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Abstract

This paper is aimed to present a comprehensive survey of relevant research over the period 2012-2021 of Software-Defined

Wireless Sensor Network (SDWSN) proposals and Machine Learning (ML) techniques to perform network management, policy

enforcement, and network configuration functions. This survey provides helpful information and insights to the scientific and

industrial communities, and professional organisations interested in SDWSNs, mainly the current state-of-art, machine learning

techniques, and open issues.
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ABSTRACT Wireless Sensor Networks (WSNs), which are enablers of the Internet of Things (IoT)
technology, are typically used en-masse in widely physically distributed applications to monitor the dynamic
conditions of the environment. They collect raw sensor data that is processed centralised. With the current
traditional techniques of state-of-art WSNs programmed for specific tasks, it is hard to react to any
dynamic change in the conditions of the environment beyond the scope of the intended task. To solve this
problem, a synergy between Software-Defined Networking (SDN) and WSNs has been proposed. This paper
aims to present the current status of Software-Defined Wireless Sensor Network (SDWSN) proposals and
introduce the readers to the emerging research topic that combines Machine Learning (ML) and SDWSN
concepts, also called ML-SDWSNs. ML-SDWSN grants an intelligent, centralised and resource-aware
architecture to achieve improved network performance and solve the challenges currently found in the
practical implementation of SDWSNs. This survey provides helpful information and insights to the scientific
and industrial communities, and professional organisations interested in SDWSNs, mainly the current state-
of-art, ML techniques, and open issues.

INDEX TERMS Wireless Sensor Networks (WSNs), Internet of Things (IoT), Machine Learning (ML),
Software-Defined Wireless Sensor Networks (SDWSNs), Machine Learning Software-Defined Wireless
Sensor Networks (ML-SDWSNs).

I. INTRODUCTION

THE IoT (as a general IoT ecosystem including middle-
wares, servers, cloud, edge) is an emerging technology

that has caught tremendous attention from the scientific and
industry communities and professional organisations due to
its diverse benefits: including financial, efficiency, manage-
ment, etc. It is a key enabling technology of the so-called

industry 4.0. IoT stakeholders (e.g., governments, industry),
which have recently acknowledged that IoT is a real business
opportunity. Forecasts estimate that the IoT business can
grow into a market worth USD 7.1 trillion by 2025 [1]
and that the number of connected “things” can exceed the
75 billion devices barrier [2]. The exponential growth of
connected devices fosters the creation of a large variety of
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FIGURE 1. A simple representation of an SDN architecture.

IoT vendors and protocols. Despite the variety of vendors
and protocols, the IoT ecosystem must, somehow, deliver
seamless services to users. Emerging IoT applications such
as smart agriculture, transportation systems, health systems,
etc., expand the scope of the internet to include sensing
technologies such as WSNs.

WSNs, enablers of IoT technology, are built upon the
interconnection of a large number of Networked Embedded
Systems (NESs). An NES often called a wireless sensor node,
is a tiny energy-constrained device comprised of a processing
unit, a memory unit, a communication transceiver, and some
sort of power supply. They are usually deployed to measure
physical variables such as humidity, temperature, pressure,
air quality, etc., and they work cooperatively to achieve a
common goal. The main characteristics of NES are the low
cost, size, and limited resources [22], [23]. WSNs are used in
a range of applications that enable integration of the physical
world into the computer-based world, resulting in benefits
and improvements in remotely managing the physical world,
keeping an electronic record of physical variables, early
detection of potential threats, predictions, and economical
benefits. Their low cost and ease of deployment make WSNs
attractive in the practical implementation of the IoT. How-
ever, their small size and low cost lead to limitations on
resources such as energy supply, memory size, computational
speed and communication bandwidth. Therefore, the limited
resources in WSNs need to be managed effectively; so they
can run for the longest time possible.

The SDN paradigm has been proposed to alleviate the
management complexity currently found in wired networks.
A simple representation of an SDN architecture is shown in
Fig. 1. SDN breaks the vertical integration of the network by
separating it into application, control and data planes. The
application plane hosts user applications and programs that
explicitly, directly, and programmatically convey information
regarding the network requirements and desire network be-
haviour to the SDN controller. The control plane consists of
a logically centralised entity that process requirements from
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FIGURE 2. Simple representation of an SDWSN architecture [24].

the application plane and deploy them in the data plane,
and provides the application plane with a global view of
the network. The data plane is the network infrastructure
that consists of networking devices that become forwarding
devices with no intelligence. The introduction of SDN ab-
stractions into the WSN forms what we call SDWSNs.

The SDWSN paradigm emerges to solve the manage-
ment complexity in current WSNs deployments. This new
paradigm allows adding new functionalities into the network,
no different from adding another application to the control
plane [10]. In large WSNs, with thousands of sensor nodes,
it is critical to consider and implement management solu-
tions [25]. The SDWSNs centralise the network intelligence
in an SDWSN controller, leaving sensor nodes acting as
simple forwarding devices (see Fig. 2). Sensor nodes forward
packets to the destination based upon the reprogrammable
forwarding table managed by the controller. SDWSN con-
troller leverages the global information of the network (e.g.,
network statistics, energy levels, interference, etc.) to come
up with new powerful and intelligent protocols to achieve the
desired network performance. Although SDWSN has been
demonstrated to improve network performance against other
traditional WSNs, there is a need for novel architectures that
make the most of the global view of the network assets and
balance the expenditure of network resources when making
the WSN programmable.

ML-SDWSN has been devised as a potential network
architecture solution to exploit the centralised WSN assets
information to enhance the overall network performance. The
ML component has, at hand, real-time data including net-
work statistics (Received Signal Strength Indicator (RSSI),
Packet Delivery Ratio (PDR), etc.), network resources (sen-
sor nodes remaining energy, applications load, etc.), network
topology, etc. This makes the ideal environment to deploy
ML algorithms tailored to user and application requirements.
ML-SDWSN is also seen as a prominent solution to alleviate
the communication overhead introduced; thus, making the
most of SDWSNs. ML-SDWSN is discussed in detail in
Section VI.

2 VOLUME 4, 2016
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TABLE 1. Summary of related works on SDN-based networks.

SDN SDWSNs ML ML-SDWSNs

[3] 2014 Yes 3 7 7 7
Reviewed articles that aimed at solving already known issues and
described relevant application domains where SDN can improve current
network deployments.

[4] 2014 Yes 3 7 7 7
Reviewed the challenges faced (e.g., QoS, security, integration with
other wireless and optical technologies, etc.) when implementing SDN
solutions, mainly in OpenFlow.

[5] 2014 Yes 7 7 3 7 Reviewed ML methods aimed to solve common issues in WSNs.

[6] 2015 Yes 3 7 7 7
Reviewed SDN focusing on the latest developments in the wireless and
optical domain; as an effort to integrate SDN and IoT networks.

[7] 2015 Yes 3 7 7 7
Reviewed the main SDN concepts including its distinctive features,
architecture and challenges.

[8] 2016 Yes 3 7 7 7
Reviewed SDN in the context of wireless networks; especially, cellular,
sensor and mesh networks.

[9] 2017 Yes 7 3 7 7

Reviewed traditional WSN management techniques and provided a
comprehensive review of SDN-based management techniques for
WSNs; mainly, highlighting the advantages that SDN brings to tradi-
tional WSN management.

[10] 2017 Yes 7 3 7 7
Reviewed existing SDWSN literature and presented current challenges
and design requirements to overcome them.

[11] 2017 Yes 3 7 7 7
Reviewed SDN technologies that fulfil IoT requirements; mainly focus-
ing on edge, access, core and data centre networking.

[12] 2017 No 7 7 7 3
Investigated ML algorithms applied to SDN and briefly discussed the
possibility of using them in SDWSNs.

[13] 2018 Yes 3 7 7 7
Reviewed existing research works that applied SDN in underwater
WSNs.

[14] 2018 Yes 7 3 7 7
Reviewed the challenges encountered in both SDN and SDWSNs. It
also discussed whether they could improve WSN applications.

[15] 2018 Yes 7 3 7 7
Reviewed the foundations of SDN and WSNs and how SDN could
improve the network performance of WSNs. It also reviewed the open
challenges.

[16] 2018 Yes 3 7 3 7
Reviewed ML algorithms applied to SDN and how they are imple-
mented in the realm of SDN.

[17] 2019 Yes 3 3 7 7 Reviewed the application of SDWSN concepts to smart grid technology.
[18] 2019 No 7 7 3 3 Briefly reviewed AI-based techniques for intrusion detection in WSNs.

[19] 2019 Yes 7 7 3 7
Reviewed ML algorithms applied to WSNs focusing on their advan-
tages and drawbacks.

[20] 2019 Yes 3 7 3 7
Reviewed networking applications that applied ML methods in SDN-
based networks.

[21] 2020 Yes 7 7 3 7
Reviewed recent developments of ML techniques applied to WSN with
an emphasis on DL.

Article Year Survey? Topic Major contribution(s)

A. CONTRIBUTION
Despite the diverse benefits brought by SDN to WSNs, with-
out proper countermeasures to minimise the management
overhead introduced, it can negatively impact the network
performance of the WSN and lead to high energy costs. This
paper conducts an extensive literature review by exploring
relevant research articles on SDWSNs and ML-SDWSNs
approaches.

Research works that have reviewed papers on SDN are
listed in Table 1. Topics on these surveys include SDN basics,
SDN for IoT, SDWSNs, SDN for Smart Grids (SG), SDN for
underwater WSNs (UWSNs), and ML-SDWSNs. As can be
seen from the table, existing surveys have paid little attention
to the use of ML techniques in SDWSNs. In particular, the
article in [12] published in 2017, briefly discusses the use
of ML algorithms in SDN, while SDWSN papers were not
surveyed. Their article surveys papers mostly based on the
use of ML algorithms in SDN in general. Papers that take
advantage of the global view of the controller in SDWSNs
to improve the network performance were not discussed. The

survey in [18], published in 2019, briefly reviews papers that
use Artificial Intelligence (AI) for intrusion detection in SD-
WSNs. It mainly discusses how the security vulnerabilities of
SDWSNs can be counteracted by combining cryptography
schemes and AI techniques. A survey paper published in
2020 on ML-WSNs is presented in [21], it mainly focuses
on the use of Deep Learning (DL) in WSNs, and they also
discuss the energy expenditure in the ML training phase.
The survey papers in [5], [19] discuss the design challenges
of WSNs due to their inherent dynamic behaviour, and the
power of ML techniques to improve the ability of WSNs to
adapt to such changing behaviour of their surrounding envi-
ronment. Due to the distributed nature of traditional WSNs,
ML techniques are laborious to apply to operate and control
traditional WSNs. However, the design concepts of SDN
(e.g., centralised architecture) form the perfect habit to easier
apply ML techniques. The survey paper in [16], published in
2018, principally focuses on how ML techniques are applied
to SDN architectures mainly to traffic classification, routing,
Quality of Service (QoS) prediction, security and resource
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TABLE 2. List of Acronyms.

Acronym Description
µIP micro Internet Protocol
µIPv6 micro Internet Protocol version 6
6LoWPAN IPv6 over Low-Power Wireless Personal Area

Networks
AE Autoencoder
AI Artificial Intelligence
API Application Program Interface
BLIP Berkeley Low-power IP
CNN Convolutional Neural Networks
CTP Collection Tree Protocol
DL Deep Learning
DRL Deep Reinforcement Learning
DT Decision Tree
EOS Embedded Operating System
FPGA Field-Programmable Gate Array
FSM Finite State Machine
GPRS General Packet Radio Service
IA Intelligent Agent
IDS Intrusion Detection System
IETF Internet Engineering Task Force
IIoT Industrial Internet of Things
IoT Internet of Things
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
k-NN K-Nearest Neighbour
KPI Key Performance Indicator
LAN Local Area Network
LoRa Long Range
LoRaWAN Long Range Wide Area Network
MAC Media Access Control
MCU Microcontroller Unit
MDP Markov Decision Process
ML Machine Learning
ML-SDWSN Machine Learning Software-Defined Wireless Sensor

Network
NES Networked Embedded System
NN Neural Network
OS Operating System
PCA Principal Component Analysis
PDR Packet Delivery Ratio
PLR Packet Loss Rate
PSO Particle Swarm Optimisation
QoS Quality of Service
RL Reinforcement Learning
RNN Recurrent Neural Network
RPL Routing Protocol for Low-Power and Lossy Networks
RSSI Received Signal Strength Indicator
RTT Round-Trip Time
SDN Software-Defined Networking
SDWSN Software-Defined Wireless Sensor Network
STP Spanning Tree Protocol
SVM Support Vector Machine
TCP Transmission Control Protocol
TSCH Time Slotted Channel Hopping
UDP User Datagram Protocol
WPAN Wireless Personal Area Network
WSAN Wireless Sensor and Actuator Network
WSN Wireless Sensor Network

management. The paper also briefly discusses SDWSNs and
directions on the use of ML in WSNs. The survey in [20],
published in 2019, presents network applications that com-
bined SDN and ML concepts. The survey provides thorough
discussions on ML methods and SDN-concept networks,
their applications and gives future directions on future ML
in future SDN. In contrast, the contributions of this survey

article are as follows.
1) We firstly provide a comprehensive background on

WSNs including the evolution of MCU-sensor nodes,
networking and standards, and challenges of WSNs.

2) We provide a systematic review of SDWSN proposals
that have not been previously covered by other sur-
vey papers. We categorised them into general frame-
works, proposals that seek to improve KPIs (QoS-
related works), research works that reprogram both
hardware and software of sensor nodes (fully pro-
grammable mechanisms), scientific articles that lever-
age the global view of the controller to devise new rout-
ing and management protocols (network topology and
management proposals), and research papers that seek
to solve the controller placement problem (Controller
placement works).

3) The nature of the SDWSN centralised architecture
opens up new research opportunities to experiment with
AI/ML algorithms embedded in the SDWSN controller
to improve the overall WSN performance. Therefore,
we perform a systematic review of research papers that
have combined research efforts of ML and SDWSNs, to
improve network performance.

4) We discuss open issues and research directions in SD-
WSNs.

This review will serve to produce a better understanding and
clarify the current status and the potential research directions
regarding the open issues of SDWSNs. To the best of our
knowledge, there does not exist a survey that covers in-depth
the state of the art of ML techniques used in SDWSNs.

B. STRUCTURE OF THIS PAPER
Fig. 3 provides a visual representation of the organisation of
this paper. Section II provides detailed background on WSNs
including the networking standards, embedded operating sys-
tems and challenges. Section III provides background on
SDN, SDWSNs and presents the early adopters of SDWSNs.
Section IV presents the current status of research works
that have expanded the state-of-art of SDWSNs. Section V
presents an overview of the most commonly used ML al-
gorithms in supervised, unsupervised, semi-supervised, rein-
forcement and deep learning. Section VI presents a survey of
research efforts that have applied ML techniques in SDWSN.
Section VII summarises both SDWSN and ML-SDWSN
research works. Section VIII discusses major challenges
and future directions for both SDWSNs and ML-SDWSNs.
Finally, in Section IX conclusions are drawn. Acronyms used
throughout this paper are summarised in Table 2.

II. BACKGROUND
The introduction of WSNs has opened new opportunities
for monitoring applications. These can be summarised as
follows.
• Home monitoring: This is an example of a Wireless

Sensor and Actuator Network (WSAN). This kind of

4 VOLUME 4, 2016
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Section V. Machine learning overview
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• Reinforcement learning
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FIGURE 3. Structure of this paper.

TABLE 3. Historical wireless sensor nodes development platforms. The dash (-) symbol indicates that no information was found on that specific platform.

Type RAM [KB] Flash [KB] E2PROM [KB]
2000 Rene 2 [26] Atmega 163 1 16 32 TinyOS TR1000
2000 µAMPS [27] Strong ARM - 1M 4M µOS National LMX3162
2001 BTnode [28] Atmega 128L 4 up to 128 4 Nut/OS CC1000
2003 Mica2 [29] Atmega 128 4 128 512 TinyOS CC1000

2004 TelosB [30] MSP 430 10 48 1M TinyOS, Contikia,
RIOTb CC2420

2006 MicaZ [30] Atmega 128 4 128 512 TinyOS, Contikic CC2420
2011 WiSMote [31] MSP 430 16 sram up to 256 up to 8M Contiki CC2520
2013 WiSense [32] MSP 430 4 56 128 - CC2520
2013 CC2541DK [33] CC2541 8 up to 256 - - 2.4 GHz
2015 CC2538DK [34] CC2538 32 512 4 Contikia, RIOTb 2.4 GHz

2015 OpenMote [35] CC2538 32 512 4 Contikia, OpenWSN,
FreeRTOS, RIOT 2.4 GHz

2015 CC2650STK [33] CC2650 20 128 - Contikia 2.4 GHz

2015 Re mote [36] CC2538 32 512 4 Contikia,d, RIOTc,
MansOS

2.4 GHz, Sub-1 GHz

2017 CC1350STK [37] CC1350 20 128 - Contiki-NGd 2.4 GHz, Sub-1 GHz

2019 LPSTK-
CC1352R [38] CC1352R 80 352 256 Contiki-NGd 2.4 GHz, Sub-1 GHz

Year Name
µC

OS Radio

a It is also supported by Contiki-NG
b Basic support
c Partially supported
d Dynamically switching, at run-time, between the two bands is not supported
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network can collect sensed data such as temperature,
humidity and states of other sensors such as magnetic
sensor or switches, and is also capable of changing the
environment and physical world through actuators such
as servos, motors or switches.

• Environmental monitoring: The goal of this WSN is
to maintain the sink informed of any environmental
changes at the deployed location and surroundings. This
term has evolved to cover many monitoring applications
of the environment such as sea, volcanoes and forest
monitoring, etc.

• Event detection: Thousands of sensor nodes can be
deployed in a specific field to detect early hazards to the
ecosystem. For example, sensor nodes embedded with
temperature, humidity and gas sensors can be used to
detect the presence of fire. Early detection of hazards
can prevent the loss of lives and valuable resources.

• Physical variable monitoring: WSNs can be also used in
a simple task such as data logging information of a phys-
ical variable of interest. For examples, keeping track of
simple things like the temperature of a refrigerator, all
the way up to monitoring the water level and flow of a
nuclear power plant [39].

As mentioned above, the use of WSNs covers a range
of applications that enable integration of the physical world
into the computer-based world, resulting in benefits and
improvements in our quality of life. Also, a wide variety
of wireless sensor devices have been developed to enable
wireless connectivity and sensing capabilities in tiny objects,
a historical and most popular WSN platforms available in the
market are shown in Table 3.

A. NETWORKING AND STANDARDS FOR WSNS
Networking technology sets the form of communications
between sensor nodes. Here, the most widely used commu-
nication protocols in WSNs are presented. Other forms of
wireless communications methods are surveyed in [40].

The most commonly used communication transceiver for
WSNs is the low-power radio and the most popular frequency
band is the 2.4 GHz as shown in Table 3. 2.4 GHz radios are
popular, low-cost, well-supported and the frequency band is
standardised in the IEEE 802.15.4 [41]. Among communica-
tion protocols, used in this frequency band, are ZigBee [42],
Bluetooth [43], [44], and 6LoWPAN [45].

1) Zigbee
Zigbee was originally designed by the ZigBee Alliance under
the specifications of the IEEE 802.15.4 standard [42]. Among
its features are low power consumption and support for
different network topologies such as mesh, star and tree,
which makes ZigBee a good candidate for Industrial Internet
of Things (IIoT). However, ZigBee does not meet with all
requirements of industrial applications as it can not serve
a large number of sensor nodes and suffers from interfer-
ence [43], [44].

2) Bluetooth
Bluetooth was originally designed to achieve medium data
rates for short distances (typically up to 10 m). Due to
the power consumption concerns, the Bluetooth-Low-Energy
(BLE) specification was proposed. BLE was conceived for
embedded systems with low-power requirements and limited
processing power. This extension provides up to 1 Mbps over
5-10 m range [43], [44].

3) 6LoWPAN
IPv6 over Low-Power Wireless Personal Area Networks
(6LoWPAN) was established by the Internet Engineering
Task Force (IETF) [45]. 6LoWPAN was conceived under the
premise that the Internet Protocol should be applied even to
the smallest devices, and that resource-constrained embedded
systems should be able to participate in the IoT. Therefore,
6LoWPAN is a lightweight protocol that uses an adaptation
layer, that has a set of functions, to enable transmissions of
IPv6 packets over IEEE 802.15.4 radios. The great advantage
of 6LoWPAN is that enables direct communication with
other IP devices locally or via IP network.

There also exist other communications methods that are
only used for a set of sensor nodes in WSNs. (i) WiFi is
a wireless networking technology based on IEEE 802.11
family of standards [46]. It is commonly used for Local
Area Networks (LANs) and to provide wireless high-speed
Internet access. It is common to find WiFi modules in gate-
ways or border routers to enable internet connectivity to
WSNs. Sensor nodes rarely use WiFi modules as it imposes
high power requirements and shortens the network lifetime.
(ii) General Packet Radio Service (GPRS) was introduced as
a wireless communication packet service that promises data
rates from 54 to 114 kbps [47]. GPRS offers a best-effort
service that is often used in gateways to communicate with an
online monitoring centre. Similar to WiFi, GPRS was not de-
signed for WSNs applications as it also imposes higher power
requirements than IEEE 802.15.4. (iii) Long Range Wide
Area Network (LoRaWAN) is a technology that enables
long-range transmissions (more than 10 km) with low power
consumption. LoRaWAN is a cloud-based MAC protocol that
uses Long Range (LoRa) in its physical layer. Features of
LoRaWANs include low bandwidth (250 bps up to 11 kbps),
long-range, low cost and low power consumption [48]. Thus,
LoRaWAN deployments make more sense in applications
that use small payloads and transmit data few times a day
over long distances, than having hundreds of IEEE 802.15.4
radios interconnected to cover the same area size, resulting in
increased energy consumption, and management complexity
of sensor nodes.

Overall, There is no such thing as the best communication
technology for WSNs as the optimum communication proto-
col largely depends on the application. For home monitoring
or smart home, Zigbee and 6LoWPAN can be the appro-
priate technology as they provide good data rates and sup-
port multiple network topologies. For industrial monitoring,
6LoWPAN or LoRaWAN technologies are good solutions,
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however, 6LoWPAN works better when frequent measure-
ments are needed, and LoRaWAN fits better for large fields,
multiple sources of interference, or for infrequent interaction
with the gateway.

B. EMBEDDED OPERATING SYSTEM (EOS)
Due to the limited resources available, sensor nodes require
a lightweight OS [9], [49]. The two EOSs that have achieved
the most attention by the research SDWSN community so far
are: (i) Contiki, which is an open-source OS for low-power
IoT networks, is designed for resource-constrained sensor
nodes [50]. In its core uses C language and has three net-
work stacks; RIME, Internet Protocol version 4 (IPv4) and
Internet Protocol version 6 (IPv6). Contiki-NG [51] has been
presented as a new version of the Contiki project. Contik-
i-NG started as a fork of the Contiki project and preserves
part of its original characteristics. Contiki-NG provides an
overall clean-up, updated support for IPv6 over the TSCH
mode of IEEE 802.15.4e (6TiSCH), streamlined RPL imple-
mentation, and other features for resource-constrained IoT
devices. (ii) TinyOS is also designed for resource-constrained
sensor nodes but in its core uses the nesC programming
language [52] and supports IPv6 in its protocol stack, namely,
BLIP.

There exist some EOSs that have not been yet used in
SDWSNs: FreeRTOS [53] is an open-source real-time OS
kernel for NESs, designed to be small and simple. The
footprint can be as low as 9KB and supports over 40 MCU
architectures. Key features include a small memory footprint,
low overhead, and very fast execution. Zephyr [54] is a
stable and open-source real-time OS for resource-constrained
embedded systems. It supports multitasking, multiple net-
work stacks, and multiple architectures. One of the network
functions provided by Zephyr is the dual-stack that enables
simultaneously use of IPv4 and IPv6. OpenWSN is not
an operating system, but an open-source implementation
of a fully standards-based protocol stack for short-range
networks, such as the IEEE802.15.4e Time-slotted Channel
Hopping standard [55]. IEE802.15.4e, along with low-power
IoT protocols, such as 6LoWPAN, Routing Protocol for Low-
Power and Lossy Networks (RPL) and CoAP, allows ultra-
low power and highly reliable mesh networks that are fully
merged into the Internet. RIOT presented as an open-source
real-time multi-threading OS that supports a wide range of
IoT devices such as low-power sensor boards and micro-
controllers including 8-, 16- and 32-bit architectures, that
are normally used in IoT networks [56]. The RIOT design
principle is to be energy-efficient and reliable that supports
real-time and small memory applications. It also provides
API access, which is independent of the hardware. Multiple
open standard protocols have been ported to RIOT such as
the IPv6 network protocol stack that includes the IETF for
connecting constrained systems to the Internet (6LoWPAN,
IPv6, RPL, Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP)).

A brief comparison of the above mentioned operating sys-

tems is presented in Table 4. The table shows a comparison of
the MCUs supported, the memory footprint, support for RPL,
UDP and TCP. Although the memory footprint is platform-
dependent, the memory values given in the table can be used
as references to perceive how low the memory footprint can
be for the specified operating system to run. It shows that
Contiki, Contiki-NG, OpenWSN, RIOT and Zephyr are the
only operating systems that provide full support for TCP
over 6LoWPAN and that FreeRTOS and Contiki support the
largest range of MCUs. TinyOS currently supports 8- and
16-bit CPU architectures and the support for TCP still in
the experimental phase, which limits the sensor nodes in
supporting higher application protocols such as HTTP.

C. CHALLENGES IN WSNS
The challenges associated with WSNs and IoT can be divided
into three different categories: sensor node hardware, hetero-
geneity and inflexibility.

1) Sensor node hardware

As mentioned before, the main challenges presented in sensor
nodes are due to their constrained resources.

• Energy source: due to the communication nature of
sensor nodes being wireless, most of the applications
require sensor nodes to operate in harsh environments or
areas with limited access [57], [58]. Thus, it is envisaged
that sensor nodes operate without any battery renewal or
human intervention for a long time. The power source
and individual energy consumption are vital for the
Network Lifetime (NL) of WSNs.

• Memory size: the memory of sensor nodes stores in-
formation regarding the protocol stack and applications
running in the node. The integration of the protocol
stack, routing protocols and applications into the node
imposes a challenge when adding new features in the
already constrained memory. The memory has to be
managed effectively to assure all applications and pro-
gram code run efficiently and that the node can host new
features as required.

• Computational speed: the nature of WSNs is to use
low-power microcontrollers which work well for non-
resource-intensive tasks such as sensing and radio com-
munications. The use of more powerful processing units
directly affects the sensor node size, power consumption
and price. However, the use of low-power microcon-
trollers limits the sensor node when executing tasks of
significantly different intensities as occurs with most
Internet Protocols (IPs) which require a scheduler and
run on top of the firmware. On top of this, sensor nodes,
considered to be autonomous systems, use complex
routing algorithms that add a processing cost to the
already constrained device.

• Communication bandwidth: when sensor nodes need
to transmit in real-time, bandwidth limitations impose
restrictions on how many sensor nodes can transmit

VOLUME 4, 2016 7



Jurado-Lasso et al.: A survey on ML-SDWSNs: Current status and major challenges

TABLE 4. Comparison of operating systems for WSNs. The checkmark (3) and cross (7) symbols depict whether the functionality is currently supported by the OS
or not. The dash (-) symbol indicates that no information was found on the specified cell.

OS Contiki Contiki-NG TinyOS FreeRTOS OpenWSN RIOT Zephyr
MSP430 MSP430 MSP430 MSP430 MSP430 MSP430 ARM

AVR Cortex-M AVR AVR Cortex-M ARM 7 x86
Cortex-M JN516x Cortex-M Cortex-M Xtensa
ARM 7 Cortex-A x86 RISC-V

8051 ARM7 AVR ARC
RL78 Cyclone V SOC ESP8266 Nios II
6502 ARM9 RISC-V POSIX/NATIVE
x86 PIC32 SPARC

NIOS II
8051
x86

Microblaze
APS3

78K0R
TMS570

RAM [KB] 10 10 10 4-8 - 1.5 8
Flash [KB] 30 ∼100 48 32-64 - 5 -
RPL 3 3 3 7 3 3 3
UDP 3 3 3 3 3 3 3
TCP 3 3 Experimental 7 3 3 3

MCU

and the rate at which they can post their data in real-
time [59]. Furthermore, wireless communication can
take up to 75% of the total energy in some applica-
tions [60]. The communications between sensor nodes
have to be managed in a way that sensor nodes reliably
transmit their data and that the energy consumption does
not compromise the NL.

2) Heterogeneity
The IoT ecosystem enables the interconnection of a large
number of heterogeneous devices that creates new user ap-
plications to improve the quality of our lives. However,
engineers working on the development of new applications
face challenges when setting up a network of heterogeneous
devices and systems. These heterogeneous devices include a
variety of networking devices, manufacturers and software.
The wide variety of networking connectivity technologies,
protocols and communication methods can present difficul-
ties to engineers and developers when implementing new
network designs or protocols. Thus, the IoT must bring seam-
lessly together all heterogeneous devices to provide services
to users.

3) Inflexibility
Since IoT enables the interconnection of objects to the in-
ternet, the number of connected devices increases dramat-
ically. The WSN technology provides the IoT with new
sensing capabilities, integrating the physical world into the
digital world. State-of-art WSNs are deployed with inflexible
firmware. Where, after deployment, any modification to the
firmware (e.g., tasks, behaviour in sensor nodes) requires an
on-site visit or Over-The-Air (OTA) programming technol-
ogy to reprogram sensor nodes’ firmware. On site-visit, such
as the example given in [4], of a WSN that comprises 100
sensor nodes that measure pollution in a lake, that demands

for task reprogramming would require taking sensor nodes
out of the lake and reprogram their firmware to modify such
task, which is not practical and increases the management
costs. Whereas OTA permits firmware updates without taking
sensor nodes out of the environment and without interrupting
the normal operation of sensor nodes, the time required to up-
date an entire WSN is an issue in time-sensitive applications.
A smart building application, which has 69 end devices,
needs on average seven hours to complete transferring a 125
KB image file to all sensor nodes [61].

Overall, WSNs enable a range of applications from home
monitoring to hazard detection in remote areas with diffi-
cult access and strict operational requirements such as NL.
Wireless sensor nodes are designed to be small, cheap and
wireless, so they can be easily embedded, even into the small-
est things and used en-masse in widely physically-distributed
applications. Such design requirements impose several con-
straints in the power supply, memory size, processing power
and communication bandwidth, making smart management
of these resources a high priority in the design of practi-
cal and cost-efficient WSN applications. The WSN has to
work seamlessly with other network devices independently
of the vendor who produced them. Furthermore, it must also
manage limited resources and provide easy updates of real-
time applications. Hence, there is a genuine, real-world need
for innovative research efforts into the smart management of
resources in wireless sensor networks. Solutions should be
independent of the practical application, and the behaviour
of sensor nodes and the software running on them easily
modified. Therefore, there is a need to tackle the above-
mentioned challenges inherent to WSNs and the IoT. SDN
has been proposed as a prospective solution to overcoming
these challenges.

8 VOLUME 4, 2016



Jurado-Lasso et al.: A survey on ML-SDWSNs: Current status and major challenges

III. SOFTWARE-DEFINED WIRELESS SENSOR
NETWORK (SDWSN)
The SDWSN paradigm is inspired by the SDN technology,
which is a network management approach that enables to
dynamically and programmatically reconfigure the network,
that is introduced below.

A. SOFTWARE-DEFINED NETWORKING
SDN is a network paradigm solution to the current wired net-
work limitations. It first breaks the vertical integration of the
network by separating the control plane or the “control logic”
from the underlying networking devices such as routers and
switches. Then, the networking elements become forwarding
devices with little or no intelligence. The intelligence is
instead logically centralised in a controller, facilitating pol-
icy enforcement and network reconfiguration [7]. A simple
representation of an SDN architecture is shown in Fig 1.

SDN is an approach to network management that enables
dynamic network configuration that improves network per-
formance and oversees the network status. SDN is currently
widely used in wired networks where architectures are de-
centralised and complex, and emerging network applications
require more flexibility and easy troubleshooting. Although
SDN centralises the network intelligence in the control plane,
it does not necessarily mean that the data plane depends on a
single controller. The control plane can be built upon multiple
controllers which can be physically distributed but logically
centralised.

Apart from the three SDN layers, data plane or infrastruc-
ture, control plane and application plane, multiple Applica-
tion Program Interfaces (APIs) also exist: northbound, south-
bound, eastbound, and westbound. The Northbound API
enables communication between the application and control
plane. Using this API, the control plane provides a global
view of the network to the application plane. The southbound
API is the communication channel between the data and
control plane. This API is used by the controller to deploy
different policies and network management configurations in
devices of the data plane. Network devices of the data plane
report network status to controllers using the southbound
API. The eastbound and westbound APIs are responsible for
orchestrating the communication channel between multiple
controllers, so they can make coordinated decisions [11].
The most well-known protocol used in the southbound API
is OpenFlow [62]. Researchers have recently applied SDN
concepts into WSNs to perform network management, policy
enforcement and network reconfiguration functions. The syn-
ergy between WSNs and SDN forms the so-called SDWSN
paradigm.

B. SOFTWARE-DEFINED WIRELESS SENSOR
NETWORK PARADIGM
The SDWSN paradigm emerges to solve the management
complexity currently found in state-of-art WSNs. This new
paradigm allows adding new functionalities into the network,
no different from adding another application to the control

plane [10]. In large WSNs, with thousands of sensor nodes,
it is critical to consider and implement management solu-
tions [25].

A simple representation of an SDWSN architecture is
shown in Fig. 2. The SDWSN architecture differs from
the SDN architecture mainly in the data plane. The data
plane is based upon wireless sensor nodes that are NESs
with constrained resources. SDWSNs centralise the network
intelligence in an SDWSN controller, leaving sensor nodes
acting as simple forwarding devices. Sensor nodes forward
packets to the destination based upon the reprogrammable
forwarding table managed by the controller.

1) Challenges of SDWSNs
The main challenge of SDWSN architectures is the shared
communication medium and constrained resources. SDN
was initially conceived for wired networks, where control
packets typically flow through a dedicated communication
channel, whereas in WSNs the control packets flow through
the same medium. Control packets share the bandwidth with
data packets, therefore the bandwidth has to be managed
smartly to prevent congestion in the SDWSN. The flexibility
of changing the behaviour of sensor nodes implies the intro-
duction of control overhead in the network that may incur
increased overhead and energy consumption, and a decrease
in the PDR which is a Key Performance Indicator (KPI) that
discloses the amount of data delivered successfully. The most
common principal requirement of WSN applications is to
prolong the NL, thus the constrained resources of sensor
nodes have to be managed in a way that the NL is not
drastically reduced. Control packets flowing in the network
will increase network energy consumption; therefore, novel
control overhead reduction techniques are required to min-
imise the amount of control overhead and interaction between
sensor nodes and the controller, as the work presented in [63].

Readers interested in a detailed background on the SD-
WSN paradigm, including a comprehensive analysis of chal-
lenges, architectures, benefits and design requirements can
refer to [9], [10], [15].

C. PIONEERS OF SDWSNS
As the SDWSN paradigm is still at its infancy stage, few
researchers have started exploring potential architectures for
SDWSNs. The introduction of SDN abstractions into WSNs
was first introduced by two early adopters: SOF [64] and
SDWN [65].

1) Sensor OpenFlow (SOF)
Luo et al. [64] introduced SOF as a Southbound API to
facilitate the communication between the control and data
planes. The main objective is to make the WSN infrastructure
reprogrammable by customising the flow tables. SOF is
motivated by the standard SDN protocol for wired networks,
namely OpenFlow [62].

Since WSNs are usually thought to be attribute-based and
data-centric networks in comparison to conventional address-
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TABLE 5. Comparison of early adopters of SDWSNs based on the type of
networking technology, Network Operating System (NOS) and energy-aware
functionalities. The checkmark (3) and cross (7) symbols depict whether NOS
is currently supported or not.

FW Networking NOS EAF
SOF IEEE 802.15.4, IP 7 in-net-proca

SDWN IEEE 802.15.4 3 in-net-proc, duty-cycle
a in-net-proc: in-network processing; data aggregation, etc.

centric networks, they offer two approaches for flow creation:
(i) compact network-unique addresses (ZigBee addressing),
and concatenated attribute-value pairs that route packets
based on the data attributes, and (ii) the use of the Internet
Protocol (IP) in WSNs, and they suggest two IP stacks: µIP
or µIPv6 [50], and Berkeley Low-power IP (BLIP) [52].
In comparison to OpenFlow, SOF provides in-networking
processing functionalities, but there is no evidence of any
type of improvement in network performance with their
proposed protocol. Their paper mainly presents SOF as the
first research effort that synergizes SDN and WSN; therefore,
it lacks specification and details.

2) SDWN
Costanzo et al. [65] introduce SDWN. Their approach differs
from SOF in many ways: (i) it proposes a Southbound API,
namely a flow table, (ii) it states the requirements for the
SDWN, such as support for duty cycling and in-network data
aggregation, to minimise the overall energy expenditure of
the network, (iii) it presents the protocol architectures for
the generic and sink nodes, and (iv) it describes the packet
format for all packets flowing in the network. Generic nodes
are sensor devices in the data plane that forward packets
as instructed by the centralised controller. The sink node is
the SDN controller which defines the rules for forwarding
packets. Their paper tries to analyse the benefits of SDN in
WSNs with emphasis on Wireless Personal Area Networks
(WPANs).

A brief comparison of the two early adopters is shown
in Table 5. SOF and SDWN are considered as the first step
towards reprogrammable WSNs, since then multiple research
papers have used them as their foundation for new research
works.

IV. EXISTING SDWSNS PROPOSALS
To tackle shortcomings in SOF and SDWN, and the lack
of performance evaluation, several authors have proposed
SDWSN approaches that aim to improve the overall SDWSN
architecture design and performance. This section provides
a systematic review of research works found in the current
state-of-art of SDWSNs. We group them into five different
categories.

• General frameworks: This category contains SDWSN
research papers that have been proposed to advance in
the state-of-art of SDWSNs, but they lack any form of
evaluation.

• QoS-related works: Here, we group research works
that guarantee a certain level of service. These works
aim to improve KPIs; including energy consumption,
control overhead, delay, traffic congestion, packet loss,
throughput, etc.

• Fully reprogrammable mechanisms: SDN provides flex-
ibility to reprogram individual sensor nodes functional-
ities or behaviour; however, there exist research works
that extend this to a fully programmable sensor node
including both hardware and software.

• Network topology and management proposals: This cat-
egory presents research works that leverage the global
view of the controller to devise new topology and man-
agement protocols.

• Controller placement works: Research works that seek
to solve the controller placement in SDWSNs are
grouped in this category.

A. GENERAL FRAMEWORKS
It is worth mentioning that the below works are general
frameworks that are the first step to synergy research efforts
of SDN and WSNs, but they lack evaluation performance.
However, some authors have extended these frameworks into
a mature and tested framework which we will discuss later in
this review. Previously discussed research works: SOF [64]
and SDWN [65], fit in this category.

A brief comparison of general frameworks is shown in
Table 6. The table compares general frameworks stating their
advantages and disadvantages, EOS used, type of controller
architecture, their availability to the research and professional
community, and surveys where they have been previously
discussed. We can see that they are also the first research
works towards SDN-based WSNs as they seek to provide a
practical, fully functional SDWSN architecture and imple-
mentation but with little or no evidence of evaluation. These
research works have evolved and been used by the research
community to further investigate SDWSNs.

B. QOS-RELATED WORKS
1) Energy consumption
This is a well-studied metric in WSNs. Sensor nodes are
usually deployed in harsh environments where physical ac-
cess to sensor nodes is difficult; therefore, WSNs require to
smartly manage their energy resources in a way that they
could achieve the longest lifetime possible.

Table 7 presents and compares research works currently
found in the literature whose main objective is to achieve
a reduced energy consumption in WSNs employing SDN.
Works that fit in this category, but, has been previously
discussed in other SDWSN survey papers are [58] (discussed
in [14], [15]), [78] (discussed in [9], [15]), [83] (discussed in
[8], [9], [11]), [84] (discussed in [15]), and [85] (discussed
in [9], [14]).

We can see that new research works consider SDN as
a viable solution to improve energy consumption in tradi-
tional wireless sensor-based networks; however, a common
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TABLE 6. Report on the advantages and disadvantages of general SDWSN frameworks including the type of operating system used, control plane architecture,
code availability to the public, and references for a thorough discussion. The checkmark (3) and cross (7) symbols depict whether the code is available to the public
or not. The dash (-) symbol indicates that no information was found on the specified cell.

Ref. Year Advantage/Disadvantage EOS Controller Availability
Extended
discussion

on

SOF [64] 2012
First research effort on SDWSNs. Initial sketch of the archi-
tecture and technical concepts to consider. It lacks specific
details of the architecture and implementation challenges.

Contiki - 7 -

SDWSN [65] 2012
It presents the requirements for SDWSNs and an detail de-
scription of overall architecture and packet formats. It lacks
implementation details.

- - 7 -

SDCSN [66] 2015

Cluster head (CH) and multi-controller approach. It provides
good architectural design details and security concerns on
CHs. The main drawbacks are the lack of details of the
implementation and not evidence of performance evaluation
provided.

- Distributed 7
[9], [10],

[14], [15]

TinySDN [67] 2016

First research work that uses TinyOS. It permits the use
of multiple controllers, eliminating the dependency on a
single controller. Although a demonstration was performed
in Cooja to provide an overview of the TinySDN main
features, there are no shreds of evidence of improvement with
traditional WSNs.

TinyOS Distributed 3
[9], [10],

[14], [15]

IT-SDN [68] 2017

It is an open SDWSN tool inspired by TinySDN. The archi-
tecture is independent of the OS and provides detail packet
types and formats, and workflow. Although a demonstration
was performed in Cooja; it lacks piece of evidence of im-
provements related to state-of-art WSNs.

Contiki - 3 -

CORAL-SDN [69] 2017

It provides detailed information of the architecture proposed.
Tasks handled by the controller and its implementation are
explained; but, it lacks details. The demonstration, which is
performed in w-iLab.2 and SWN, is well explained; however,
it lacks evidence of the evaluation. No charts provided.

Contiki Centralised 3 [70]

drawback is a lack of demonstrating improvement against
traditional WSNs and the viability in real-world deployments
i.e. the study of control overhead, WSN architecture setup, to
include all protocol stack layers and computational complexi-
ties. Also, they lack evaluation with other SDWSN protocols,
which can be tightly related to the limited amount of publicly
available SDWSN approaches. Moreover, the development
of energy consumption algorithms involve a large number of
mathematical models, and their evaluation is frequently made
using mathematical tools rather than network simulators.
Network simulators allow capturing of all physical events
happening in a real network i.e. collision, packet loss, etc.,
and at the hardware level.

2) Security
This is a concern in IoT networks. It is also in centralised
architectures such as SDN. This is especially true in SDWSN
architectures with a single controller, whereby an attacker
may compromise the entire network by targeting it. Also,
securing a large WSN is a high energy-intensive task that can
lead to sensor nodes depleting their energy faster. However,
SDWSN permits the controller to build a global view of
the network which help in identifying malicious devices and
activities. Table 8 details research works that aim to identify
and improve security issues SDWSNs. Cybersecurity in IoT
is surveyed in [95].

Security is a critical aspect to consider when designing
low-power IoT solutions. As seen from Table 8, security in

SDWSNs has not been received proper attention as much
of the research efforts focus on discussing security through
survey papers rather than designing and implementing secu-
rity schemes in SDWSNs. Also, most research works discuss
security from the SDN and WSN perspectives, where some
of these concepts can be easily adapted, whereas others
might be unfeasible to apply. In WSNs, security solutions are
mainly implemented at the sensor level where resources are
scarce; therefore, such protocols, which tend to be energy-
hungry, are not practical. Security aspects in SDWSNs can
be addressed individually at each API. At the northbound
API, a misconfiguration can open up new channels of attacks
or execute a command that leads to abnormal behaviour of
the target application or exposed the information flowing
between the controller and the application [96]. At the south-
bound API, most WSN applications share raw environmental
data that can be easily secured centralised at the controller.
However, if sensitive data need to be secured at the data
plane level, then secure communication schemes should be
considered such as SSL/TLS, at the expense of an increase
in energy consumption. At west- and east-bound APIs, we
can find networked devices with ample resources, e.g. con-
trollers; therefore, secure communication channels can be
easily created using traditional security schemes. However,
this needs to be studied in detail. Readers interested in an
extended discussion on SDN and WSN security from the
SDWSN perspective can refer to [10], whereas SDN security
is discussed in [97].
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TABLE 7. Relevant SDWSN research works that aim to achieve a reduced energy consumption.

Ref. Specific aim Approach Main drawback Type of
evaluation

Comparison
with other
protocols

[71]

To design a QoS-based routing pro-
tocol that comprises a clustering
and routing algorithm and local net-
work maintenance.

A double cluster head mechanism for
delay-sensitive and reliable data trans-
mission applications. Multiple forwarding
paths, for sensor nodes, for different data
classifications.

Creating multiple forward-
ing tables on sensor nodes
can lead to increased mem-
ory size and control over-
head, therefore increasing
the power consumption in
sensor nodes

Cooja

SDN-WISE
[72] &
clustering
protocols

[63]

To design an energy-aware routing
algorithm that balances the energy
across the network and reduce the
control overhead

To select paths with the highest remaining
energy level, aggregate packets to com-
mon destination and compute checksum
over known routes at the controller

The controller can exhaust
its resources quickly as it
is embedded in one of the
sensor nodes

Cooja SP

[73] To mathematically express the en-
ergy expenditure of SDWSNs

To break down the functions involved,
namely; neighbor discovery, neighbor ad-
vertisement, network configuration and
data collection

No performance improve-
ment demonstrated MATLAB None

[74] To design an energy-efficient rout-
ing algorithm

To use a multidimensional energy space.
The network uses CHs and Layer Heads
(LHs), which have direct communication
with the controller

No performance evaluation
against architectures with-
out LHs

MATLAB None

[75]
To design an energy-efficient rout-
ing algorithm that minimises the
overhead transmitting data

A sorted distance queue model that allows
data to be transmitted to the closest neigh-
bour

The model assumes that all
sensor nodes are one hop
away from the controller

MATLAB LEACH-
PSO

[76] To minimise the data generated at
the data plane (network traffic)

The controller manages sensor nodes
transmissions and implements a learning
function of the behaviour for each sensor
to replace data transmitted by sensors

No performance
improvement, against
other approaches, was
demonstrated

Computer-
based None

[77]
To design an energy-aware routing
protocol and a sleep management
mechanism

A clustered network managed by the con-
troller. It finds the best energy-efficient
path between any sensor pair and manages
sensors’ sleep time

No performance evaluation
against other SDWSN ap-
proaches. Control overhead
not considered

Mininet
LEACH,
SPIN, [78],
[58]

[79] To design an energy-efficient multi-
cast protocol

Leverages overhearing to deliver a multi-
cast message. To control the transmission
range of sensor nodes

No performance improve-
ment against other SDWSN
protocols

Mininet Multicast
protocols

[80] To design a dynamic routing proto-
col for SDWSNs

An optimisation problem to find the best
relay node

High computational com-
plexity. Evaluation is based
on different parameters of
the algorithm and SP

MATLAB,
NS-3 SP

[81] To address overhearing in asyn-
chronous SDWSNs

Mathematically express the effects of
multi-channel operations and control the
transmitting range

No performance evaluation
against other SDWSN ap-
proaches

Numerical
no
specified

None

[82]

To develop an energy-optimised
congestion control algorithm for
Wireless Body Area Networks
(WBANs)

A routing algorithm that considers the
thermal dissipation of nodes, and selects
relay nodes considering the temperature
and energy

No SDWSN KPIs effects
were evaluated including
control overhead

MATLAB
Other
WBANs
protocols

TABLE 8. Relevant SDWSN research works that aim to identify and improve security issues.

Ref. Type Description

[86] Survey paper It provides information on the security challenges present in WSNs and SDN, which are transferable to SDWSNs. Threats
and countermeasure techniques are also presented.

[15] Survey paper
This is a survey paper on SDWSNs. However, this paper provides a security section that surveys security challenges of WSNs,
discusses security challenges brought by the introduction of SDN into WSNs, and provides information on the security threats
present in SDWSNs and their consequences.

[87] Research paper This paper performs an analysis of security issues in SDWSNs. It discusses the security issues that need to be addressed and
the already proposed solutions. They provide a summary of challenges, countermeasures actions, tools and research directions

[88] Research paper It presents a group key distribution scheme based on physical unclonable functions (PUFs) for SDWSNs. They minimised the
communication overhead and latency for securely distributing secret keys. They run their experiments using SDN-WISE [72].

[89] Research paper

They proposed ETMRM, which is an energy-efficient trust management and routing method for SDWSNs. The design goals
are to address security and energy aspects simultaneously. ETMRM handles malicious forwarding attacks including new-
flow and selective forwarding attack. Simulation results, based on the SDN-WISE project, show that ETMRM detects and
responds to forwarding attacks, and improve KPIs including control overhead, NL, and PDR.

[90] Research paper

This paper presents a Denial of Service (DoS) attack detection mechanism for SDWSNs. The proposed approach is
lightweight, and it can even run on resource-constrained devices. The algorithm was evaluated using both clustered and
non-clustered network architectures. The cluster-based approach used less memory while running the algorithm on every
node reduced the packet traffic.
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TABLE 9. Relevant SDWSN research works that minimise the delay.

Ref. Specific aim Approach Disadvantage

[91] Eliminate dependency on a single controller
and minimise the delay A multi-controller architecture CTP outperformed TinySDN when packets

are sent to the sink after setting up the flow

[92]
To study the viability of fragmented con-
troller architecture as a method for dis-
tributed controllers

A fragmentation method that uses a two-
level control structure

Higher network traffic than distributed and
centralised architectures

[93]
To compare different protocols for low-
power IoT networks including SDWSN, Zig-
Bee and 6LoWPAN

Experimentally evaluate the protocols based
on Packet Loss Rate (PLR), RTT, overhead
and throughput

SDWN outperforms ZigBee and 6LoWPAN
in terms of RTT and PLR; however, SDWSN
showed poor performance in dynamic envi-
ronments

[94]
The main goal is to reduce redundant data
and minimise the latency in the low-power
IoT network

A predictive data selection module that
makes use of historical data and Mutual In-
formation (MI) as feature selector, an event
identification module, and data sensing mod-
ule with time constraints

Edge servers can increase deployment costs

3) Delay

This metric is of great importance in sensitive applications
such as health monitoring, target tracking, control systems
and fire hazard monitoring applications that require prompt
reactions to prevent loss of lives and valuable resources. Ta-
ble 9 compares research works that strive to reduce the delay
in SDWSNs. We can see that few papers addressed the delay
in SDWSNs directly, it is addressed indirectly in other works.
Overall, it has been demonstrated that SDN-based WSNs has
the potential of reducing the network delay in comparison
with traditional WSNs, as most of the processing has been
removed from the sensor nodes. However, it has been also
demonstrated that SDWSN works better for static or quasi-
static WSN deployments than in dynamic environments as
the increased overhead. There is a call for research efforts to
make the most of SDWSNs and take advantage of the global
view of the network to create new approaches that minimise
the delay even in dynamic environments while maintaining a
low control overhead.

4) Reliability

This metric assures that the collected data is delivered cor-
rectly to the receiver. Table 10 compares research works that
aim to improve the reliability of SDWSNs. Similar to the net-
work delay, the network reliability has also been addressed
indirectly in other research works. SDWSN architectures
grant centralised network monitoring to anticipate potential
issues that may impact negatively the network reliability. We
can see that an increase in network reliability compromises
the performance of other key network metrics. There exist
a trade-off between network reliability and other KPIs (this
also applies to traditional WSNs) such as energy consump-
tion, control overhead, delay, etc. This has to be studied in
detail to evaluate and quantify the impact on network per-
formance when increasing network reliability. However, it is
expected that centralised architectures such as SDWSN bring
more advantages over traditional WSNs to come up with
new innovative algorithms to predict network performance
indicators to make better network decisions.

5) Control overhead
Since control packets in SDWSNs share the same communi-
cation medium with data packets, it is of great importance to
maintain a low level of control packets to avoid negatively
impacting KPIs such as residual energy of sensor nodes
and the PDR. Many research works [66], [102], [103] have
indirectly addressed this metric.

Control overhead is a key performance metric to consider
when designing SDN-based WSNs. From Table 11, we can
see that there exist multiple approaches to minimise the con-
trol overhead. They can range from architectural designs such
as cluster-based architectures, intra-cluster routing and SDN
control routing, and techniques to avoid the extra control
overhead such as routes checksum, FSMs, threshold func-
tions, etc. The best technique for control overhead reduction
is closely related to the application requirements as there ex-
ist evident performance trade-offs between them. The overall
benefit that SDN brings to WSNs can be overshadowed by
the unmanageable control overhead that can be generated if
not proper design measures are put in place.

C. FULLY REPROGRAMMABLE MECHANISMS
Other research works considered alternative architectures
where the WSN can be fully reprogrammable, which includes
both software and hardware.

Portilla et al. [109] proposed a modular architecture for
wireless sensor nodes using a microcontroller and a Field-
Programmable Gate Array (FPGA) for the processing layer,
and Bluetooth radio for communications. The microcon-
troller manages the radio communications and the analog
and digital sensors, whereas the FPGA processes complex
operations. Natheswaran et al. [110] proposed a remote
reconfigurable wireless sensor node with a soft processor
which is a microprocessor core that can be implemented
using logic synthesis. Miyazaki et al. [111] proposed an
SDWSN that uses a role generation and delivery system in
a reconfigurable WSN. They used a combination of FPGA
and MCU to avoid overloading the MCU. The MCU handles
the network behaviour while the FPGA performs energy-
intensive functions. Although these works bring flexibility to
reconfigure sensor nodes, the utilisation of reprogrammable
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TABLE 10. Relevant SDWSN research works that improves the reliability of SDWSNs.

Ref. Specific aim Approach Disadvantage

[98] To address mobility management in indus-
trial WSNs

They use the Time Slotted Channel Hopping
(TSCH) protocol, which has fixed length times-
lots, where multiple pair of nodes communicate
without collisions by using different channels

Network growth implies higher delays and
scheduling complexities. Offline scheduling

[99] To minimise the traffic load
Optimisation problem that selects optimal relay
sensor nodes and minimise the transmission of
redundant packets.

No improvements demonstrated against
other SDWSN and WSN approaches

[100] To maximise the network reliability by
adopting adapting flow schemes

They formulate an integer linear programming
problem to obtain the optimal number of APs
and the flow manager implements the flow rules
at the APs

Redundant flows and increased overhead due
to wrong location predictions

[101] To enhance network reliability and minimise
the latency in low-power IoT networks

To use synchronous flooding (SF) architecture
to dynamically reconfigure SF protocols to ac-
count for SDN control requirements. It divides
the network operation into timeslots where con-
trol packets are sent through a dedicated control
timeslots

Scalability issues due to concurrent trans-
missions for large dense networks

TABLE 11. Relevant SDWSN research works that address control overhead.

Ref. Aim Approach Disadvantage

[63] To reduce the control overhead

Aggregate packets to common destination and a
checksum function that prevents the controller
from sending configuration packets with routes
that are already known by the destination

A single communication dead link can trig-
ger a generation of a new control packet

[104] To reduce both control and data packets re-
sulting in an improved network lifetime

A threshold function whose value is automat-
ically calculated using the data collected from
the network. Nodes forward flow setup request
packets whose data value is equal to or greater
than the calculated threshold value

The threshold function can compromise the
network performance, e.g. delay of the con-
troller’s response to a change in the network

[105] To reduce the control overhead traffic in
topology discovery and packet forwarding

CHs and neighbouring nodes discover the con-
troller using its nearest CH. Sensor nodes send
data packets through CH nodes

CHs can exhaust their resources faster

[72] To reduce the control overhead
Sensor nodes are programmed as Finite State
Machines (FSMs) so they can still make deci-
sions without contacting the controller

The controller may not react to changes
promptly

[106]
To minimise the control overhead and to bal-
ance the sender waiting time and duplicate
packets when sensor nodes are in duty-cycle

MINI-FLOW southbound protocol. Control
overhead is reduced using a heuristic algorithm
that manages up-, down- and intra-links flows

Periodically flow update increases network
consumption

[107] To reduce the control overhead in SDWSN
A hybrid approach where each sensor node
runs an in-cluster routing mechanism and the
controller manages routing among clusters

The controller does not have full control of
individual sensor nodes

[108] To remove the control overhead from the
data communication channel

The control traffic is separated from the data
communication channel. They use a long-range
SubGHz interface to send control packets in
a one-hop fashion. The data communication
channel uses a short-range interface with a data
rate of 250kbps

Increased energy consumption due to the
dual-stack network radio interfaces

hardware enlarges the complexity of the design and cost. Be-
sides, energy consumption in FPGAs is an issue as discussed
in [112]. However, the greatest advances in FPGAs with
ultra-low power consumption characteristics have extended
their use to WSNs [113]–[115].

To achieve the full promise of SDWSNs, the wireless sen-
sor nodes should allow top-layer applications to reconfigure
their functionalities by executing different programs. In this
way, sensor nodes can be seen as small-scale computers with
multiple sensing capabilities.

D. NETWORK TOPOLOGY AND MANAGEMENT
PROPOSALS

Network management is complex and challenging in net-
works. Some functionalities include network provisioning,
configuration, and maintenance [116]. The implementation
of management tasks can lead to a steep increase in the use
of sensor resources.

One of the main goals of SDN is to facilitate network man-
agement. It is envisaged that SDN architectures can help to
make smarter decisions and improve the management of vital
WSN resources. From Table 12, we can see that implement-
ing network management solutions implies an increment in
control overhead. For example, add-on systems on top of
6LoWPAN grant a global view of network resources but large
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TABLE 12. Relevant SDWSN research works that address network topology management.

Ref. Aim Approach Disadvantage

[117] A management system for low-power
IoT networks

Device management to control sensor nodes indi-
vidually and topology management to control rout-
ing paths

Different communication technologies IEEE
802.15.4 [41] and IEEE 802.11 [46] can lead
to an increased network design complexities
and energy consumption

[116] An SDN-based management solution
for WSNs Controller placements at base stations Preliminary proposal with no evidence of

improving network management

[118]
To facilitate network service adaptabil-
ity and network management in mission
critical applications

A practical implementation in NS-3 based on the
OpenFlow protocol

No evidence of network performance im-
provement achieved related to traditional
WSNs

[119] To enable network management in
6LoWPANs Network management over 6LoWPAN layer

High energy-intensive functions still reside
in the 6LoWPAN layer. Large control over-
head

[120] Network management for 6LoWPANs

To avoid altering the working principles of nodes,
SD-6LN installs SDN features in the existing net-
work infrastructure as an add-on system. SD-6LN
merges common features of the SDN and 6LoW-
PAN protocol stack to manage nodes and process
packets more efficiently

High energy-intensive functions still reside
in the 6LoWPAN layer. Large control over-
head

[121] A generic SDN-based modular manage-
ment system for WSNs

They introduced the concept of management modu-
larity using a Management Service Interface (MSI)
that eases the insertion of management units as
modules

Control overhead still an issue: fusion and
flow-rule aggregation techniques needs to be
studied in-depth

[122] A SDN-based measurement architecture
for WSNs

Practical implementation, on TinyOS, of the man-
agement of multiple measurement tasks

No evidence of network performance im-
provement achieved related to traditional
WSNs

[123]
An SDN-base management solution de-
signed for edge computing multidomain
WSNs

Dynamically provision devices, detects operational
failures and control devices over the low-power IoT
network. It is deployed at the edge computing nodes
and uses the cloud

No control overhead analysis and improve-
ment achieved related to traditional WSNs

[124] A QoS-based technique to actively man-
age network resources in SDWSNs

It dynamically performs path computation to con-
trol network traffic. It provides flexibility to perform
resource alignment on different network tasks

No control overhead analysis and and im-
provement achieved related to traditional
WSNs

and complex processing functions still are in the protocol
stack. Also, some works lack control overhead analysis and
the implication in network performance when making the
WSN manageable using SDN concepts.

E. CONTROLLER PLACEMENT WORKS
The placement of the controller directly influences the WSN
performance. Among the most important performance met-
rics to optimise are energy consumption and NL. The SDN
controller can be placed in such a way that minimises the en-
ergy consumption of sensor nodes; however, this not always
the optimal solution to prolong the NL of the network be-
cause the solution to this optimisation problem can be found
in a low density area, resulting in an inefficient resource
management in the neighbourhood of the controller [130].
Therefore, sensor nodes that lie in the proximity of the con-
troller drain their energy first, resulting in a shorter NL. Ta-
ble 13 presents research works that aim to solve the controller
placement to improve network performance in SDWSNs.
As we can see, the controller placement in SDWSNs has
not been widely studied in the current state of the art; this
can be largely influenced as SDWSN is still at the proof-
of-concept stage where most of the research efforts lie in
the conceptualisation of it. Besides, the controller placement
has been extensively studied in SDN; however, it should
be studied in detail for SDWSNs as they impose different
resource requirements. A survey on controller placement in

SDN can be found in [131], [132], a study on performance
evaluation in [133].

V. MACHINE LEARNING OVERVIEW

ML is part of AI that studies computer algorithms to mimic
human learning and gradually improve its accuracy. ML is
a hot topic and a growing field that has caught tremendous
attention among IoT stakeholders. ML algorithms are trained
to perform prediction and classification tasks, uncovering
vital characteristics within the data. Typical tasks involved
in the solution of a ML problem are:

(i) Data collection: it usually requires a considerable
amount of time to complete this task. It can consist of
data acquisition tasks, data labelling and adding new
data to already existing datasets.

(ii) Data preparation: it is a key step to process raw data
and turn it into meaningful and clean data before any
training is performed (training is explained in (iv)).
Feature engineering is often used to make the collected
data better suited to the problem at hand. Tasks include
data normalisation, dealing with missing values, data
transformation, etc.

(iii) Choosing a model: this step consists of selecting the
right model for the problem. There exist multiple ML
models for different purposes. Some are introduced in
this section.
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TABLE 13. Relevant SDWSNs research works that address the controller placement problem. The checkmark (3) and cross (7) symbols depict whether the
specific aim is addressed in the referred article or not.
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[125] 7 3 7 3 7 Finding the exact number of controllers required for a specific network topology using GA and GRASP algorithms.
[126] 7 3 3 7 3 Placement optimisation problem using thee Cuckoo optimisation algorithm.
[127] 7 3 3 3 3 Optimal controller placement using the Cuckoo optimisation algorithm.

[128] 7 3 3 7 7
Two approaches for optimal placement were discussed: k-means for local controllers and k-centre for global
controller.

[129] 3 3 7 7 7
A multi-objective optimisation solution to select the SDN controllers that route, uplink, control and data packets
considering multi-objective parameters.

FW

Aim

Approach

(iv) Training: training the model is the bulk task in ML.
This is an iterative task that aims to use the training
set to improve the prediction of the model at each
cycle. Supervised learning uses labelled sample data,
whereas unsupervised learning makes inferences from
unlabelled data.

(v) Testing: it evaluates the accuracy of the learned function
using the test dataset. The test dataset is a slice of the
dataset and is used to evaluate the accuracy of the model.

(vi) Parameter tuning: testing multiple algorithm param-
eters (e.g., learning rate) and selecting the one that
improves the model precision.

(vii) Deployment: deploy the model and test the prediction
outcomes of unforeseen data.

The above are generic steps to follow to solve ML problems;
however, some ML techniques such as AutoML and DL
automates much of these tasks.

This section briefly introduces the reader to the most
widely used ML techniques currently found in the state-of-
art of ML. Readers interested in thorough discussions on ML
theory please refer to [134]. ML techniques can be grouped
into four different groups: supervised, unsupervised, semi-
supervised and Reinforcement Learning (RL). Given their
current widespread usage, in a separate subsection, we intro-
duce DL, which can be employed in supervised, unsupervised
and semi-supervised paradigms.

A. SUPERVISED LEARNING
Supervised learning uses a set of input data X and a set of
labels Y . For every sample x, a label y has been assigned,
where x ∈ X and y ∈ Y , and these can be represented
in pairs (x1, y1)...(xn, yn). The goal of supervised learning
is to learn a mapping function that matches a given input
(xn+1) to a label yi. Since the labels in the training set are
known, this set of algorithms are called supervised learning.
Supervised learning requires a huge burden when it comes
to data labelling, but there are efforts out there to reduce this
burden by relying, for instance, on weak supervision. This
set of algorithms can be further classified into regression
and classification depending on the type of output label.

Regression algorithms are used to predict continuous values
such as salary, cost, etc., whereas classification algorithms
are used to assign a class label to a given input. Between
the most popular supervised learning algorithms, we can find
K-Nearest Neighbour (k-NN), Naive Bayes, Decision Tree
(DT), Neural Networks (NNs), and Support Vector Machines
(SVMs), which are discussed in [19], [21].

B. UNSUPERVISED LEARNING

In comparison with supervised learning, unsupervised learn-
ing algorithms just relies on the input data X . The input
data is presented to the algorithm without any tags or labels
(unlabelled examples). The goal of unsupervised learning is
to create a model that automatically learns from the sample
data and identify patterns (features) in order to classify
them into groups. Data points within groups share similar
characteristics (e.g., highest energy level, malicious nodes,
etc.). Unsupervised learning uses a probability distribution
P (x) given x, whereas supervised learning uses conditional
probability distribution P (x|y) given the target vector y.
Unsupervised learning is often applied to solve three main
applications: (i) clustering groups data points that share simi-
lar characteristics, (ii) outlier detection (anomaly detection)
that predicts how far a given feature vector is from the
unlabelled examples. (iii) reduced dimensionality that aims
to reduce the number of features in the input vector. The
most widely used unsupervised learning algorithms are K-
means clustering and Principal Component Analysis (PCA).
A thorough discussion on unsupervised learning techniques
and applications can be found in [19], [135].
Overall, supervised learning uses labelled data to train the
model. Labelling the data may be a complex and time-
consuming task as it requires human intervention, special
instrumentation, experiments, etc. It also requires more com-
puting resources for training, especially for large datasets.
Whereas unsupervised learning learns the data, classifies and
make inferences of it without any labels (unlabelled data is
easy to collect). It is less complex than supervised learning as
it is not required to fully understand the data. It is very useful
in finding patterns. But, it has less accuracy than supervised
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learning.

C. SEMI-SUPERVISED LEARNING
Semi-supervised learning is a ML technique that is built-
upon a synergy between supervised and unsupervised learn-
ing. In its feature space, semi-supervised learning uses a
small set of labelled data (x1, ..., xn ∈ X) along with a large
set of unlabelled data (xn+1, ..., xn+u ∈ X). The used of la-
belled and unlabelled data can significantly improve learning
accuracy. It is often found that the collection of labelled data
is a costly task as it requires skilled human intervention. It
can lead to large and fully training sets infeasible. In contrast,
the collection of unlabelled data is relatively inexpensive.
In such applications, the use of semi-supervised learning
is a good choice. Semi-supervised learning strategies focus
on extending either supervised or unsupervised learning by
using information known by the other learning paradigm. It
can be used in two main settings:

1) Semi-supervised classification: this can be seen as an
extension of the supervised classification problem that
assumes there are much less labelled data than unla-
belled data. The main goal is to train a model from
both data types (labelled and unlabelled) such that the
resulting accuracy is much better than the supervised
model trained on the labelled data only.

2) Constrained clustering: this can be seen as an extension
of unsupervised clustering. It uses some supervised
information about the clusters as well as unlabelled
data. The main goal is to form better clusters than the
clustering obtained using unlabelled data only.

There exist other semi-supervised learning settings such
as regression, dimensionality reduction, etc. [136]. Overall,
semi-supervised learning may achieve the same or better
performance than supervised learning but using less amount
of labelled data leading to a reduction in costs, and better
clustering than other clustering algorithms that rely on unla-
belled data only. But, semi-supervised learning may increase
computational resources as it processes more data and re-
quires more memory. In addition, the outcome accuracy may
deteriorate with the use of unlabelled data as the use of more
data does not necessary mean that the algorithm will perform
better. More detailed information on semi-supervised learn-
ing can be found in [136].

D. REINFORCEMENT LEARNING (RL)
In contrast with supervised and unsupervised learning, RL
uses Intelligent Agents (IAs) to take actions in the envi-
ronment so it can maximise the notion of the accumulative
reward. Also, it does not need labelled examples as in super-
vised learning. RL uses the trial and error approach, where
decisions are made sequential (one after the other). RL is
typically modelled as a Markov Decision Process (MDP),
where the set of environment and agent states is defined as
S, the set of actions taken by the IA is defined as A, the
probability of transition from state s to state s′ under action

a is defined as Pa(s, s
′), and the immediate reward after the

previous transition is defined as Ra(s, s
′). The main goal

of RL is to learn an optimised policy that maximises the
reward function [137]. More detailed information on RL can
be found in [138].

E. DEEP LEARNING (DL)
DL can be seen as an extension of NNs. In general, a
NN with an input layer, multiple hidden layers with non-
linear activation functions and an output layer is consid-
ered a DL network. Here, the use of non-linear activation
functions is key as it allows the network to solve complex
non-liner problems. As in NNs, each layer in DL contains
units (neurons). They can have multiple inputs and make
weight associations that are updated based on the error and
learning rules. DL architectures that have been applied to
WSN applications include Convolutional Neural Networks
(CNN) [139], Recurrent Neural Networks (RNNs) [140],
and Autoencoder (AE) [141]. Readers interested in thorough
discussions on DL algorithms, techniques and applications
shall refer to [142].

VI. MACHINE LEARNING SOFTWARE-DEFINED
WIRELESS SENSOR NETWORK (ML-SDWSN)
A typical ML-SDWSN architecture comprises the three SDN
planes and a machine learning module. The ML module
works as an add-on system that can be easily installed within
the SDWSN architecture as shown in Fig. 4. It can be found
in two distinct locations: at the control plane (1) or the
application plane (2). The location of the ML module within
the SDWSN architecture is upon the network designer, user-
and application-specific requirements, and available network
resources. Installing the ML module at the control plane,
which can be built upon multiple controllers, will require
the layer to supply all the resources needed for the correct
functioning of the network such as enough CPU power to
cope with the ML processing needs and memory require-
ments. The module relies entirely on a single plane; there-
fore, minimising system failure and network latency as it
removes eventual communication outages at upper layers and
reducing communication bottlenecks. Whereas, installing the
ML module at the application plane frees computing re-
sources at the control plane. It also permits to compute
of high processing-intensive functions in a remote location
with higher processing resources, therefore, reducing the
processing delay. However, the network outage at the upper
layers can limit the ML-SDWSN system to act immediately
to changes in the data plane; therefore, impacting negatively
the network performance.

This section provides relevant research efforts in theo-
retical works and strategies of adopting ML techniques in
the context of SDWSNs. The nature of the SDWSN cen-
tralised architecture opens up new research opportunities to
experiment with ML techniques embedded in the SDWSN
architecture to improve the overall WSN performance. Here,
we first group research works based on the specific network
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FIGURE 4. A simple representation of an ML-SDWSN architecture with (1) the ML module embedded in the control plane and (2) the ML module embedded in the
application plane.

problem they address. At the end of this section, we discuss
and compare the surveyed ML-SDWSN approaches. Readers
interested in ML techniques applied to SDN please refer
to [16].

A. MOBILITY
Technological advances and the introduction of the IoT
have enabled new emerging mobile IoT applications such as
monitoring and tracking systems for a variety of everyday
human activities including sports, health care and entertain-
ment [143]. Current routing protocols of choice for IoT
have not been designed for such applications. Researchers
have lately used ML techniques to tackle mobility in WSNs
through SDN.

1
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FIGURE 5. Mobility detector scenario [144].

Theodorou et al. [144] proposed SD-MIoT, which is an
SDN-based solution for mobile low-power IoT applications.

SD-MIoT aims to reduce the control overhead by detecting
the mobility behaviour of sensor nodes. The mobility detector
uses network adjacency matrices built upon collected sensor
data at the controller. Given a simple mobility scenario as
shown in Fig. 5, the mobility detector build a connected graph
G = (N,E) whereN is the set of sensor nodes andE the set
of communication links between sensor nodes. It then builds
the adjacent matrix At, at time t, of G. Where each element
of At(i,j) is defined as:

At(i,j) =

{
1 ∀i, j if node i and j are connected
0 otherwise

(1)

To detect connectivity changes, a square transition matrix is
calculated at two subsequent adjacent matrices as follows:

Tt = ||At −At−1||
...

Tt−(k−2) = ||At−(k−2) −At−(k−1)||

(2)

The transition matrix will contain rows, which represents
sensor nodes, with connectivity changes. If all elements of
a particular row have a zero value indicates that there are
no changes for that row (node); therefore, it is assumed
that the sensor node is a fixed node. When multiple con-
nectivity changes are detected in a row (sensor node), it is
assumed to be a mobile node. When a single connectivity
change is detected, the mobility status of the sensor cannot
be defined; however, a simple moving average is tuned to
find the best window to allow early connectivity detection
while minimising the number of false positives. Then, the
mobility detector applies the k-means cluster algorithm to
separate static nodes from mobile nodes. The routing pro-
tocol proactively and constantly deploys forwarding rules to
mobile nodes, therefore, reducing the control overhead. The
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decision module based on ML is placed in the application
plane of the SDWSN architecture.

Data plane

Control plane

Cellular network

IEEE 802.15.4

UAV

ML module

FIGURE 6. An ML-SDWSN architecture with an Unmanned aerial vehicle
(UAV) [145] .

SDN-(UAV)ISE is introduced in [145] for WSNs with data
mules. The network architecture, shown in Fig. 6, comprises
a data plane based on low power sensor nodes, a cellular
network base station to enable communication with the UAV
and the control plane that host the ML module. The drone,
which acts as a mobile node, serves as a relay node to the
SDN controller. The ‘set cover problem’ is used to find the
optimal position to reduce the number of destinations to
visit, thus, minimising energy consumption and time. A DT
algorithm is used to predict the medium-long term mobility
of the drone. The training dataset is constantly updated using
the collected data of sensor nodes. The forecasted movements
of the drone permit to forecast of the topology changes, so
the flow table is created beforehand to reach the drone, thus,
reducing the number of control packets generated. SDN-
(UAV)ISE reduces the control overhead specially when the
topology changes.

Roy et al. [146] proposed a RL based adaptive topology
control approach. This approach is used in a WSN with
mobile nodes to improve network latency, PDR and energy
efficiency. It is then demonstrated that RL presents poor
overall QoS when mobility is erratic. They then discuss the
use of supervised learning algorithms (e.g. Recurrent Neural
Network (RNN)) to identify nodes with low periodicity to
mitigate their impacts on QoS.

Table 14 compares research works that have tackled cur-
rent mobility challenges in WSNs by combining ML algo-
rithms with SDWSN concepts. These research works are
the starting point for new innovative approaches to solving
mobility issues in SDWSNs and traditional WSNs.

B. SECURITY
The broadcast nature of WSNs imposes unique challenges.
Traditional security solutions cannot be applied directly. Sen-
sor nodes are resource-constrained devices, while most of the
traditional techniques require processing-intensive functions.

Sensor nodes are also deployed in harsh environments, mak-
ing them susceptible to physical attacks, and finally, sensor
nodes often interact closely with the physical environment
and people, creating new security issues [147]. A simple rep-
resentation of an ML-SDWSN architecture with watermark
enabled is depicted in Fig. 7. SDN-based approaches open up
new opportunities to solve the above-mentioned challenges in
WSNs.

Miranda et al. [151] proposed a collaborative security
framework for SDWSNs. It includes an Intrusion Detection
System (IDS) in the data plane and an anomaly detection
solution near the data plane. A smart monitoring system
along with an SVM algorithm is used to improve anomaly
detection and mitigation by isolating malicious nodes. At
the data plane, CHs generate and embed watermark to data
and the sink node runs a watermark detection algorithm to
ensure the accuracy of recurrent authentications while imple-
menting data integrity inspections. Kgogo et al. [148] also
proposed an IDS using ML to identify which ML algorithm
performs better in the detection of threats and attacks. The
algorithms tested were DT, SVM, and logistic regression. Re-
sults demonstrated that the SVM model is the most effective
in detecting both normal and anomaly instances, followed
by DT. However, DT is the most efficient and effective in
detecting network intrusion in real-time, so the SDWSN can
react to any intrusion instantaneously. A comparative study
of three AI approaches for IDSs using SDWSNs is pre-
sented in [152]. The SDWSN controller comprises three main
functions: (i) The flow collector which collects the network
information, (ii) the anomaly detector which detects any
abnormal behaviour in the networks, and (iii) the anomaly
mitigator which serves to counteract the detected anomaly.
The three AI-based approaches used are DT, Naive Bayes,
and DL. Results show that the Naive Bayes approach is best
suited for SDWSN applications where the controller has re-
stricted memory capabilities,e.g., the controller is embedded
in one of the sensor nodes, and it also shows fewer energy
consumption requirements. For SDWSN applications where
the controller memory size is not a concern, e.g., external
or cloud-based controllers, the DL or DT anomaly detector
can be used. However, the DT approach presents the best
overall performance for detecting anomalies, especially, for
delay-sensitive applications. Chen et al. [149] presented an
ML-based DDoS attack detection system. They deployed
various wireless sensor nodes in eight poles to collect the
data. They extracted the features based on the execution of
multiple DDoS attacks including ICMP flood, SYN flood,
and UDP flood, with different periods and duration times.
Results show that DT achieved over 97% accuracy. Zhao
et al. [150] proposed a trusted link-separation method for
SDWSNs in adversarial environments. They consider both
routing efficiency and security. They use a Bayesian-based
model to evaluate sensor nodes’ trustworthiness based on
their communication interactions. They formulate a multi-
objective optimisation problem for the trusted link-separation
multipath. The optimisation problem is solved using a greedy
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TABLE 14. Research works that applied ML in the SDWSN architecture to tackle mobility issues present in traditional WSNs.

Ref. Year Aim ML technique Improvement Main drawback

[144] 2020 Mobility K-means to categorise static
and mobile nodes

Reduced control overhead and improved
PDR by proactively deploying flow
rules to sensor nodes

Mobility false positives

[145] 2020 Mobility &
reliability

DT to predict mobility of the
drone

Reduced control overhead and energy
consumption and improved PDR

Additional complexities involved in
the operation of the drone

[146] 2021 Periodic mo-
bility

RL for periodic mobility &
nearest centroid Lower network latency Considerable learning time for move-

ments of high periodicity

Cluster head

Relay node
Watermark

Sink Watermark extraction

SDWSN controller ML module

Wireless sensor node

FIGURE 7. A simple representation of an ML-SDWSN architecture with watermark enabled.

TABLE 15. Qualitative comparison for ML-SDWSN approaches that strive to solve security issues present in traditional WSNs.

Ref. Year Aim ML technique Improvement Main drawback

[148] 2019 Security
(IDS)

DT, SVM, & logistic regres-
sion

Evaluation of ML algorithms that per-
form better in detecting threats and attacks.
Real-time detection

Detection rate relatively low

[149] 2020 Security
(DDoS)

DT to identify different types
of DDoS attacks

A ML-SDWSN system that detects and
mitigates three types of attacks with high
accuracy

A relative high packet overhead due
to the use of IP-enabled network

[150] 2020 Security
(trust)

Bayesian approach to compute
nodes’ reputation

Improved routing security and efficiency of
transmission paths Problem complexity

[151] 2020 Security SVM for anomaly detection
and mitigation

Improves anomaly detection rate, lower
computational complexity, and reduces
false alarms

An increase in packet sizes and com-
putational resources at sensor nodes

algorithm.
Table 15 presents a qualitative comparison of research

works that aim to tackle security vulnerabilities in WSNs us-
ing ML-SDWSNs. These works have demonstrated that ML
is a good candidate to overcome the security vulnerabilities
currently present in traditional WSNs and SDWSNs, without
putting at risk valuable and scarce network resources.

C. ENERGY EFFICIENCY

This metric has been previously introduced in Section IV-B1.
Here, we group research works that use ML techniques to
improve energy efficiency in SDWSNs.

Huang et al. [153] proposed an SDWSN prototype to im-
prove energy efficiency in environmental monitoring appli-
cations. They use RL to perform value-redundancy filtering
and load-balancing routing that can adapt to environmental
variations and network status, improving energy efficiency

and adaptability of WSNs for environmental monitoring ap-
plications.

Banerjee et al. [154] proposed an RL approach to control
the transmission range of SDWSNs with moving nodes.
Sensor nodes have multiple transmission power levels, and
to decide the optimum power level an Epsilon(ε)-greedy
algorithm is used. This RL approach gains knowledge from
the velocities of successors and link quality metrics such
as RSSI, packet reception rate, and attenuation. Younus et
al. [155] combined RL and SDN concepts to devise a new
routing algorithm for SDN-based WSNs that enhance the
overall network performance. For the RL algorithms, they
used the Q-learning [156] approach to choosing the best
routing path from the routing list obtained by the Spanning
Tree Protocol (STP). Simulation results show a prolonged NL
and an improved PDR.

To prolong the NL of the SDWSN, an RL approach that
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TABLE 16. Qualitative comparison for ML-SDWSN research works that strive to improve the energy efficiency in traditional WSNs.

Ref. Year Aim ML technique Improvement Main drawback

[153] 2015 Energy
RL for value-redundancy filter-
ing and balancing the routing
path

Improved energy Scalability issues

[157] 2017 Energy Fuzzy logic to choose the best
relay node Extended NL and reduced PLR Relatively high control overhead due

to sensor reporting

[158] 2020
Energy
& control
overhead

Markov model to predict the
energy consumption of sensor
nodes

Reduced control overhead Higher processing energy and mem-
ory use in sensor nodes

[154] 2020 Energy (Tx
range)

RL for transmission range con-
trol

Improved energy consumption, de-
lay and throughput

Network reliability due to the adap-
tive transmission range

[159] 2020 Energy (NL) RL for extended NL Extended NL A relative high packet overhead due
to the use of IP-enabled network

[160] 2021 Energy (NL)

A DRL approach that finds
energy-efficient paths by us-
ing a reward function based on
CNN

Extended NL An increase in the number of hops a
packet needs to travel

[161] 2021 Energy
Markov chain prediction mech-
anism for energy consumption
in SDWSNs

Improved prediction accuracy,
PDR, delay, energy consumption,
control overhead, sensor nodes’
processing overhead

The performance can decay for large
WSN deployments

[155] 2021 Energy RL based on Q-learning for
routing path Improved NL and PDR It was not evaluated in large scale de-

ployments and no real-time data used

trains the SDN controller to optimise the routing paths is pro-
posed in [159]. The controller gets the rewards in terms of es-
timated path lifetime loss. The RL uses four reward functions
aimed to extend the NL and reduce energy consumption.
Results show a NL improvement of 23%-30% as compared
to RL-based WSN. Training the SDWSN controller to find
alternative energy-efficient routing paths has been studied
in [160]. They used a Deep Reinforcement Learning (DRL)
approach that configures routing paths avoiding the use of
sensor nodes with low energy levels. The reward expected
for forwarding packets to the next hop is estimated using a
deep neural network, mainly CNN. Results demonstrated that
the proposed approach achieved a prolonged NL compared
to existing state-of-art methods. This approach increases the
number of hops a packet needs to travel to reach the desti-
nation by finding alternative paths, rather than the traditional
SP, to avoid exhausting the energy of sensor nodes with low
remaining energy.

Abdolmaleki et al. [157] proposed a Fuzzy topology dis-
covery protocol for SDWSNs. They implemented a fuzzy
logic based SDN controller to improve network performance.
The fuzzy logic controller considers the neighbours, traffic,
workload level, and remaining energy of each sensor node
to choose the best forwarding node. Results show that the
proposed approach extended the NL by 45% and the PLR by
50%.

A reduced energy consumption and control overhead can
be achieved by using a model that predicts the energy
consumption of each sensor node. Rahimifar et al. [158]
proposed a Markov-based model to predict the future energy
consumption of sensor nodes. The controller predicts the
individual energy consumption of sensor nodes; thus, sensor
nodes avoid reporting energy levels to the controller. Nunez et
al. [161] proposed a Markov chain prediction mechanism for

SDWSNs. They compared the prediction model by running it
on every sensor node of the WSN and solely in the controller.
Experiments show that running the prediction algorithm on
the controller (moving the prediction out of sensor nodes)
increases the prediction accuracy and PDR while reducing
the delay, energy consumption, control overhead and sensor
nodes’ processing overhead.

Table 16 presents a qualitative comparison of research ef-
forts that have used ML-SDWSN concepts to further improve
the energy efficiency in traditional WSNs. These works took
advantage of the global view of the network granted by the
controller and the power of ML to discover energy-efficient
paths, optimal transmission range and energy consumption
predictions to extend the NL of WSNs.

D. RELIABILITY

To minimise power outages, which are due to a persistent
fault and over utilisation of distribution transformers (DTs),
of electrical distribution systems, a remote IoT monitoring
and fault prediction system is proposed in [162]. Their ap-
proach is a low-cost implementation of a distributed con-
troller architecture with wireless sensor nodes attached to
transformers. The LoRa sensor nodes are equipped with
a temperature, oil level, humming noise, and overloading
sensor. They act as a health tracker of the transformers.
The prediction system uses an NN algorithm, which runs
on the management plane for prediction on real-time sensor
traffic, to improve the smart-grid reliability, transformers
health check, and maintenance practises. This is a practical
implementation of SDN-based WSNs, and the use of ML to
improve the overall system performance.

Leveraging the global view of the controller, monitoring
the network infrastructure allows employing suitable traffic
engineering techniques to improve network performance. An
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TABLE 17. Qualitative comparison of relevant ML-SDWSN works that strive to improve the network reliability of traditional WSNs.

Ref. Year Aim ML technique Improvement Main drawback

[163] 2016 Interference Multivariate linear regression

An improvement in network reli-
ability by taking prompt actions
when identifying sources of inter-
ference

It lacks practical details regarding
physical implementation and perfor-
mance metrics.

[164] 2018 Spectrum RL for spectrum utilisation
Eliminates channel handoffs, which
are energy-intensive tasks, by pre-
dicting users traffic

Static CHs can exhaust their re-
sources faster

[165] 2018 Dynamic/real-
time routing

Multiple supervised learning
algorithms

Improves network performance by
selecting the best candidate for
routing protocol given the current
network status

A drop in PDR performance due to
retransmitted packets in the switching
phase

[166] 2019 Multi-controller
placement RL (DRL), and PSO Reduced waiting tasks and energy

consumption for controllers It lacks experimental validation

[162] 2019 Reliability NN that predicts network traf-
fic

Improved reliability for DTs by
handling future interruption and
faults

Locating the SDN controller in sen-
sor nodes can lead to exhaust its re-
sources faster

[167] 2020 Throughput
NN to minimise unsatisfied
user equipment and maximise
the throughput

Resources balanced to improve the
QoS It lacks experimental validation

[168] 2021 Network traffic DT, SVM and K-NN to inspect
network traffic

Timely decisions based on the ML
predictions

Tasks were not reprogrammed at the
sensor level

[169] 2021 Reliability regression, DT, SVM and NN Link quality
The deployment of ML models
within sensor nodes can negatively
impact the network lifetime

SDN-based IoT architecture is presented in [168] to perform
a time granular analysis of network traffic for efficient net-
work management. They used different supervised learning
algorithms including DT, SVM, and k-NN to examine the
network traffic. Results showed an overall accuracy rate
of over 90%, but k-NN achieved 98% accuracy. Other re-
search work that addresses network traffic by means of non-
supervised DL but from the wireless medium perspective, in
general, can be found in [170].

With the advent of Internet technologies, new applications
have emerged. Each application imposes different bandwidth
requirements. It is of great importance to have network
resources balanced to comply with strict QoS requirements.
The research work presented in [167] aims to minimise the
number of unsatisfied user equipment while maximising the
throughput of the network through load balancing. They used
an NN, which was improved using the fruit fly optimisation
(FOA) algorithm, to solve this problem. To comply with strict
network reliability requirements, a link quality prediction
model for SDWSNs is presented in [169]. The model focuses
on predicting the link quality between neighbouring nodes,
therefore, improving the overall stability of the routing paths.
They use multiple ML models such as; regression, DT, SVM
and NN with physical and logical parameters as inputs. The
physical parameter includes the RSSI metric, whereas the
logical parameter includes the reception of the historical
discovery packets. The trained model is then run at the sensor
nodes level. Simulation results show that the SDWSN and
ML, at the link-layer level, improve the network reliability by
avoiding the use of unstable wireless communication links.

Since the network infrastructure should dynamically adapt
to the user requirements, there should be a decision-making
stage that chooses the routing protocol that meets the user-

specific requirements. Misra et al. [165] proposed a situation-
aware protocol switching for SDWSNs. They designed an
adaptive controller that deploys the appropriate routing pro-
tocol based on the network conditions and application-
specific requirements. The decision-making stage is based on
a supervised learning algorithm, which trains the SDN con-
troller, therefore, it can dynamically switch among routing
protocols, as per user-specific requirements.

As the location of SDWSN controllers is key to enhancing
the network performance, it is of paramount importance to
find the best location that satisfies the user requirements. ML
has been recently being used to solve the multi-controller
placement problem in SDWSNs. In [166] an energy-aware
multi-controller placement solution using a PSO for min-
imising energy consumption is presented. Moreover, a DRL
algorithm resource allocation strategy is conceived to reduce
the waiting time of tasks.

Researchers have realised that cognitive radio technology
can be effectively used along with SDN abstractions to
enhance the utilisation of spectrum resources. In [164] a
sustainable SDWSN architecture with cognitive radio tech-
nology for efficient power management, channel handoffs
and spectrum utilisation is proposed. The proposed work
has an RL algorithm for efficient spectrum utilisation. The
network performance is improved by introducing new ca-
pabilities such as dynamically adaptation to spectrum and
interference conditions. Orfanidis et al. [163] also intended
to refine the robustness of the network by identifying multiple
sources of interference altering the network. They planned
to use a supervised statistical ML approach. A multivariate
linear regression algorithm was planned to use which runs
in the SDN controller. A testbed with multiple sources of
interference, such as Bluetooth [41] and WiFi [46] networks,
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FIGURE 8. Study case scenario: a simple representation of an in-vehicle ML-SDWSN with the control plane deployed at the edge node of the 6G infrastructure.

was proposed. The feature vector for the statistical model
proposed includes PDR, energy consumption, interference,
RSSI, end-to-end delay, and noise.

The use of ML in SDWSNs has already been explored in
the agriculture industry. To enhance the grain quality sold to
customers, an ML-based approach is proposed, in [171]. The
main objective is to classify the quality of the stored grain. In
the deployment, key environmental factors including temper-
ature, moisture and CO2 concentration levels are considered
and used as input for the ML models. The SDWSN controller
runs the ML models including the KNN, random forest, and
linear regression. Experimental results show that the random
forest algorithm performs better than the other classifiers in
separating high-quality grains from the infested ones.

Table 17 presents a qualitative comparison of ML-SDWSN
research works that aim to improve the WSN reliability
using ML-SDWSN concepts. These research papers have
demonstrated that by having real-time network information
(e.g., statistics) and using the power of ML, the controller

can promptly react to any network change (e.g., interference,
traffic, etc.) by setting up a new network configuration. This
allows the ML-SDWSN architecture to proactively provision
optimal resources to deal with potential threats that hamper
the network performance.

E. A CASE STUDY: IN-VEHICLE WSNS AND 6G

Due to the increasing number of sensors deployed in modern
cars, a growing interest has emerged in reducing the number
of wires connecting sensors to cars’ microcontrollers [172].
One way to minimise the wiring in modern cars is to use
WSN technology. Wireless sensor nodes, in small environ-
ments such as cars, are usually in one-hop distance from the
sink. A star topology may be used to connect all sensor nodes.
However, the high density of sensor nodes can lead to high
network interference and latency in a contention-based MAC
protocol [173]. The TSCH protocol provides both time and
frequency diversity for transmissions boosting the network
reliability [55]. TSCH reduces the communication and power
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overhead. TSCH relies on the scheduler that sets the com-
munication links for each cell (a specific time and channel)
in the slotframe. The transmission schedules highly impact
the performance of the WSN. They are usually designed and
scheduled to meet a specific requirement (e.g., reliability,
latency, energy, etc.). A star topology (case 1 in Fig. 8)
in TSCH leads to a large slotframe increasing the network
latency as the network density grows, whereas a tree topology
(case 2 in Fig. 8) enables parallel transmissions reducing the
network latency.

1) The role of ML-SDWSN and 6G
In TSCH networks, the communication schedules are as-
signed autonomously (e.g., orchestra [174]) or centralised.
SDWSN technology enables new ways to assign communica-
tions schedules. Network data is collected centralised such as
packet loss, link qualities, energy, etc. The control plane has a
global view of the network which makes the perfect environ-
ment as it has all the network information and resources to
decide on the best communication schedules that satisfy the
user or application requirements. Having the network data
at hand permits engineers and scientists to deploy bespoke
scheduling algorithms. These communication schedules can
also be assigned with the aid of ML algorithms. ML offers the
potential to anticipate communication links that will suffer
from interference when the car passes a specific road or
source of interference (a source of interference coming from
a motorbike in Fig. 8). ML can set the schedules that reduce
the latency of a sensor that is sending more frequent critical
data. ML can also dynamically update the schedules based
on the remaining energy of sensor nodes.

ML-SDWSN technology can be easily applied to intra-car
WSNs either utilising the car technology or the 6G infrastruc-
ture. Modern cars have powerful processing units in which
the control plane can run complex computational operations
with strict time and processing requirements. However, the
designing and planning of the upcoming sixth-generation
(6G) communication network has already begun. 6G is seen
as a disruptive technology that will go beyond the mobile
internet and will support ubiquitous AI technology at the
edge of the network. 6G is envisioned to offer computational
efficient dedicated hardware capable of running AI/ML algo-
rithms locally at the edge (see Fig. 8). The 6G infrastructure
creates the perfect computational environment to deploy ML-
SDWSN applications that impose stringent computational
requirements. Offloading the control plane from cars to the
6G network can significantly improve the processing and
communication latency, which is of high priority for delayed
sensitive applications.

F. DISCUSSION
ML-SDWSN is a new paradigm that has emerged due to
(i) the increasing popularity and demonstrated capability
of SDWSNs to enhance network performance, (ii) the ML
potential to further improve the network performance of SD-
WSNs, and (iii) the ML potential to overcome the concerns

raised when introducing SDN concepts in WSNs. From the
research works that adopted ML in the context of SDWSNs,
we can observe that ML-SDWSNs are still in an early devel-
opment stage. However, a notable exploration has been al-
ready achieved. ML techniques have been applied to a range
of network issues. To highlight, ML has been shown great
ability to reduce the amount of control overhead (packets)
flowing in the network, improving the network security and
energy.

1) Control overhead

SDWSN has shown great performance in solving challenges
currently present in traditional WSNs (see Section IV), and
reacting to dynamic changes in the condition of the environ-
ment (not being able to be solved with the current traditional
techniques of state-of-art WSNs). However, it has also shown
that the amount of control overhead needed to implement
SDN abstractions into the WSNs required appropriate at-
tention. The ML-SDWSN paradigm is seen as a promising
solution to reduce the amount of control overhead packets
required to implement SDN abstractions into WSNs.

The global view granted through the SDWSN architecture
permits the ML module to make accurate predictions allow-
ing the controller to act promptly to changes in the network,
provisioning proactively network resources, thus, reducing
the control overhead and energy consumption. An example
can be found in [144], where the SDWSN architecture col-
lects network information such as reports of neighbouring
nodes (also known as Neighbour Advertisements (NA)), and
the ML module classifies static nodes from mobile nodes.
The use of both SDWSN and ML technologies permits the
controller to configure optimal routes in mobile nodes, at a
precise time, to avoid them generating flow requests to the
controller to find the path to their destination.

2) Security

WSNs and SDWSNs are susceptible to security threats due
to their broadcast nature and centralised architectures. In-
truders can tamper with sensors and the overall network,
putting at risk valuable network assets and systems. Tradi-
tional security solutions applied to wired networks cannot
be applied directly in WSNs as most of the solutions require
processing-intensive functions. The use of both SDWSN and
ML technologies creates a new pathway to solve security
issues inherent to WSNs and not being easy to solve in state-
of-art WSNs due to their limited resources. The SDWSN
realises the network collection (e.g., sensor behaviour, energy
levels, raw data) and reconfiguration, while the ML module
runs a suite of algorithms that can easily classify problem-
atic nodes, identify network pitfalls, etc. Both technologies
enable the execution of appropriate actions to mitigate the
impact promptly.

ML-SDWSN grants an intelligent, centralised and
resource-aware mechanism to protect the network against
cyber-physical attacks. It frees up the processing and com-
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munication load of sensor nodes to implement security coun-
termeasures.

3) Energy efficiency
Monitoring applications are often deployed in harsh environ-
ments with difficult access to the electrical network. These
types of networks aim to run the programmed task for the
longest time possible. To achieve the longest NL multiple
solutions has been proposed [175]. SDWSN offers innova-
tive mechanisms to bring forward new solutions to such
problems (see Section IV-B1). The centralised architecture
creates a new setting to run novel algorithms at the logically
centralised control plane. ML has been used in SDWSNs
to balance the overall energy consumption to prolong the
NL. ML learns and identifies patterns from the information
collected from the sensor nodes. This data is used by the
ML module to configure e.g., new routing paths, at a precise
time, to minimise the main objective (e.g., overall energy
consumption, individual energy consumption, etc.). Research
results of ML-SDWSN works that aim to minimise the en-
ergy consumption show that ML-SDWSN technology is a
good candidate to further extend the NL of traditional WSNs
and SDWSNs. ML-SDWSN has not only been used for
finding the routing path that reduces the energy consumption
but it has also been used at the individual sensor node level.
ML can tune the ideal transmission range for sensor nodes,
thus minimising the transmission energy. Also, one of the
performance metrics to consider when devising a new routing
path for SDWSNs is the individual remaining energy of
sensor nodes. ML plays a role in predicting sensor nodes
remaining energy, minimising the need for sensor nodes to
report their energy level, therefore, minimising the control
traffic and energy in the network.

The reduction of energy consumption is a key performance
metric to consider when deploying monitoring applications.
ML has shown great potential to achieve this goal. How-
ever, care must be taken with the frequency of the network
configuration tasks, as this can negatively affect the network
performance.

4) Network reliability
ML plays a big role when comes to improving the network
reliability of traditional WSNs. ML uses the centralised infor-
mation collected through the SDWSN architecture to iden-
tify patterns. These patterns (e.g., traffic congestion times,
interference, nodes failures, task loads, etc.) are then used
by the control plane to reconfigure the network (provision
the network) to avoid a drop in the network reliability. For
example, the use of ML in SDWSNs has been used to
detect sources of interference and to trigger timely actions
to mitigate them. ML has also been used to detect periodical
heavy traffic links and to anticipate them by setting up new
routing paths.

Network reliability is a key objective when designing
WSN applications. There exist multiple solutions to enhance
the network reliability in WSNs. They can range from verifi-

cation at individual layers of the protocol stack up to end-to-
end verification. Although they are state-of-art mechanisms
to improve network reliability, they struggle to overcome
network-level traffic issues.

Overall, ML-SDWSN is built upon a multidisciplinary
area that puts together the best of communication networks,
software-defined networking and machine learning concepts
to go beyond the current state-of-art knowledge in SDWSNs
to facilitate WSN programmability without putting at risk the
network performance. However, there still is room to explore
ML techniques in SDWSNs, but, most importantly to evalu-
ate the benefits that ML brings to SDWSN, especially, against
traditional WSNs. Besides, a comparison of the two locations
of the ML module is needed (see Fig. 4) to appreciate the
significance and the applications for both architectures. ML-
SDWSN is a promising technology envisioned to evolve
along with the deployment of 5G and 6G networks including
SDN, ML, cloud computing, and Network Function Virtual-
ization (NFV).

VII. SUMMARY OF SDWSN PROPOSALS
In this section, we provide simple statistics of previously
discussed SDWSN proposals. This will allow us to uncover
research open issues and future trends in SDWSNs.

A. SUMMARY
Fig. 9a shows the percentage of research works for each
category. This lets us discover where most of the research ef-
forts in SDWSN has focused. Most of the proposed research
works leverage SDN concepts to reduce energy consumption
and management complexities currently found in WSNs. In
contrast, the least number of research works focused on
making the sensors fully reprogrammable.

The most popular EOS used in SDWSN is Contiki as
shown in Fig. 9b. Research works that have not used any type
of operating system are largely influenced by research works
that aim to reduce energy consumption in SDWSNs in which
most of them used a numerical tool such as MATLAB.

It is of great importance to identify the most used perfor-
mance metrics as they also help to pinpoint where most of the
research effort resides. Similar to WSNs, the most popular
performance metric to improve is energy consumption as
shown in Fig. 9c. The control overhead, which is among the
most important metrics, is considered in 11% of the surveyed
works. Packet delivery metrics such as PDR and PLR are
considered in the 8% of the proposals.

Fig. 9d shows the percentage of the number of research
works that have used any type of evaluation. Even though
most of the research efforts aim to reduce energy consump-
tion, which largely influences numerical evaluation methods,
in SDWSNs, the most popular network simulator is Cooja,
which is the Contiki network simulator. Mininet and NS-
3 that offer add-on modules (e.g., WiFi, OpenFlow, etc.)
to reduce the time to design a simulation environment was
used in 6% and 4% of the surveyed works, respectively. 10%
of the research works did not have any form of simulation
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FIGURE 9. Statistics of SDWSN frameworks.

or experimental evaluation. Overall, 41% of the surveyed
works were evaluated using simulations tools, 22% through
testbeds, 21% employing numerical approaches. The remain-
ing 16% of the works did not use any evaluation method or it
is unknown.

B. POPULARITY OF SDWSN AND VENUES OF
PUBLICATION
The first research works that start exploring the use of SDN
concepts in the WSN architecture appeared around 2012.
Then, several research works start appearing to extend the use
of SDWSNs to a vast variety of IoT applications. However,
exponential growth is perceived from 2017. This agrees with
the number of research works on ML techniques in SDWSNs
that started to emerge. In 2019 and 2020+, the growth con-
tinued exponentially. This is influenced by the number of

research works that have used previous works, which have
their code freely available, to devise new solutions to im-
prove network performance. This exponential growth shows
that the research community sees SDWSNs as a potential
pathway to overcome the management complexity currently
found in the current state-of-art WSNs.

The publication venues of scientific publications reporting
on SDWSNs is shown in Fig. 10. As can be seen from the
figure, the most popular dissemination method, by far, is
journals, followed by conference proceedings. Workshops
and forums are the least popular dissemination methods. The
journal publications are widespread across different venues.
However, looking at specific journals venues, not shown here
due to space constraints, the most popular journals are IEEE
Internet of Things Journal with 10 publications, followed by
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FIGURE 10. Publication venues of scientific articles reporting on SDWSNs.

IEEE Access with 8, IEEE Systems Journal with 6 publica-
tions and Sensors (MDPI), IEEE Sensors Journal and Journal
of Ambient Intelligence and Humanized Computing (JAIHC)
with 5 publications.

VIII. MAJOR CHALLENGES AND FUTURE DIRECTIONS
SDWSNs is a relatively new and continuous evolving re-
search area. Previous sections provided a comprehensive re-
view and discussions of SDWSN and ML-SDWSN research
works. The objective of this section is to group and discuss
open issues currently found in state-of-art SDWSNs.

A. STANDARDISATION
SDWSNs have to deal with the exponential growth of wire-
less sensor devices, a vast variety of manufacturers, and
protocols. The creation of standards for such rapidly evolving
technology, with various groups of stakeholders, is not an
easy task [176]. Some SDWSN papers share similar architec-
tural designs and protocols, while others have their own new
architectures and protocols. There is currently no established
technical standard for SDWSNs that defines the set of func-
tions and protocols for sensors nodes and controllers [15],
[177], [178]. The standardisation of SDWSN should be seen
as a holistic architecture that covers all layers involved in
the model. The exponential growth of scientific articles calls
for an urgent standardisation. Otherwise, this will result in
incompatible architectures, and protocols that will go against
the SDN principles [10]. Therefore, affecting the rate at
which new SDWSN proposals are emerging.

B. CONTROL OVERHEAD
One major concern of adopting SDN principles in WSNs
is the control overhead. SDN was originally designed for
wired networks where control packets flow through a dedi-
cated control channel. In contrast, SDWSNs share the same
communication medium for both control packets and data
packets. Even though control overhead has been indirectly

addressed in many research works (see Fig. 9c), papers that
specifically focus on reducing the control overhead is still
low as shown in Fig. 9a. Minimising the number of control
packets is of a great deal to avoid impacting the network
performance negatively.

Research works have applied multiple techniques to re-
duce the control overhead as shown in Table 11. Research
works that synergy all those techniques simultaneously with
ML techniques can lead to a significant improvement in
control overhead. For example, the use of ML techniques
to tackle mobility in WSNs can greatly reduce the control
overhead by proactively and constantly setting the path for
packets generated by mobile nodes. This reduces the amount
of packet-in messages, which are flow setup requests sent
by sensor nodes to the controller to seek instructions on
how to handle an incoming packet that is not present in its
forwarding table.

1) Neighbour advertisement and network configuration
SDWSNs have two main functions that generate control
packets [73]. (i) Neighbour Advertisement (NA) which is
a key function in the initial phase of the SDWSNs setup.
Sensor nodes use NA messages to advertise their current and
neighbour status. The SDN controller builds a global view of
the network using NA messages. Sensor nodes also use NA
messages to keep the controller updated on any change in the
network. The frequency of NA messages directly affects the
network performance. Frequent NA messages immediately
warn the controller about any change in the network (e.g.,
dead node, interference, battery depletion, etc.) but at the
cost of increased control overhead and energy consumption,
while infrequent NA messages reduce the impact on network
performance, the controller would not be able to react imme-
diately to changes in the network. (ii) Network Configuration
(NC) is used by the controller to manage and control the
overall behaviour of the network. Literature review reveals
that NC packets are mainly used to dynamically program
forwarding tables of sensor nodes. Overall, there still are
research gaps to reduce control overhead in SDWSNs. What
should be the optimal frequency of NA messages without
affecting the network performance, also how to deliver NC
messages effectively and at the right timing while minimising
the impacts on network performance.

C. SECURITY
Along with the control overhead, security is one of the
main concerns in SDWSNs. Security in WSNs, in general,
is one of the research areas that have caught most of the
researchers’ attention. WSNs impose unique challenges due
to the dynamic behaviour of communication links. Moreover,
sensors nodes have limited resources that restrain the use
of traditional security solutions. However, the centralised
architecture of SDN brings advantages when devising new
countermeasure solutions for security threats. The global
view of the network at the controller facilitates constantly
and proactively detecting changes in the network. Also, the
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centralised network information calls for the use of ML-
based solutions. Security in SDWSN is still in its initial stage
as shown in this survey. But, it makes sense to use ML
algorithms in SDWSNs due to the centralised architecture.
The centralised architecture offloads the power-intensive
computational tasks from the network infrastructure, then
security applications can be easily implemented at the con-
troller. The advantages and disadvantages of centralised or
distributed security solutions based on ML need to be studied
in detail. Centralised architectures have an overall view of
the network facilitating the detection of abnormal behaviours
but at the expense of more network information. In contrast,
in distributed architectures sensor nodes can also perform
some amount of processing to run lightweight ML solutions,
which minimises the control overhead, but it may increase
the energy consumption due to the processing.

D. CONTROLLER PLACEMENT
The location of the controller in the network directly affects
the network performance. Controller placement has been
widely studied in SDN [131], whereas controller placement
in SDWSNs is still in its infancy stage. Although SDWSN is
inspired by SDN, the communication medium differs. There-
fore, the optimal placement of the SDWSN controller can
be based on previous research works on SDN, however, the
placement has to be subject to specific characteristics of the
transmission medium, in this case, wireless. The controller
placement is also tightly related to scalability problems in
SDWSNs. The use of distributed and dynamic SDWSN
controllers (embedded in the sensor nodes) can potentially
balance the expenditure of key network resources, e.g., en-
ergy. The use of ML algorithms to predict, and pinpoint the
best locations where sensor nodes can run key controller
functionalities may lead to an overall network improvement
and a reduced control overhead.

E. EOS
Fig. 9b reveals that most of the research works, in this survey,
did not adopt any type of EOS. In fact, there still are a
number of EOSs that have not been yet used in SDWSNs. For
instance, there is no evidence of any SDWSN solution that
have used a Real-Time Operating System (RTOS). An RTOS
works on strict processing time requirements. This can serve
for SDWSN applications that require some level of reliability.
In general, the use of EOSs aligns with SDN principles. It
brings flexibility when adding new applications to sensors’
programs. The use of EOSs makes sensor nodes to be seen
as small-scale computers with multiple sensing capabilities,
and they are also supported in a variety of sensor platforms,
shrinking the interoperability breach.

F. SCALABILITY
This is another big concern in centralised architectures such
as SDN. It is known that the management overhead increases
as the network increases. Several techniques have been pro-
posed to address scalability issues in SDWSNs. Among the

most widely used techniques is the use of multiple con-
trollers. The control plane may include physically distributed
controllers. The location of the controllers directly affects
the network performance, as discussed in Section IV-E. The
network management load can be balanced across multiple
controllers. Each controller oversees a specific zone of the
network topology. However, one concern that rises is to find
the optimal number of controllers required before affecting
network performance. Also, how to cope with the dynamic
nature of WSNs. The use of static controllers can directly
affect the NL.

G. MACHINE LEARNING (ML)
The 48% of the research works surveyed here adopted ML
techniques in their proposals. The number of ML-SDWSN
research works has been exponentially increasing, with a
steep increase in 2020. The first ML-SDWSN articles started
appearing in 2015; however, ML-based works took off in
2018. The year with the most numbers of publications in ML-
SDWSN was 2020+ with 17 publications. This increasing
popularity shows that ML has been seen as an attractive
solution to improve network performance on SDWSNs. The
adoption of ML in SDWSNs has shown good performance
in reducing control overhead, prolonging NL, and intrusion
detection. However, there still are areas to explore and ML
techniques to use. For example, the dynamic nature of WSNs
unfolds new opportunities to envision ML techniques that
automatically continuous learning including AutoML and
transfer learning. The use of an online AutoML structure
will allow the system to continuously adapt to new situations
while reducing the need for a long training phase on a big
dataset that might not even be available. Transfer learning
will permit learning from simulation or controlled environ-
ments and deploy them in real-world applications, which
might improve the learning rate, accuracy or the need for
less training data. DL could be useful in unveiling which
kind of features or parameters are actually more relevant to
the specific user application. Besides, the use of multiple
architectures such as centralised or distributed ML tech-
niques should be studied in depth. The time complexity of
algorithms should be also considered, especially for real-
time applications with strict time constraints and resource-
constrained IoT devices.

H. TESTBEDS FOR SDWSNS
SDWSNs have different network topologies. Some topolo-
gies have the controller embedded in one of the sensor nodes.
This imposes strict hardware requirements such as sensor
nodes with enough resources to run centralised protocols,
store network information and with access to main pow-
ers. Other topologies require multiple embedded controllers;
therefore, the network infrastructure must provide multiple
sensor nodes with large resources. In contrast, SDWSN
topologies with the controller connected directly to the sink
node (e.g. via serial interface, USB) requires fewer resources
from sensor nodes but requires a higher computing machine
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connected to the sensor node such as a PC, Raspberry Pi,
etc. Therefore, a testbed for SDWSNs needs to account for
different network topologies, provide an accurate and high
dynamic range for power measurements, CPU resources,
multiple sensor platforms and EOSs, and debug tools includ-
ing packet sniffer.

IX. CONCLUSION

The SDWSN paradigm is built upon the synergies research
efforts between SDN and WSNs. SDWSN has been en-
visioned to solve the management complexities currently
found in the current state-of-art WSNs. Overall, SDWSN
will help industrial and research organisations accelerate the
designing, building, and testing of emerging IoT applica-
tions, by simplifying the introduction of new abstractions,
removing the management complexities, and costs. This pa-
per presented a comprehensive review of SDWSN research
works and ML techniques to perform network management
and reconfiguration, and policy enforcement. Additionally,
we also provided helpful information and insights to stake-
holders interested in state-of-art SDWSNs, ML techniques,
testbeds and open issues. This survey has unveiled that al-
though the introduction of SDN abstractions into WSNs is
a relatively new topic, notable exploration has already been
achieved. The surveyed scientific articles have demonstrated
that SDWSN is an effective solution for improving network
performance and management, which would not have been
possible with traditional WSN architectures. Despite these
major achievements, there are several open issues such as
standardisation, control overhead, scalability and security
that need to be addressed adequately to reach the real promise
of a fully reprogrammable network for IoT applications. This
survey also reveals that the use of ML algorithms over the
SDWSN is becoming popular and shows good performance
in tackling the major issues in SDWSN. According to the
surveyed articles and statistics performed, we believe that the
synergy between ML and SDWSNs can shape networking
decisions smarter and robust, and that ML will play a major
role in the creation of new applications and protocols for
SDWSNs. DL, for example, will be useful in reducing the
complexity of model training, especially for large-scale WSN
deployments, due to its ability to uncover patterns in the data
to build more efficient decision rules. Some ML-SDWSN
applications may have strict latency requirements, for such
applications, DL could be useful in reducing the training
phase and allowing the controller to react fast enough to
changes in the network. Lastly, the advent of 6G, mainly its
architecture and resources, and the flexibility gained in SD-
WSN architectures, set the perfect environment to run state-
of-art ML algorithms and support upcoming ML approaches.
6G provides a powerful, flexible and multi-node architecture
to run, deploy and manage ML-based distributed control
architectures and logically centralised control schemes for
large scale SDWSNs.
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