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Abstract

We propose an acoustic anomaly detection algorithm based on the framework of contrastive learning. Contrastive learning is
a recently proposed self-supervised approach that has shown promising results in image classification and speech recognition.
However, its application in anomaly detection is underexplored. Earlier studies have demonstrated that it can achieve state-
of-the-art performance in image anomaly detection, but its capability in anomalous sound detection is yet to be investigated.
For the first time, we propose a contrastive learning-based framework that is suitable for acoustic anomaly detection. Since
most existing contrastive learning approaches are targeted toward images, the effect of other data transformations on the
performance of the algorithm is unknown. Our framework learns a representation from unlabeled data by applying audio-
specific data augmentations. We show that in the resulting latent space, normal and abnormal points are distinguishable.
Experiments conducted on the MIMII dataset confirm that our approach can outperform competing methods in detecting

anomalies.
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ABSTRACT

We propose an acoustic anomaly detection algorithm based
on the framework of contrastive learning. Contrastive learn-
ing is a recently proposed self-supervised approach that has
shown promising results in image classification and speech
recognition. However, its application in anomaly detection
is underexplored. Earlier studies have demonstrated that it
can achieve state-of-the-art performance in image anomaly
detection, but its capability in anomalous sound detection is
yet to be investigated. For the first time, we propose a con-
trastive learning-based framework that is suitable for acoustic
anomaly detection. Since most existing contrastive learning
approaches are targeted toward images, the effect of other
data transformations on the performance of the algorithm is
unknown. Our framework learns a representation from un-
labeled data by applying audio-specific data augmentations.
We show that in the resulting latent space, normal and ab-
normal points are distinguishable. Experiments conducted on
the MIMII dataset confirm that our approach can outperform
competing methods in detecting anomalies. ' 2

Index Terms— Contrastive Learning, Anamolous Sound
Detection, Anomaly Detection, Self-Supervised Learning

1. INTRODUCTION

In view of the machine learning’s rapid development, anomaly
detection algorithms have emerged as efficient tools for mon-
itoring the operation of industrial equipment and early detec-
tion of machine failure. Specifically, methods that can detect
anomalies in the visual domain have dominated the industrial
anomaly detection field [1]. In some applications, how-
ever, visual inspections cannot detect a machine’s defects. A
possible solution is to incorporate acoustic monitoring and
anomalous sound detection algorithms for identifying the
issues that cannot be revealed by cameras [2].

Comparing to most common machine learning tasks,
anomaly detection faces unique challenges, such as lack of
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labeled anomaly samples and imbalanced training datasets.
A flurry of models, including one-class classifiers, autoen-
coders, generative adversarial networks, and self-supervised
techniques have been proposed for tackling these issues [3, 4].
The underlying assumption behind most of these methods is
that we only have access to the normal samples during the
training phase. Moreover, they assume that a network which
is trained on the normal data will perform poorly on abnormal
samples and thus can be used as an anomaly detector [5].

Contrastive learning has attracted an immense amount of
attention from the machine learning community over the past
few years. The basic idea behind it is to pull representa-
tions of different views of the same sample closer together,
while pushing them away from other samples of the batch
[6]. The success of contrastive learning has been marked
by the introduction of SimCLR algorithm for self-supervised
image classification. Chen et al. [6] have shown that self-
supervised SImCLR could match the performance of a super-
vised ResNet-50 without using any training labels.

Several studies have evaluated the efficiency of con-
trastive learning for anomaly detection and have demon-
strated that it can significantly improve the accuracy on
benchmark datasets. Tack et al. [7] came up with the idea of
using shifting transformations for generating negative pairs,
and showed that this approach would outperform other algo-
rithms. In another recent study, Sehwag et al. [8] proposed
an an unsupervised anomaly detection approach based on
the framework of contrastive learning. They also extended
their work to few-shot anomaly detection and manifested that
by using only a few anomaly samples during training, their
algorithm can achieve a state-of-the-art performance.

The efficiency of contrastive learning algorithms heav-
ily depends on the domain-specific augmentations. Existing
contrastive learning-based models for anomaly detection are
commonly focused on images and videos. Although these
methods have significantly improved the results in those do-
mains, they cannot be applied to other data types, such as
audio, since they use geometric transformations like rotation
and cropping.

In this paper, we propose an acoustic anomaly detection
framework by employing audio-specific augmentations and
contrastive loss. Similar to other state-of-the-art algorithms,
our approach assumes that we only have access to normal



training data. To the best of our knowledge, this is the first
study that employs contrastive learning for acoustic anomaly
detection. Inline with earlier studies on images, we show that
contrastive learning is a powerful tool for acoustic anomaly
detection, and can achieve state-of-the-art performance.

2. METHOD

An overview of our anomaly detection framework is depicted
in Fig. 1.

Contrastive learning can learn patterns from unlabeled
data by creating different instances of a sample with the aid
of data augmenting transformations. These transformations
should preserve the underlying information of data while not
being redundant to the original sample so that the network
can learn to detect its distinguishing features.

Let 7 denotes the family of possible augmentation op-
erators. Similar to SimCLR [6] we stochastically apply two
operators t; ~ 7T and t; ~ 7T to generate two correlated
views from each sample in the batch: igk) = t1(z™) and
75 = to(a®).

We utilized the following transformation to generate aug-
mented versions of a given sample:

* Pitch Shift: This transformation randomly increases or
decreases the pitch of the audio. The pitch shift is cho-
sen from the range of [—10, 10] semitones with even
probability. This range, and the ranges of all other aug-
mentations’ parameters, are empirically found by ex-
perimenting with different values and finding the ones
that does not distort the signal completely.

* Time Stretch: It changes the speed of the audio by a
predefined rate. If the rate is smaller than one, the audio
will be slowed down and otherwise, it will speed up.
We re-sample the resulting audio to get a signal with
the same length as of the input. The rate of the time-
stretch is randomly chosen from the range of [0.5, 2].

* White Noise Injection: This module injects a white
gaussian noise to the data. The intensity of the noise is
determined by the signal-to-noise (SNR) ratio that we
specify. In this work, we randomly choose the SNR
from the range of [—6, 6].

* Fade In/Fade Out: Adds a fade in or a fade out to the
beginning and the end of the signal. The fade type can
be linear, logarithmic, exponential, quarter sinusoidal,
or half sinusoidal. We randomly apply each fade type
with uniform probability. The size of the fade is also
randomly chosen equal to a value between zero and half
of the signal’s length.

» Time Shifting: Shifts the audio signal forward or back-
ward. The degree of the shift is randomly chosen from
the range of zero and half of the signal’s length.

* Time Masking: This transformation randomly selects
a segment of the signal and set it equal to zero or an-
other constant value. The size of the masked portion of
the audio is randomly chosen to a value less than %0 of
the signal’s length.

* Frequency Masking: It applies a random masking to
the frequency spectrum of the signal. In other words,
it randomly removes a segment of frequencies of the
audio. The length of the masked segment is randomly
chosen to a value less than % of the signal’s frequency
length.

After applying the transformations, we extract the Mel
spectograms of raw audio signals. Mel spectograms is a time-
frequency representation of signals which is inspired by hu-
man hearing perception, and is a standard feature for audio
analysis. We feed the resulting two-dimensional mel spec-
tograms to a base encoder f(.), which is a neural network
that maps the input data to a lower-dimensional vector h(*) =
f(2*)). The choice of the encoder is arbitrary but for sim-
plicity, we used ResNet-18 in all our analyses. Although
ResNet-18 has been originally adopted for natural image clas-
sification, earlier studies have shown its efficiency for analyz-
ing spectograms as they possess features that are similar to
natural images [9].

Following the original SimCLR paper [6], we apply an ad-
ditional projection head g(.) that maps the latent representa-
tion, h, to a subspace where the contrastive loss is calculated.
g(.) is a Multi Layer Perceptron (MLP) with one hidden layer
and ReLU activation function, and is discarded during the in-
ference phase.

The contrastive loss is applied to the output of the projec-
tion head, 2(*) = g(h(®). It aims to pull together the rep-

resentation of positive pairs (sz) P

,2; ), while pushing them
away from negative pairs. We simply consider all other sam-
ples in the batch as negative pairs.

We used Normalized Temperature-scaled Cross-Entropy
loss (NT-Xent) as our contrastive loss function [10]. The NT-

Xent loss for the positive pair (i, 7) is calculated as follows:

exp(sim(zi, z;)/7)

Ziﬁl Ljazi) exp(sim(z;, za)/7)

l; ;= —log (D

s

In the above formula, sim(z;, z;) denotes cosine similarity be-

tween z; and z;, and is equal to sim(z;,7) = Ly The
i J
total loss of each batch can be calculated as:
| XN
LNTXent = 537 2&4 + 4, )
1=

In self-supervised learning, it is common to train the net-
work for an auxiliary task in order to improve its performance
on the main task [11]. One common proxy task is to train a
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simple classifier on top of the latent representation to predict
the type of the transformation that was applied to data in the
first place. Therefore, we also added a simple linear classi-
fier, pas(T = t;]Z) for predicting the applied transformation
on top of the encoder’s output. Multi-class cross entropy is
chosen as the loss function of this classifier, Log_os. The
final loss of our network will be the weighted sum of the con-
trastive loss and the loss of the transformation classifier:

ACtotal = ENTXent + )\‘CCEfcls' (3)

Where A is a balancing hyperparameter. We set A = 0.1
throughout all our experiments.

Finally, we need a scoring function that maps the latent
representation to a scalar that quantifies the degree of sam-
ple’s abnormality. To this end, we utilize the Mahalanobis
distance [12]. Mahalonobis distance is a metric that measures
the distance between a point and a distribution.

During the inference, we measure the distance between
the latent embedding of the query sample and the represen-
tation of normal training instances. For a given input z, the
anomaly score S, is calculated as follows:

Sy = (hz - M)TZ_I(h:L’ - N) 4

Where 4 is the mean vector of normal training samples, X is
their covariance matrix, and h, = f(x).

3. EXPERIMENTS

To gain an insight into the behavior and performance of our
proposed framework, we carried out several experiments us-
ing an industrial anomalous sound detection dataset.

3.1. Dataset and Task

MIMII [13] is a real-life dataset that contains audio sam-
ples for detecting malfunctioning industrial machinery, and
has been used by similar papers for performance assessment
[2][14]. It contains 10-seconds audio segments from four
machine types: Fans, Pumps, Slide-Rails, and Valves. The
signals are recorded with a 16 KHz sampling frequency.
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Fig. 2. Examples of normal and abnormal samples in the
dataset.

Readers can refer to [13] for a more detailed explanation of
the dataset and experimental condition.

In the publicly released dataset, each machine type con-
tains four IDs. For each machine ID, the normal and abnormal
samples are available. Some examples of normal and abnor-
mal samples are illustrated in Fig. 2. We first split the normal
data to train and test sets. Then we concatenate the test normal
data with all abnormal samples to create the final test dataset.
For the training, we only use the normal train dataset. We
train and test the network on each individual machine IDs.

3.2. Implementation

For extracting the Mel-spectogram, we set the number of Mel
filters equal to M = 128. We also set the hop length and
number of FFT points to 512 and 2048 respectively.

As earlier mentioned, we used ResNet-18 as our base en-
coder [15]. We modified the size of the final layer and set it to
512. For the projection head, we use an MLP with a hidden
layer of size 256 and representation vector of length 128.

We used the ADAM optimizer [16] with initial learning
rate equal to n = 0.01 as our optimizer. The batch size is set
to N = 128 which would be equal to N' = 256 after applying
the transformations. We trained the network for n = 400
epochs. Finally, we fixed the temperature constant to 7 =



Algorithm Fan Pump  Slide Rail  Valve
AE Baseline | 63.24% 61.92% 66.74%  53.41%
IDNN 64.4%  61.48% 67.80%  57.37%
VIDNN 66.5%  60.08% 67.6% 59.0%
FREAK 62.2% 62.4% 66.4% 56.5%
Our Method | 80.11% 70.12%  77.43%  84.17%
Table 1. Average AUC (%) of our method, in compari-

son with the results of a baseline AE, IDNN, VIDNN, and
FREAK [14].

0.07.

We evaluated the performance based on the Area Under
the Curve (AUC) of the receiver operating characteristics
(ROC). We calculated the AUC five times for each machine
ID and averaged the results.

The code was implemented in Python using PyTorch, Tor-
chaudio and Librosa [17] libraries.

3.3. Results

The average AUC over all individual IDs for different ma-
chine types is reported in Table 1. To better evaluate the per-
formance of our model, we also included the results of several
other competing algorithms [14].

As is shown in Table 1, our proposed approach has
achieved significantly improved performance in identifying
anomalies, and beats other competing algorithms. In accor-
dance with previous works [7], these results confirm that in
general, contrastive learning is a powerful tool for anomaly
detection. Earlier works have shown that contrastive learning
can significantly improve the state-of-the-art performance
in image anomaly detection and the result of our work can
further extend its success to acoustic anomaly detection.

Intuitively, we can describe the effectiveness of the
learned representation in detecting anomalies by considering
the loss function of our network. During training, we force
our network to map the augmented normal training samples
far from each other in the latent space. Since all our training
samples are normal, they share similar features but instead,
we enforce the network to focus on the minor discrepancies
that exist between them. Many anomalies also share lots of
similar features with normal samples and we can only identify
them by paying attention to small inconsistencies.

Therefore, when the network is fed with a new sample, it
identifies the features that differ from the latent distribution
of the normal class. We assume that if the sample belongs
to the normal class, there is a higher probability that a point
with similar features has been seen before during training. In
other words, the new data will be mapped closer to the latent
embedding of normal points if it belongs to the normal class.

® Normal
@® Abnormal

Fig. 3. Latent embedding T-SNE projection for the test
dataset of valve ID 0.

In contrast, if the point is abnormal, it is more likely that the
network has not seen a similar point during training and will
map it further from the distribution of the normal data.

To better understand the behavior of the latent represen-
tation, we employed T-SNE projection [18] to visualize the
latent embedding of one of the machines in Fig. 3. Look-
ing at this figure, we can confirm that anomalies and normal
points are mapped to separate clusters and are distinguishable
in the latent space.

Another remarkable observation is that our model achieves
its best performance on the data of valves, while other algo-
rithms almost fail to identify anomalies in this machine. An
example of valve’s normal and abnormal data is illustrated in
Fig. 2 (c) and (d). We can see that there is a repetitive pat-
tern in the normal spectogram of valves and a deviation from
this pattern can be an indicator of anomaly. Based on the
results of Table 1, the competing algorithms which are based
on autoencoders and reconstruction error, cannot efficiently
capture these anomaly types. This means that our approach
can be useful in some cases where other algorithms, such as
autoenders, fail to identify anomalies.

It is noteworthy to mention that we can possibly improve
the results of the network if we assume that we have access
to a limited number of labeled anomalies. We can use these
samples for tuning an anomaly detector on top of the latent
representation, or even incorporate them for learning a better
representation by adding relevant terms to the loss function.

4. CONCLUSION

In this paper, we proposed an acoustic anomaly detection al-
gorithm that employs contrastive learning. Experimental re-
sults show that our proposed approach can significantly out-
perform competing models. Combined with the outcome of
the previous works on image anomaly detection, these results
show the effectiveness of contrastive learning for anomaly de-
tection. As a future expansion to the current work, one can
investigate the performance under the assumption that a few
labeled anomalies are present in the training dataset.
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