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Abstract

This work explore the possibility to combine the Jason reasoning cycle with a Non-Axiomatic Reasoning System (NARS) to

develop multi-agent systems that are able to reason, deliberate and plan when information about plans to be executed and

goals to be pursued is missing or incomplete. The contribution of this work is a method for BDI agents to create high-level

plans using an AGI (Artificial General Intelligence) system based on non-axiomatic logic.
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Complex software systems operating in dynamic environments require a high degree of adaptability and deliberative skills,
similar to humans. In recent years, multiagent systems have been shown to be suitable for solving problems in complex domains. To
effectively solve and manage complexity, we need agents that are able to find plans to pursue goals by interacting with the workspace
without the need for programmers or designers to intervene. We need agents that are able to plan and reason independently during
the execution phase. We propose to use the Belief- Desire-Intention agent paradigm and its implementation by the reasoning cycle
Jason together with a Non-Axiomatic Reasoning System (NARS). The result is a reasoning system that allows an agent to choose
the most useful plan for a given situation, while withdrawing unsuccessful plans and learning new plans on the fly.

Index Terms—Agent Oriented Programming, Reasoning System, JASON, Adaptive behaviour, NARS

I. INTRODUCTION

In complex domains where a high degree of adaptability of
software systems is required, one of the main challenges is to
equip the system with the ability to plan during its execution.
During execution, the system interacts with users and the
environment, which often continuously change as a result
of the interaction. Some examples are IoT systems, Human-
Robot Interaction, social or economic systems. Problems in
these scenarios can be solved by software systems that are
able to adapt to changing situations and plan work even in the
complete or partial absence of all useful input data.

These aspects cannot be faced and solved at design time.
Developers cannot identify and implement all possible situa-
tions where a high degree of autonomy is required. At best,
they can identify multiple if-then conditions and consider a
range of possible alternatives in system behavior.

The more dynamic or uncertain the environment, the more
developers need to implement mechanisms that allow the
system to autonomously revise a plan or sometimes select
or create a new one (adaptive and contextually changing
behavior).

An efficient way to solve the above problem is to use the
agent-oriented paradigm. An agent is an autonomous entity
that is able to respond to stimuli from the environment and
proactively work towards a specific goal [1]. Specifically,
the BDI agent paradigm [2] involves a deliberative capacity
of the agent based on a continuous sense-action loop and
existing beliefs. It allows the agent to realize a desire with a
plan available in its library. Several technological approaches
in the literature describe possible implementations of BDI
agents. One of the best known and most efficient is the Jason
Framework and its reasoning cycle [3], [4]. Jason is a powerful
tool for implementing planning in uncertain environments.
However, its rigid plan-finding procedure and predefined plan
library make it unsuitable for the above purposes.

Manuscript received XXX; revised XXXX. Corresponding author: Valeria
Seidita (email: valeria.seidita@unipa.it).

The idea we present in this paper is to combine the Jason
reasoning cycle with a Non-Axiomatic Reasoning System
(NARS) [5], [6] to develop multi-agent systems that are able
to reason, deliberate and plan when information about plans to
be executed and goals to be pursued is missing or incomplete.

Typically, both the Jason framework and NARS can be used
for planning. Jason has a reasoning cycle implemented and
coded in an agent that requires very specific and defined inputs
to select a plan. NARS is a general purpose reasoning engine
that does not have this limitation. NARS allows the construc-
tion of plans even in the absence of specific knowledge. It
is based on information obtained from observed correlations
or structural similarities between existing plans or both. By
combining the two systems, we create a more complete system
whose core consists of one (or more) Jason agents, typically
executing the usual reasoning cycle and NARS. NARS is used
as an external reasoning system that helps the Jason agent
change the behaviors defined at design time. Each time the
Jason agent is unable to select a plan from its plan library,
it launches a method that uses NARS. NARS generates a
plan that is added to the Jason agent’s plan library. NARS
operates primarily as part of an intelligent system’s brain,
taking control only when all other automated brain functions
are unsuccessful, while listening to beliefs in the background.
NARS processes plans and reorganizes them to create new
applicable plans when the system fails to achieve a goal.

Jason is able to plan using first-order logic, while NARS
uses non-axiomatic logic. The main difference between these
systems is in the way they plan. Jason plans activities to
pursue a goal using the plan library given at design time
by the developer and the set of preconditions. Preconditions
are associated with each plan and are used to select the
best plan, according to the agent’s perception. NARS uses
Non-Axiomatic Logic (NAL) inference rules, which are well
defined in [6] and allow an artificial agent to plan even under
the assumption of insufficient knowledge and resources. By
combining these approaches, it is possible to increase the
performance of the overall system in terms of finding a new
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Fig. 1. AgentSpeak control cycle. Redrawn from [9].

strategy that combines these two aspects.
The contribution of this paper is a method for BDI agents

to create high-level plans using an AGI (Artificial General
Intelligence) system based on non-axiomatic logic. The rest
of the paper is structured as follows: Sections II and III show
Jason and NARS, their properties and how they handle the
selection of plans during the execution phase; Section IV
discusses the new reasoning cycle that merges the functions of
Jason and NARS; Section V shows how plans are created and
composed with an example; Section VI illustrates some related
works and finally Section VII discusses and draws conclusions.

II. PLANNING WITH Jason AGENTS

Jason is a multi-agent framework based on Java and used
to create multi-agent systems. Jason offers the opportunity to
develop applications using the multi-agent approach employ-
ing the model proposed by Bratman in [7], also known as the
BDI model (Beliefs, Desires, Intentions).

The BDI model is inspired by the human behavior and
consists of:

• Beliefs - representing information that agents have about
the environment, called the current context;

• Desires - all the possible states of affairs that agents want
to realize.

• Intentions - the states of affairs that agents decide to
commit according to some available plans. The desires
the system has decided to commit to, by executing the
associated selected plans to realize them.

Agents defined in Jason implement the BDI model through
the definition of a set of beliefs or rules, goals and plans
written in AgentSpeak(L) [8]. Each agent executes a reasoning
cycle starting from perceptions, the result is the execution of
an action.

A Jason agent presents three main components: the belief
base, the agent’s goal and the plans. To achieve goals, agent
executes plans.

It is worth noting that Jason agents are not purely reactive.
They compute the result of an action, but they do not terminate.
They are designed to stay running and to respond to events by
executing plans. This property was fundamental to the realiza-
tion of the proposed approach and gives agents the ability to
plan at runtime. Jason agents deliberate actions accordingly
with their plan library. The deliberation process of a Jason
agent is based on practical reasoning. The need to implement
this kind of mentalistic computer programming underlies BDI
agents, and hence Jason agents. Practical reasoning is in-
spired by the human counterpart of practical reasoning, which
consists of two distinct activities involving a deliberation
phase, something reminiscent of the concept of intentions,
and a means-end reasoning, or also, the process that leads the
reasoning system to a decision to satisfy the agent’s intentions
[1]. In Jason agents, event-based mechanisms trigger a plan to
respond to events that execute plans. In order for an agent to
create high-level plans at runtime, this behavior is exploited
to invoke another planning system when no other alternative
solutions could be drawn.

Goals (hence Desires) are in some sense the complement of
beliefs. Beliefs represents something that agent believes to be
true in the environment. Goals represent the state of the world
the agent wants (or commits, in Jason terms) to be true. A
change in the agent’ s beliefs or in the agent’s goals triggers
the execution of plans (hence Intentions). Moreover, a change
in the environment causes a change in the agent’s beliefs, new
opportunities and the possibility to adopt new goals and also
drop the existing ones.

A plan is composed of three parts: the triggering event, the
context and the body. Its form is:

triggering event : context <- body

The triggering event is defined by the same word “trigger-
ing”. It is an event, a part of each plan in the plan library. When
the triggering event matches with an event of the environment,
which the agent beliefs to be true, then that plan is executed
by the agent. The context refers to the concept that agent are
reactive but continuously listening of what happens. An agent
may have different ways (plans) to achieve a goal. The context
allows to check the current situation and decide whether a plan
in the library can be activated to reach a goal. The triggering
event and the context are the part of the Jason agent allowing
to handle unknown and changing environment.

Finally, the body is the part of the plan that specifies the set
of actions to be taken to achieve the goal. In general, actions
aim to change the state of the environment. By the environment
we mean the world outside the agent, outside its mind. Jason
also allows to consider actions dedicated to the agent’s reason-
ing cycle. This type of actions is called “Internal Action” and
simulates an action requested by the reasoner that changes
the agent’s internal world. Jason provides standard internal
actions as well as allows to create new ones. The creation of
an internal action serves to extend agents’ internal capabilities
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and also allows to use legacy code already available, mainly
in Java.

A plan that has a true context is called applicable, the
context is validated with first-order logic over preconditions.
The precondition is a term that is unified with the content of
the namesake belief by the unification process.

A special kind of plan is the recovery plan. It can be defined
by the programmer to face situations where the context turns
out not to be true. It is at the end of the list of plans that may
be applicable.

Despite the complexity of the reasoning cycle, the real
agent control cycle (Fig. 1) is very simple. For each goal,
the agent tries to find an applicable plan in its Plan Library
. If no plan can be selected, the goal fails, the agent stops the
reasoning cycle, and no action is selected. If the agent finds an
applicable plan, the agent pushes the plan into the intentions
queue and then the reasoning cycle processes the intention. If
the intention is processed, the goal is achieved, otherwise the
goal has failed.

The agent checks which plan given at design time by a
programmer can be applied to the context by evaluating the
circumstances of the plan with the context requirements. The
list of applicable plans is converted into a queue of intentions,
which the reasoning cycle executes as actions step by step
through a Round-Robin algorithm. If no plans are marked as
applicable, the agent is not able to achieve the goal with the
given plan library.

The body is the simplest part of a plan. Each goal has a plan
of the same name, which serves as the starting point for the
reasoning cycle. The goal is achieved by executing a plan that
contains a list of subgoals. Each subgoal (or plan) contains a
set of other plans, environment operations, or internal actions.
Internal actions are part of the plan body; they run internally
in the agent and are not intended to change the environment.
This is in contrast to actions, which change the world in which
agents operate. The framework lets the agent programmer
create internal actions. This means that the agent programmer
can extend the capabilities of the agent by defining other
customized functions. Customized internal actions can be used
within the plan to perform actions.

As shown in Fig. 1, if no plan is considered for the current
situation, the agent does not reach the goal, and if no recovery
plans are given, the agent stops its work, otherwise it continues
execution and reaches the goal.

Dynamic environments are difficult to control, programmers
often cannot identify all the requirements and functions to
manage the context. As far as the reasoning system can
manage plans and adapt the agent to the context, it is not able
to find a solution if there is no information about how to deal
with unknown situations. This means that the plan selection
process does not return solutions and the agent cannot achieve
its goals.

More details about the reasoning system, the Jason frame-
work, and how it works can be found in [1], [4].

III. NARS: NON AXIOMATIC REASONING SYSTEM.
NARS is an Artifial General Intelligence (AGI) [6] System

developed in the context of an inferential system. It uses Non-

Axiomatic Logic, a term logic that extends Aristotelian logic
and its syllogistic forms to include compositions of terms as
well as a notion of indeterminacy. It allows for various types of
inference, including deduction, induction, and abduction [6],
[10].

These types of inference allow the system to perform
reasoning activities corresponding to planning (mostly deduc-
tion), learning (mostly induction), and explanation (mostly
abduction), and to act autonomously. A prototype of the
system, OpenNARS, has been implemented and tested in a va-
riety of domains requiring, for example, Procedure Learning,
diagnostics, Question Answering, and Anomaly Detection.
[11]. In particular, the use cases tested include Procedure
Learning tasks such as Pong, Real-Time Anomaly Detection
(jaywalking and Pedestrian Danger) and Question-Answering
in the Street Scene Dataset,as well as robot control in the
TestChamber simulation developed for OpenNARS.

NARS is based on the belief that a key feature of intelli-
gence is the ability to adapt under insufficient knowledge and
resources.

The NARS is therefore designed to have the following
characteristics:

• Finite - The information processing capacity of the
system is limited, both in processing speed and in storage
capacity: this means that not all options can always be
considered or stored. The bottom line is that the system
must weigh what to focus on and what to hold in memory.

• Open - problem-relevant information may not yet be
available, and information can enter the system at any
moment while the system is running and solving prob-
lems.

• Realtime - all tasks can be stopped at any moment
by more urgent tasks. While the system is reasoning, the
passing of time needs to be taken into account.

To make good use of available resources (both in terms
of CPU speed and memory), the system needs a way to
control its computational activities so that activities can run
in parallel and at different speeds. This “Attentional Control”
is implemented by a priority-based control strategy. This also
avoids the bad consequences of combinatorial explosion in
computation, as it forces the system to focus on task-relevant
knowledge.

To implement this, the system uses a priority queue that
allows higher priority items to be selected with higher prob-
ability than lower priority items. When the data structure is
full and a new element is inserted, the element with the lowest
priority is removed from the data structure. This data structure
is also called Bag and is the key component of the system’s
memory structure.

A term logic called “Non-Axiomatic logic” is used for
argumentation. This logic is based on the idea that any
statement in the system can gather both positive and negative
evidence depending on how true the system believes it to be,
and that these two values of evidence represent the truth of
the statement.

Based on the previous description, the following relevant
definitions are motivated, where instances, properties, propo-
sitions, and conjunctions are called “Compound Terms” (note
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that there are more Compound Terms in NARS, but here are
the ones relevant to our approach):

• Term - An identifier such as. cat.
• Instances - Terms marked as instances, such as. {key1}.
• Properties - Terms marked as properties, such as.

[green].
• Statement - A special case of a term that relates two

terms to each other, via an inheritance relationship (e.g.:
Cat is an animal, (cat → animal), or an implication
(e.g., seeing light leads to hearing thunder: ((light →
[seen]) ==> ((thunder → [heard]) )

• Conjunctions - Contains sequences of statements that,
for our purposes, usually encode a temporal order, e.g.
((lighting → [seen]), ((thunder → [heard])),

• sentence - A statement associated with a truth value that
is a tuple of positive and negative evidence (w+, w−).

• Event - A special case of a proposition to which an
occurrence time is attached as an additional value.

• Operation - A special case of an event that the system
itself can trigger whenever it wants. When triggered, an
associated procedure is invoked, which for instance can
control an actuator.

• Task - A record that has a priority value associated with
it, and a value, Durability, that specifies how quickly the
priority of the task should decrease. Tasks can be either
Belief, Question, or Goal.

Summary of evidence is called “revision”; it allows, in
the case of two sets of premises with the same notion, to
the positive and negative evidence to obtain a conclusion
that combines the evidence of both premises and leads to
a “stronger” conclusion. Also, plans in Jason’s sense are
sentences in NARS, where usually for each plan step an
operation op is performed under a certain circumstance a
and an intermediate result c is expected. This is represented
by the sentence (a, op) ⇒ c, which we call the “procedural
hypothesis”.

Whenever the circumstance a occurs and op has been
executed, the system will predict c. When c is observed,
positive evidence for the sentence is added, while when c does
not occur as predicted, negative evidence is added. Clearly, the
successful hypotheses are those that have much more positive
evidence than negative evidence, and that have many pieces
of evidence at the same time.

This is formalized by translating the tuple (w+, w−) into
a tuple (f, c), where f = w+

(w+,w−) is Frequency and c =
(w++w−)

(w++w−)+1 is Confidence. Frequency intuitively corresponds
to the frequency with which this relationship exists within the
samples collected, and Confidence describes the size of the
sample space so far. Based on these terms, an overall expected
truth value can be defined as (c ∗ (f − 0.5f) + 0.5f), which
measures the overall degree of truth based on frequency and
confidence.

Hypotheses with a high truth-expectancy value are precisely
those hypotheses that are given a high priority value in the
system by enforcing a positive correlation between truth and
priority (the priority of a task is instantiated with the truth-
expectancy of its sentence, although other factors may also

play a role, such as the complexity of the link, but for our
purposes they are secondary [5]). Therefore, they are not
removed from the Bag, but are usually chosen to make a
prediction, exactly as desired.

This serves a larger picture: Namely, when circumstances
change, plans can become ineffective, and the solution must
be able to deal with that. With the mechanism just described,
NARS has the ability to notice this in order to adjust the truth
value of the relevant knowledge downward (in the sense of
adding negative evidence through revision). The mechanism
that adds positive evidence when a prediction is successful
is also the mechanism that builds the hypothesis in the first
place. Essentially, there are three relevant inference rules in
NAL that make this possible:

• Temporal Intersection - Formation of a sequence: From
an event a, and an event b happening after a, form event
(a, b). (note: b can as well be an operation, as in case of
procedural hypotheses!)

• Temporal Induction - Formation of a hypothesis: From
event a, and b, form hypothesis a⇒ b, causing revision
if the hypothesis is already in memory.

• Deduction - Allows to chain existing implication state-
ments together. From a ⇒ b, and b ⇒ c, a ⇒ c can be
derived (note: this also works for the Inheritance relation).
The merging of hypotheses based on preconditions is
possible too, such as (a, b) ⇒ c, (c, d) ⇒ e, leading to
(a, b, d) ⇒ e. Other forms of Deduction exist also (see
[6]), but are secondary for our purposes here.

• Prediction and Anticipation - From observing event
a, and hypothesis a ⇒ b, predict b, and add negative
evidence to the hypothesis when b won’t occur, using
Revision. Technically, the derivation of the predicted
event happens via the NAL deduction rule [6], and
the negative evidence is created based on the mismatch
between predicted and actual input.

• Revision - When a⇒ b is created from a new example,
the evidence will be added to the hypothesis a ⇒ b
already in memory. Here, the positive and negative evi-
dence will both be summed up separately. Hence, Revi-
sion is both responsible for strengthening and weakening
a hypothesis, dependent on its success to predict correctly.

From a control perspective, the process is usually divided
into two parts, both of which select two premises from memory
to derive new information using inference rules.

• Temporal Inference Control : When a new event
a enters the system, perform temporal intersection and
temporal induction with existing events to derive new
sequence events and new prediction hypotheses. This
is done by sampling events from Event Bag. A Bag
contains only input events and their sequences. That is,
the derived sequences go into the event bag. The inferred
hypotheses, on the other hand, go into the main memory,
which is described below. Therefore, this inference can
be described as follows:

1) Process new incoming event, then repeat k (hyper-
parameter) times:
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a) Take an event from the event bag (prefer high
priority elements, as explained before).

b) Apply inference rules between new event and
taken outevent.

c) Put derived sequences in event bag, derived
implications in main memory.

2) Place new incoming event in event bag as well as
in main memory.

• General Inference Control: operates on the concept
Bag, which is usually applied a fixed number of times
for a fixed time interval. Concept Bag groups tasks into
concepts according to their term, where each concept
also stores tasks in a Bag. Thus, concepts compete for
attention in Concept Bag, but tasks also compete for
attention in each concept. Moreover, concept a has a link
to concept b if they share a common term. Term-based
linkage allows a newly derived task to effectively trigger
revision when the related concept is already present
in memory (gaining evidence for beliefs), which also
increases the priority of the related concept. Moreover,
concept-based linking allows concepts, when selected, to
select not only a task per se, but also a belief about
a concept to which they are semantically related, as
a second premise. The selection process proceeds as
follows:

1) Select a concept from Concept Bag
2) Select a task from the selected concept
3) Select a belief from a neighbour concept
4) Apply inference rules to task and belief
5) Place derived and input tasks in the concept cor-

responding to their term (creating the concept if
it does not yet exist and raising its priority), and
trigger the revision for beliefs if there is already a
belief in that concept. For goal processing, there is
one more step

6) Goal Processing / decision-making: For concept G,
when goal g is processed, the concepts of the form
(a, op())are. → G, selecting the candidate that
has the highest truth expectation and satisfies a
according to Event Bag. Then, the operation op() of
the best candidate is executed. This is the decision
making that OpenNARS uses, it considers both
the truth of the procedural hypothesis and that the
context is actually satisfied by checking with Event
Bag.

While Temporal Inference Control can be seen as a way
to control the perception and extraction of correlations in
the input, General Inference Control allows knowledge to be
combined in novel ways, e.g. by deduction.

These ideas, originally proposed in [11], have been im-
plemented in OpenNARS and are sufficient to explain the
role of NARS in our integration with the Jason planner. A
key property of NARS that our integration exploits is that
NARS can revise and withdraw failed plans when the success
rate becomes too low, and new procedural knowledge can
be added to the plan library as AgentSpeak plans, ultimately
allowing AgentSpeak to be used in a less constrained way for

autonomous systems facing changing environments. Note that
a new plan cannot always be easily found, and in the worst
case, when no information at all can be derived to suggest a
relevant operation, “Motor Babbling”, the random invocation
of applicable actions, is necessary (or a user message must
be generated if this is ineffective for too long). To implement
listening to events, it is also necessary for NARS to constantly
listen to the changing beliefs of the Jason system so that it
can extract relevant correlations between sensorimotor events
that can be stable enough to become part of useful procedural
knowledge (effectively plans for Jason, after translation).

IV. DYNAMIC PLANNING, Jason AND NARS WORK
TOGETHER

A Jason agent consists of beliefs, goals, plans, internal
actions and recovery plans. A Jason agent is programmed
to reason using a library of plans and some information
appropriate to the context. The main elements of NARS are
beliefs and goals, which are used to create a plan.

As mentioned above, with the agent control cycle of Jason
alone (Fig. 1), the agent programmer cannot make the agent
follow the goal. At best, he must find a valid alternative to let
the agent continue its execution. One way to overcome this
limitation is to provide some “recovery plans”, but even this
cannot fix the problem and does not let the agent reach the
goal.

We analyzed algorithms and planning systems [9] used in
BDI planning theories to achieve our purpose, and the control
cycle (shown in Fig. 1) was revised to allow the combination
between Jason and the external reasoning system to support
plan generation at runtime.

The Jason agent’s intelligence is limited to the program-
mer’s ability to predict all possible exceptions, so assistance
from an external reasoning system allows the agent to rely
on the latter’s experience. Instead, NARS uses the knowledge
gained from the environment and attempts to create a valid
plan to achieve the agent’s goal. The mechanisms behind
the reasoning system reside in the inference engine, which
uses non-axiomatic logic (NAL) [6], as we explained in the
previous section.

NARS accepts plans, beliefs, and goals from the agent
through appropriate functions that translate the AgentSpeak
formalism into the Narsese language. This is possible be-
cause the first-order logic used by AgentSpeak and the non-
axiomatic logic used by NARS are term logics.

The model we propose to implement a new control cycle
that takes into account both Jason (BDI logic) and NARS is
shown in Fig. 2. It is a customized control cycle that maintains
the efficiency of the original control cycle, but supports the
NARS inference system as an external service that helps
the Jason planner when needed. The Jason agent finds an
applicable plan in the plan library. This phase is identical to
the standard control cycle of the Jason agent. The process of
finding an applicable plan is through a unification process and
a context check on the plan’s precondition. If an applicable
plan is found, then the Jason agent continues its process until
the goal is reached. If no plan is found, the Jason agent starts
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NARS through an internal action called invokeNARS to find a
solution. At the end of the NARS reasoning process, a new
plan is generated and sent to the agent Jason. The agent Jason
continues its reasoning cycle and pushes the plan into the
intent queue. Once the new intention is ready for execution,
the agent processes it. If NARS does not find an alternative
plan, the goal has failed.

Depending on the result of the plan execution, the agent

informs NARS about the success or failure of the process.
The messages sent by the agent let NARS revise the truth
value computed by NAL to estimate the goodness of the plan.
A successful plan increases the truth value and vice versa.
If the truth value of the plan falls below a fixed threshold,
NARS informs the agent Jason to withdraw the plan. Defining
a threshold value1 allows avoiding the generation of the same
plan by NARS. In fact, the NARS inference engine and NAL
work in such a way that they always generate the same plan
starting from the same resources. Obviously, this is not useful
for the problem we have. We need to force the inference engine
to store information about unsuccessful plans to avoid their re-
creation.

In the next section, we detail the NARS module that
implements launch NARS Reasoning System in Fig. 2.

A. The NARS Module

The main goal of the NARS module is to provide alternative
plans, if any, to achieve an agent’s goal. The module (see
Fig. 3) begins by converting beliefs, plans, and goals from
AgentSpeak to Narsese. Once the conversion is complete, the
module invokes the NARS reasoner to find a plan using NAL-
based inference. The latter uses non-axiomatic logic operations
to perform the finding process. If no solutions are generated,
the NARS planner fails and no plans are added to the plan
library. If it succeeds, the result of the NARS planner is
converted from Narsese to AgentSpeak. Once the conversions
are complete, the agent creates a new plan that is added to
the plan library. Once the agent pushes the plan into the plan
library, the control cycle continues with the agent’s reasoning
cycle using the new plan. The agent transforms the added
plan with the intent that it will be processed and turned into
an action to achieve the goal (as shown in Fig. 2) .

1) Implementation details.
From an implementation point of view, we have added some

modules to the Jason framework. Fig. 4 shows a structural
view of the extended version of Jason. The dashed square
represents the Jason framework and the green blocks represent
the modules we added. We have only detailed the part of the
framework that is useful to show how we implemented the
combination with NARS. In particular, the class invokeNARS
implements an internal action using the interface provided by
the Jason framework. The class NARSEngine implements all
the communication mechanisms between the Jason agent and
NARS that we described in this section.

The use of an external reasoning system is guaranteed by
the correct internal action definition. The agent programmer’s
task is to write the agent’s code using all the resources given
by Jason. If he does not know how to program the agent’s
behavior, i.e., if at design time he has no clue how to write
a plan to achieve a goal, he can resort to external reasoning
without changing the logic of his application. The functionality
of an external reasoning system is invoked via the internal
action. Thus, if the programmer is not able to predict all

1The threshold is set to a static value defined at design time. We are working
on making this value dynamic by gaining information through the agent’s
experience
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TransitionSystem

+initAg()

+selectMessage(Queue<Message>): Message

+selectEvent(Queue<Event>): Event

+selectOption(List<Option>): Option

+selectIntention(Queue<Intention>): Intention

+socAcc(Message): boolean

+buf(List<Literal>)

+brf(Literal, Literal, Intention)

Agent

PlanLibraryBeliefBase

String
<<interface>>

InternalAction

+ execute(TransitionSystem ts, Unifier un, Term[] 

args) : Object

invokeNARS

+ RETRACT_PLAN_THRESH : float

+ ADD_PLAN_THRESH : float

- engine : Nar

+ shouldRetractPlan(Plan) : boolean

+ informNARS(Plan, boolean) : void

+ translateInheritance(Inheritance) : String

+ translateProceduralImplication(Inheritance, 

Operation, Inheritance) : String

+ ToNARSTerm(Tern, List<String>) : String

+ LiteralToNarsese(Literal, String) : String

+ BeliefToNarsese(Literal) : String

+ PlanBodyToNarsese(String) : PlanBodyHelper

+ PlanToNarsese(Plan) : String

+ BeliefsToNarsEvents(BeliefBase) : void

NARSEngine

Key
Value

Fig. 4. A class diagram reporting the structure of the enriched Jason
framework

possible scenarios in the unknown environment, he implements
the internal action and only during the execution phase the rea-
soning system is invoked. This fact represents a great strength
and a valuable contribution. The system programmer does not
have to worry about the uncertain and unknown situations, all
the agents he programs still have the same structure even if the
reasoning system is invoked. The complexity of the code he
writes does not increase when the external reasoning system
is invoked, and most importantly, the programmer does not
have to intervene. NARSEngine works in the background. We
illustrate this in the following section.

V. EXAMPLE OF CODING Jason+NARS

We made several proofs to validate our approach. We used
JaCaMo2 v0.0.7b [12] and OpenNARS3 3.0.2 [5]. OpenNARS
is the open source version of NARS and JaCaMo is a
framework for programming multiagent systems that combines

2http://jacamo.sourceforge.net/
3https://github.com/opennars/opennars

Jason with two other important technologies, CArtAgO [13]
and Moise [14].

We experimented with several scenarios in which agents had
to reorganize their plan library to accomplish their assigned
task. Below we briefly illustrate the code of a simple example.
Our goal is only to show the functionalities provided by the
control cycle shown in Fig. 2. Our goal is to illustrate how
and when a plan is added or withdrawn.

In our example, we consider failed plans and have the
system remove them when the truth value of the plan used
falls below a threshold. For the truth value, we used the one
defined internally by NARS:

τ = (c ∗ (f − 1

2
) +

1

2
)

where c is confidence and f frequency, see [6].
In the scenario presented in this section, a robot works in a

kitchen and has to serve a user by warning or advising him. For
example, if the pantry is about to empty, the robot is supposed
to report the situation and suggest what to buy. In this section,
we report only a small illustrative part of the code generated
for deploying agents in the robot.

The following part of the code represents the standard code
for an agent.

//Beliefs
position(kitchen).
//Desires:
!serve_user.
//Plans:
@critical
+!serve_user : position(kitchen)

<- .print("I_am_in_the_kitchen").
-!serve_user <- set of recovery plans.

Here we consider the subgoal related to the positioning of
the robot in the kitchen. It is the first subgoal to start everything
else in the kitchen. Belief refers to the position of the robot
in the kitchen. The desire is ”serve the user”, and to achieve
it, the plan has the context position (kitchen), which must be
true. If the context is true, the associated action, e.g. .print(”I
am in the kitchen”), is executed and the goal is achieved. In
case the context is false, the programmer should have written
one or more recovery plans. If no recovery plan is applicable,
the target fails and the agent aborts its execution.

In our approach, the list of recovery plans may instead
contain the internal action invokeNARS.

//Beliefs
position(kitchen).
//Desires:
!serve_user.
//Plans:
@critical
+!serve_user : position(kitchen)

<- .print("I_am_in_the_kitchen");
jia.invokeNARS(critical, true).

-!serve_user : contexts <- set of recovery plans.
-!serve_user <- jia.invokeNARS(critical, false).

In the above code we have added only two lines:
jia.invokeNARS(critical, true) and jia.invokeNARS(critical,
false)

Plans in Jason are exectuted in sequence and this guarantees
that NARS is invoked if, and only if, there are no alternatives.
jia.invokeNARS(critical, ...) is an internal action, it invokes the
NARS engine with two options:
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• jia.invokeNARS(critical, true), the Jason plan is applica-
ble and NARS does not need to find an alternative plan.
NARS increments the truth value of the plan because the
goal is achieved.

• jia.invokeNARS(critical, false), is activated when all de-
signed plans fail (both plans and recovery plans). The
NARS engine starts generating plans. Using the same line
of code, NARS attempts to generate a plan and lowers
the truth value of the failed plan (serve user). If the
plan’s truth value falls below the specified threshold after
a certain number of failures, NARS withdraws the plan
from the plan library.

Therefore, the first part of the code implements the plan
at design time; the programmer of the agent has nothing to
program more. The second part implements the agent’s ability
to execute at runtime. As said, this is the main strength of the
proposed approach: the programmer does not have to write any
additional code, the structure of the agent, its behaviour and
mechanisms, have not been changed. Deliberation and runtime
scheduling are hidden in the internal actions of invokeNARS,
whose code is not shown here for this example, but the
implementation of the classes invokeNars and NARSEngine
discussed in the paper.

invokeNARS effectively implements the combination be-
tween the Jason Framework and OpenNARS.

VI. RELATED WORK

Attempting to give agents a high degree of autonomy is an
endeavor that many researchers are pursuing. Finding a way to
plan at runtime allows agents to exhibit autonomy and adapt
to changing contexts. One of the most efficient, but also one
of the most rigid, ways to program agents is to specify the
actions they must perform based on a known set of plans. At
most, an agent can be enabled to assemble plans based on
their pre- and post-conditions. Agents have no insight into the
plans they execute; they use them as a black box and know
only their preconditions.

Jason, like other frameworks and agent interpreters, is based
on the concept of choosing a plan. Reasoning about the state
of the environment leads to plan selection. The selected plan
may fail, and the agent infers that the goal was not achieved.
Other Jason-like implementations, such as Jack [15], execute
alternative plans in the plan library until the goal is reached.
If there are no alternative plans, the goal is not reached.

In all these cases, the agent is unable to independently and
completely repair situations for which no plans have been
provided to pursue a goal.

Meneguzzi and Luck in [16] propose a procedural agent
model that can be modified to create new high-level plans
starting from the fine-grained plans of the plan library. They
modify the agent model. In our approach, this does not happen,
which has the advantage of not increasing the complexity
in terms of programming and execution. The agent behaves
reactively, the reasoning cycle is modified as needed, and
the agent’s execution is not interrupted. Moreover, Meneguzzi
and Luck solve the problem by composing the plans. They
always start from the plan library and can only compose

from the existing plans that have the same context. We use
NARS and connect Jason to it as Meneguzzi and Luck do
with STRIPS, but with the difference and advantage that with
NARS the overall system finds a new recovery plan with
fewer resources and information. While STRIPS generates
and proves all possible plans that can be composed, NARS
generates plans with non-axiomatic logic. Thus, it generates
fewer plans from less information.

A similar approach is taken by De Silva et al. with the same
limitation. Moreover, STRIPS is constrained by knowledge
about the environment: resources, context, and actions must
be known. In our approach, NARS requires less information
about the environment; in fact, it works under the assumption
of low resources and knowledge. Therefore, our approach is
more flexible and able to find more solutions.

Hubner et al. in [17] use declarative goals to represent
the state of the world when the goal is achieved. In this
way, they make the definition of the goal implicit within the
programming language (AgentSpeak). Using patterns, authors
can then translate goals directly into code. In this way, they
leave the agent structure unchanged, but do not go beyond
three types of declarative goals. They also crystallize the
possibility of creating new plans to a minimal number. Hubner
et al. provide a simple tool to create new plans, but they
maintain the limit of stopping the agent if it does not find
a useful plan.

NARS natively performs an evaluation of plans. The ability
to add and withdraw plans is beneficial and increases the
strength of our approach. In this way, the plan library is
continuously updated based on changes in the environment,
allowing the agent to better deliberate during execution.

However, a limitation may be that when using NARS, we
remain dependent on the ability to store new plans, the size
of the memory, bag and the time required to test the plans.

VII. DISCUSSION AND CONCLUSION

Nowadays, multi-agent programming is a useful paradigm
for solving problems related to complex systems and runtime
planning. In this paper, we focus on runtime planning, i.e.,
the creation or composition of new plans when agents realize
preprogrammed plans that have proven unsuccessful.

We use the BDI agent paradigm and the Jason framework to
develop multiagent systems capable of dealing with situations
for which no plans have been provided to pursue a goal.
Although the use of deliberative agents can be useful for
solving the above problems, Jason has not proven to be flexible
enough for runtime scheduling alone, especially when the plan
library requires adaptation.

In this work, we developed a model for a BDI reasoning
cycle using an extended reasoning system. We chose to use
NARS [5] to support the planning activities. The efficiency of
NARS for procedural knowledge learning was demonstrated
using the mechanisms described in [11]. NARS provides a
robust reasoning cycle in situations where robots need to
perform autonomous actions and where it is crucial to find
alternative solutions to those defined at planning time.

Even though Jason is able to operate in defined situations,
the creation of the new control cycle has improved the ability
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of each Jason agent to find a solution to achieve a goal. In
addition, the new control cycle, shown in Fig. 2, has not
changed the Jason reasoning cycle. This is a big advantage
for developers writing programs with Jason. They only need
to apply the new internal action where it is needed, without
breaking the code flow.

The novelty introduced is the ability of the system to be
autonomous, in the sense that the system can find a plan
(which is not known a priori) based on its, possibly acquired,
knowledge. This can be applied in different types of complex
domains: Human-Robot Interaction, IoT and Intelligent* Sys-
tems, Swarm, to name a few. In all these contexts, the ability
to change from within is one of the key challenges.

Overall, the proposed method can greatly increase the au-
tonomy of systems and make them act better even in scenarios
where unexpected circumstances cause existing plans to fail,
or where new plans are needed to deal with novel situations.

The tests we have conducted show that our approach is a
viable way to allow for goal-directed planning with adaptation
of behaviors based on plan success. However, there are still
some shortcomings in using NARS, which we will face soon.
NARS operates with limited memory, so we cannot be sure
that all generated plans are profitably stored and sent to the
plan library.

In the near future, we plan to conduct experiments that will
allow us to quantify the response times of our reasoning cycle
and the amount of plans generated under the same conditions
compared to standard approaches.
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