, “Smart wireless sensor network
management based on software-defined networking,” in Communications
(QBSC), 2014 27th Biennial Symposium on. IEEE, 2014, Conference
Proceedings, pp. 71–75.

[104] S. Bera, S. Misra, S. K. Roy, and M. S. Obaidat, “Soft-WSN: Software-
defined WSN management system for IoT applications,” IEEE Systems
Journal, 2016.

[105] IEEE, “Wireless LAN medium access control (MAC) and physical layer
(PHY) specifications,” 2012.

[106] K. M. Modieginyane, R. Malekian, and B. B. Letswamotse, “Flexible
network management and application service adaptability in software
defined wireless sensor networks,” Journal of Ambient Intelligence and
Humanized Computing, vol. 10, no. 4, pp. 1621–1630, 2019.

[107] F. F. J. Lasso, K. Clarke, and A. Nirmalathas, “A software-defined net-
working framework for IoT based on 6LoWPAN,” in Wireless Telecom-
munications Symposium (WTS), 2018. IEEE, 2018, Conference Pro-
ceedings, pp. 1–7.

[108] R. K. Das, A. K. Maji, and G. Saha, “SD-6LN: Improved existing IoT
framework by incorporating SDN approach,” in International Conference
on Innovative Computing and Communications. Springer, 2021, Con-
ference Proceedings, pp. 599–606.

[109] M. Ndiaye, A. M. Abu-Mahfouz, and G. P. Hancke, “SDNMM a generic
SDN-based modular management system for wireless sensor networks,”
IEEE Systems Journal, vol. 14, no. 2, pp. 2347–2357, 2019.

[110] C. Cao, L. Luo, Y. Gao, W. Dong, and C. Chen, “TinySDM: software
defined measurement in wireless sensor networks,” in Proceedings of
the 15th International Conference on Information Processing in Sensor
Networks. IEEE Press, 2016, Conference Proceedings, p. 18.

[111] A. Mavromatis, C. Colman-Meixner, A. P. Silva, X. Vasilakos, R. Neja-
bati, and D. Simeonidou, “A software-defined IoT device management
framework for edge and cloud computing,” IEEE Internet of Things
Journal, vol. 7, no. 3, pp. 1718–1735, 2019.

[112] B. B. Letswamotse, R. Malekian, and K. M. Modieginyane, “Adaptable
QoS provisioning for efficient traffic-to-resource control in software
defined wireless sensor networks,” Journal of Ambient Intelligence and
Humanized Computing, vol. 11, no. 6, pp. 2397–2405, 2020.

[113] N. Samarji and M. Salamah, “A fault tolerance metaheuristic-based
scheme for controller placement problem in wireless software-defined
networks,” International Journal of Communication Systems, vol. 34,
no. 4, p. e4624, 2021.

[114] S. Tahmasebi, M. Safi, S. Zolfi, M. R. Maghsoudi, H. R. Faragardi,
and H. Fotouhi, “Cuckoo-pc: An evolutionary synchronization-aware
placement of SDN controllers for optimizing the network performance
in WSNs,” Sensors, vol. 20, no. 11, p. 3231, 2020.

[115] S. Tahmasebi, N. Rasouli, A. H. Kashefi, E. Rezabeyk, and H. R.
Faragardi, “Syncop: An evolutionary multi-objective placement of SDN
controllers for optimizing cost and network performance in WSNs,”
Computer Networks, vol. 185, p. 107727, 2021.

[116] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “Efficient controller
placement and reelection mechanism in distributed control system for
software defined wireless sensor networks,” Transactions on Emerging
Telecommunications Technologies, vol. 30, no. 6, p. e3588, 2019.

[117] F. Chen and R. Li, “Single sink node placement strategy in wireless sen-
sor networks,” in 2011 International Conference on Electric Information
and Control Engineering. IEEE, 2011, Conference Proceedings, pp.
1700–1703.

[118] T. Das, V. Sridharan, and M. Gurusamy, “A survey on controller place-
ment in SDN,” IEEE Communications Surveys & Tutorials, vol. 22, no. 1,
pp. 472–503, 2019.

[119] G. Ramya and R. Manoharan, “Enhanced optimal placements of multi-
controllers in SDN,” Journal of Ambient Intelligence and Humanized
Computing, pp. 1–18, 2020.

[120] L. Zhu, M. M. Karim, K. Sharif, C. Xu, F. Li, X. Du, and M. Guizani,
“SDN controllers: A comprehensive analysis and performance evaluation
study,” ACM Computing Surveys (CSUR), vol. 53, no. 6, pp. 1–40, 2020.

[121] S. R. Kulkarni, G. Lugosi, and S. S. Venkatesh, “Learning pattern
classification-a survey,” IEEE Transactions on Information Theory,
vol. 44, no. 6, pp. 2178–2206, 1998.

[122] M. Pal, “Random forest classifier for remote sensing classification,”
International journal of remote sensing, vol. 26, no. 1, pp. 217–222,
2005.

[123] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

VOLUME 4, 2016 27

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

[124] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,”
Synthesis lectures on artificial intelligence and machine learning, vol. 3,
no. 1, pp. 1–130, 2009.

[125] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[126] S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury, “Deep learning
convolutional neural networks for radio identification,” IEEE Communi-
cations Magazine, vol. 56, no. 9, pp. 146–152, 2018.

[127] A. I. Moustapha and R. R. Selmic, “Wireless sensor network modeling
using modified recurrent neural networks: Application to fault detection,”
IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 5,
pp. 981–988, 2008.

[128] Z. E. Khatab, A. Hajihoseini, and S. A. Ghorashi, “A fingerprint method
for indoor localization using autoencoder based deep extreme learning
machine,” IEEE sensors letters, vol. 2, no. 1, pp. 1–4, 2017.

[129] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, “A survey
of machine learning techniques applied to software defined networking
(SDN): Research issues and challenges,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 1, pp. 393–430, 2018.

[130] E. Borgia, “The Internet of Things vision: Key features, applications and
open issues,” Computer Communications, vol. 54, pp. 1–31, 2014.

[131] T. Theodorou and L. Mamatas, “SD-MIoT: A software-defined network-
ing solution for mobile Internet of Things,” IEEE Internet of Things
Journal, 2020.

[132] J. Mertens, G. Milotta, P. Nagaradjane, and G. Morabito, “SDN-(UAV)
ISE: Applying software defined networking to wireless sensor networks
with data mules,” in 2020 IEEE 21st International Symposium on A World
of Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE, 2020,
Conference Proceedings, pp. 323–328.

[133] S. Roy, R. Dutta, N. Ghosh, and P. Ghosh, “Leveraging periodicity to
improve quality of service in mobile software defined wireless sensor
networks,” in 2021 IEEE 18th Annual Consumer Communications &
Networking Conference (CCNC). IEEE, 2021, Conference Proceedings,
pp. 1–2.

[134] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless sensor
networks,” Communications of the ACM, vol. 47, no. 6, pp. 53–57, 2004.

[135] C. Miranda, G. Kaddoum, E. Bou-Harb, S. Garg, and K. Kaur, “A
collaborative security framework for software-defined wireless sensor
networks,” IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 2602–2615, 2020.

[136] A. T. Kgogo, “Intrusion detection system in software defined wireless
sensor networks,” Thesis, 2019.

[137] Y.-W. Chen, J.-P. Sheu, Y.-C. Kuo, and N. Van Cuong, “Design and
implementation of IoT DDoS attacks detection system based on machine
learning,” in 2020 European Conference on Networks and Communica-
tions (EuCNC). IEEE, 2020, Conference Proceedings, pp. 122–127.

[138] P. Zhao, W. Zhao, Q. Liu, and A. Wang, “Trusted link-separation
multipath selection for software-defined wireless sensor networks in
adversarial environments,” in International Conference on Security and
Privacy in Digital Economy. Springer, 2020, Conference Proceedings,
pp. 19–32.

[139] R. Huang, X. Chu, J. Zhang, and Y. H. Hu, “Energy-efficient monitoring
in software defined wireless sensor networks using reinforcement learn-
ing: A prototype,” International Journal of Distributed Sensor Networks,
vol. 11, no. 10, p. 360428, 2015.

[140] A. Banerjee and A. Sufian, “Reinforcement learning based transmis-
sion range control (RL-TRC) in SD-WSN with moving sensors,” arXiv
preprint arXiv:2005.08215, 2020.

[141] M. U. Younus, M. K. Khan, M. R. Anjum, S. Afridi, Z. A. Arain,
and A. A. Jamali, “Optimizing the lifetime of software defined wireless
sensor network via reinforcement learning,” IEEE Access, 2020.

[142] N. Abdolmaleki, M. Ahmadi, H. T. Malazi, and S. Milardo, “Fuzzy
topology discovery protocol for SDN-based wireless sensor networks,”
Simulation Modelling Practice and Theory, vol. 79, pp. 54–68, 2017.

[143] A. Rahimifar, Y. S. Kavian, H. Kaabi, and M. Soroosh, “Predicting
the energy consumption in software defined wireless sensor networks:
a probabilistic Markov model approach,” Journal of Ambient Intelligence
and Humanized Computing, pp. 1–14, 2020.

[144] A. K. Al Mhdawi and H. S. Al-Raweshidy, “A smart optimization of
fault diagnosis in electrical grid using distributed software-defined IoT
system,” IEEE Systems Journal, vol. 14, no. 2, pp. 2780–2790, 2019.

[145] R. Kumar, U. Venkanna, and V. Tiwari, “A time granular analysis of
software defined wireless mesh based IoT (SDWM-IoT) network traffic

using supervised learning,” Wireless Personal Communications, vol. 116,
no. 3, pp. 2083–2109, 2021.

[146] X. Zeng, Q. Luo, J. Zheng, and G. Chen, “An efficient neural network
optimized by fruit fly optimization algorithm for user equipment associa-
tion in software-defined wireless sensor network,” International Journal
of Network Management, vol. 30, no. 6, p. e2135, 2020.

[147] S. Misra, S. Bera, M. Achuthananda, S. K. Pal, and M. S. Obaidat,
“Situation-aware protocol switching in software-defined wireless sensor
network systems,” IEEE Systems Journal, vol. 12, no. 3, pp. 2353–2360,
2018.

[148] F. Li, X. Xu, H. Yao, J. Wang, C. Jiang, and S. Guo, “Multi-controller
resource management for software-defined wireless networks,” IEEE
Communications Letters, vol. 23, no. 3, pp. 506–509, 2019.

[149] I. Kakalou and K. E. Psannis, “Sustainable and efficient data collection
in cognitive radio sensor networks,” IEEE Transactions on Sustainable
Computing, vol. 4, no. 1, pp. 29–38, 2018.

[150] C. Orfanidis, “Ph. D. forum abstract: Increasing robustness in WSN using
software defined network architecture,” in Information Processing in
Sensor Networks (IPSN), 2016 15th ACM/IEEE International Conference
on. IEEE, 2016, Conference Proceedings, pp. 1–2.

[151] B. Mao, F. Tang, Z. M. Fadlullah, N. Kato, O. Akashi, T. Inoue,
and K. Mizutani, “A novel non-supervised deep-learning-based network
traffic control method for software defined wireless networks,” IEEE
Wireless Communications, vol. 25, no. 4, pp. 74–81, 2018.

[152] M. Stoyanova, Y. Nikoloudakis, S. Panagiotakis, E. Pallis, and E. K.
Markakis, “A survey on the internet of things (IoT) forensics: challenges,
approaches, and open issues,” IEEE Communications Surveys & Tutori-
als, vol. 22, no. 2, pp. 1191–1221, 2020.

F. FERNANDO JURADO-LASSO (GS’18-M’21) received the Ph.D. de-
gree in Engineering and the M.Eng. degree in Telecommunications Engi-
neering both from The University of Melbourne, Melbourne, VIC, Australia,
in 2020 and 2015, respectively; a B.Eng. degree in Electronics Engineering
in 2012 from the Universidad del Valle, Cali, Colombia. He is currently
a postdoc at the Embedded Systems Engineering (ESE) section of the
Department of Applied Mathematics and Computer Science of the Technical
University of Denmark (DTU Compute).

His research interests include networked embedded systems, software-
defined wireless sensor networks, machine learning, protocols and applica-
tions for the Internet of Things.

LETIZIA MARCHEGIANI (M’15) received a PhD degree in Computer
Engineering from Sapienza - University of Rome (Italy) in 2012; she also
holds an MSc degree in Computer Engineering and a BSc in Computer
Engineering from the same university. From 2014 to 2018, she was a
researcher at the University of Oxford (UK), where she was a member of
the Oxford Robotics Institute (ORI). Previously, she was associated with
the INSPIRE (Investigating Speech Processing In Realistic Environments)
ITN as a Marie Curie Postdoctoral Research Fellow (2012-2013). Since
2019 he is an Assistant Professor in Robotics with the Automation and
Control section of the Department of Electronic Systems of the Aalborg
University (Denmark). Her research interests primarily lie in the areas
of signal processing, machine learning, and their application to robotics,
autonomous systems, cognitive modelling, intelligent transportation, and
digital healthcare.

J. F. JURADO received the Doctorate and MSc degree in Physics both from
Universidad del Valle, Cali, Colombia, in 2000 and 1986, respectively; he
also holds a BSc degree in Physics from the Universidad de Nariño, Pasto,
Colombia in 1984.

28 VOLUME 4, 2016

Jurado-Lasso et al.: A survey on SDWSNs: Current status, ML approaches and major challenges

He is currently a Professor with the Faculty of Engineering and Adminis-
tration of the Department of Basic Science of The Universidad Nacional de
Colombia Sede Palmira, Colombia. His research interests include nanomate-
rials, magnetic and ionic materials, nanoelectronics, embedded systems and
the Internet of Things. He is a senior member of Minciencias in Colombia.

ADNAN M. ABU-MAHFOUZ (M’12-SM’17) received his MEng and PhD
degrees in computer engineering from the University of Pretoria. He is
currently the Centre Manager of the Emerging Digital Technologies for
4IR (EDT4IR) research centre at the Council for Scientific and Industrial
Research (CSIR), Extraordinary Professor at University of Pretoria, Pro-
fessor Extraordinaire at Tshwane University of Technology and Visiting
Professor at University of Johannesburg. His research interests are wireless
sensor and actuator network, low power wide area networks, software
defined wireless sensor network, cognitive radio, network security, network
management, sensor/actuator node development. He is an associate editor at
IEEE Access, IEEE Internet of Things and IEEE Transaction on Industrial
Informatics, Senior Member of the IEEE and Member of many IEEE Tech-
nical Communities. He participated in the formulation of many large and
multidisciplinary RD successful proposals (as Principal Investigator or main

author/contributor). Abu-Mahfouz is the founder of the Smart Networks
collaboration initiative that aims to develop efficient and secure networks
for the future smart systems, such as smart cities, smart grid and smart water
grid.

XENOFON FAFOUTIS (S’09-M’14-SM’20) received a PhD degree in
Embedded Systems Engineering from the Technical University of Denmark
in 2014; an MSc degree in Computer Science from the University of Crete
(Greece) in 2010; and a BSc in Informatics and Telecommunications from
the University of Athens (Greece) in 2007. From 2014 to 2018, he held
various researcher positions at the University of Bristol (UK), and he was
a core member of SPHERE: UK’s flagship Interdisciplinary Research Col-
laboration on Healthcare Technology. He is currently an Associate Professor
with the Embedded Systems Engineering (ESE) section of the Department of
Applied Mathematics and Computer Science of the Technical University of
Denmark (DTU Compute). His research interests primarily lie in Wireless
Embedded Systems as an enabling technology for Digital Health, Smart
Cities, and the (Industrial) Internet of Things (IoT).

VOLUME 4, 2016 29

