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Abstract

Distribution-level phasor measurement units (D-PMU) data are prone to different types of anomalies given complex data flow
and processing infrastructure in an active power distribution system with enhanced digital automation. It is essential to pre-
process the data before being used by critical applications for situational awareness and control. In this work, two approaches
for detection of data anomalies are introduced for offline (larger data processing window) and online (shorter data processing
window) applications. A margin-based maximum likelihood estimator (MB-MLE) method is developed to detect anomalies by
integrating the results of different base detectors including Hampel filter, Quartile detector and DBSCAN. A smoothing wavelet
denoising method is used to remove high-frequency noises. The processed data with offline analysis is used to fit a model to
the underlying dynamics of synchrophasor data using Koopman Mode Analysis, which is subsequently employed for online
denoising and bad data detection (BDD) using Kalman Filter (KF). The parameters of the KF are adjusted adaptively based
on similarity to the training data set for model fitting purposes. Developed techniques have been validated for the modified
IEEE test system with multiple D-PMUs, modeled and simulated in real-time for different case scenarios using the OPAL-RT
Hardware-In-the-Loop (HIL) Simulator.
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Abstract—Distribution-level phasor measurement units (D-
PMU) data are prone to different types of anomalies given
complex data flow and processing infrastructure in an active
power distribution system with enhanced digital automation. It
is essential to pre-process the data before being used by critical
applications for situational awareness and control. In this work,
two approaches for detection of data anomalies are introduced
for offline (larger data processing window) and online (shorter
data processing window) applications. A margin-based maximum
likelihood estimator (MB-MLE) method is developed to detect
anomalies by integrating the results of different base detectors
including Hampel filter, Quartile detector and DBSCAN. A
smoothing wavelet denoising method is used to remove high-
frequency noises. The processed data with offline analysis is used
to fit a model to the underlying dynamics of synchrophasor
data using Koopman Mode Analysis, which is subsequently
employed for online denoising and bad data detection (BDD)
using Kalman Filter (KF). The parameters of the KF are adjusted
adaptively based on similarity to the training data set for model
fitting purposes. Developed techniques have been validated for
the modified IEEE test system with multiple D-PMUs, modeled
and simulated in real-time for different case scenarios using the
OPAL-RT Hardware-In-the-Loop (HIL) Simulator.

Index Terms—D-PMU, Active Distribution Network, Kalman
Filter, Koopman Mode Analysis, Data Anomaly Detection, DB-
SCAN, Margin-based Maximum Likelihood Estimator, Measure-
ment Denoising.

I. INTRODUCTION
A. Motivation

Transforming from an inactive to an active distribution
network with the integration of DERs and microgrid, it is
essential to utilize new data sources to increase the observabil-
ity of the system to enable centralized coordination between
different agents in the smart distribution grid. Synchrophasor
data provides a wealth of information that enables the grid
operator to capture fast transient dynamic events. However,
D-PMU data is needed to be pre-processed in order to denoise
and detect bad data before being fed to any other critical
applications.

Power system is a multi-layer distributed cyber-physical sys-
tem. Synchrophasor data Anomalies may originate in different
cyber-physical system layers. Fig. 1 illustrates data flow of
synchrophasor data in different layers of smart grid. Spatial-
temporal correlated anomaly originated from physical layer
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Fig. 1: Synchrophasor data in different layers of power distri-
bution system

and related to physical events. In sensor layer, D-PMU data
is generated with contaminated data by Bad Data and noise
from base sensors (voltage/current/GPS). Also, this data needs
to be sent over the communication network and it is prone to
communication delay, failure, and cyber attacks. Anomalies
in sensor and communication layer, are not usually temporal
and spatial correlated. Available data in application layer is
contaminated with anomalies of previous layers and distin-
guishing between the source of the anomaly is challenging.
Fig. 2 determines different types of events that can originate
anomaly in D-PMU data. In general, it is hard to differentiate
between bad data anomaly and event-based anomaly. This
leads to confusion between the origin of anomalies including
but not limited to noise and BDD and event, sensor problems,
cyber attack, and physical events. This must be done based
on Spatial-temporal correlation using Machine Learning (ML)
and a data-driven approach. Non-Spatial-temporal anomaly
must be compensated (denoising and replacing bad data);
however, the signature of Spatial-temporal anomaly events
needs to be preserved since they provide useful data about the
dynamic event in the system. Model-based approaches to BDD
and denoising are not practical for high sample rate D-PMU
data. Furthermore, Power system is subjected to several fre-
quent changes due to the contribution of independent agents,
topology reconfiguration, and stochastic nature of new energy
resources that make use of model-based approaches even more
challenging.

A decision tree can be used for the identification and
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Fig. 2: Possible Causes for D-PMU Data Anomalies

handling of D-PMU Anomaly. The denoising technique can
be used to remove high-frequency noise from the time series.
Non-inertia anomaly must be evaluated based on temporal cor-
relation with previous/next measurement and spatial correla-
tion with other measurements to distinguish between bad data
and event-induced disturbances. After detection of missed data
and non-inertial anomalies can be replaced with appropriate
values based on an educated guess with an interpolation or
prediction technique. Subsequently, the event can be analyzed
further for localization and classification; however, if the effect
of the event is not well-correlated with other measurements,
the hypothesis of associating the anomaly to the dynamic
event can be revisited. Mis-classification between bad data
(BD) and special-temporal correlated events could have serious
consequences. The False positive in detecting non-Spatial-
temporal BD, result in losing signature of event and weaken
the credence of classification/localization ML and data-driven
methods, in case that signal is used in the close loop, the
controller becomes less responsive. False-negative in detecting
non-Spatial-temporal BD, result in associating BD to the
physical event which misleads the classification/localization
in ML and data-driven methods, in the case that signal is used
in the close loop, it causes big measurement disturbance.

B. Related Works

Data pre-processing and measurement denoising is a signifi-
cant step which needs to be accomplished prior to investigation
of any physical or cyber-induced events throughout the system
[1]. A proper BDD technique is of enormous concern in such

Distribution System (DS) applications as State Estimation (SE)
[2], fault classification [3], fault location identification [4],
and situational awareness [5]. [6] presents a comprehensive
study on different ML-based approaches for distribution level
disturbance analysis with regard to efficacy examination and
performance evaluation of each technique. Assuming a normal
distribution can be estimated for load profiles, authors of [7]
propose a novel BDD approach based on the Weighted Least
Squate (WLS) method. Literature is mainly focusing on either
BDD or denoising separately accompanied with detection of
sensor faults in applications with renewable energies [8], while
in the current research work, the focus is on development of
two tools for online and offline BDD and denoising together.

Wavelet transform has been used widely for transient anal-
ysis in the power system [9], [10], [11] and is employed for
signal smoothing in this work. We combine the results from a
variety of base anomaly detectors such as Hampel filter [12],
Quartile technique, and DBSCAN using MB-MLE. For online
signal processing, the recursive Bayesian Kalman filter (KF)
has been used [13]. For the prediction step of KF, rather than
using a physical model, we utilize Koopman Mode Analysis
(KMA) [14] for fitting the model for prediction of behaviour of
the system with a data-driven approach. A lot of application for
KMA in power system has been developed including but not
limited to power system stability and dynamic analysis [15],
control and estimation [16], and fault line isolation [17] and
attack detection [18]. There has been other studies of voltage
stability-based analysis incorporating HVDC lines, including
cyber and physical co-simulation in [19] which are also of



high potential fits for KMA applications.

C. Contributions

The focus of this work is to detect anomalies in D-PMU data
and denoising of the measurements. Based on the application,
it might need to be done in online manner for close loop
control and monitoring purpose or offline in mode for further
investigation of the nature of the events. Here, we develop
two approaches for dealing with each case. For offline cases,
the computational time cost is relaxed and bad data detection
and denoising can be done with smoothing methods. For
that, MB-MLE is used to detect the bad data by integrating
the base detector scores. Different base anomaly detectors
are employed such as Hample filter, Quartile-based outlier
detection, and DBSCAN, of various methodology types to
detect the anomalies and this diversity enhances the likelihood
of isolating outliers. The wavelet smoothing technique is
employed to denoising the signal. For online mode, the KF has
been used to denoise the signal and detect the bad data based
on the residual analysis. Since, it is hard to obtain observability
towards the dynamic of distribution network from high sample
rate synchrophasor data, data-driven Koopman mode analysis
has been used to fit a model that describes the underlying
interaction dynamic between the D-PMU measurements which
is employed in the prediction step of Kalman Filter (KF). For
preparing data to fit a model, denoising and outlier detection
techniques developed in the offline phase are used for pre-
processing. Since the set of data has been used for the trained
model, might not be comprehensive, the online evaluation
of the performance of the fitted model is essential and the
parameters of the KF must be adjusted adaptively based on
the credence of the fitted model to rely more on measurement
as necessary. This is done by observing the deviation of the
mean of the estimated state from measurements.

The rest of this paper is outlined as follows. In section 2,
the offline techniques for anomaly detection and denoising
of the system is introduced. Section 3 presents our approach
for online data-driven anomaly detection and denoising using
data-driven adaptive KF. In section 4, the results of the
implementation of algorithms on real-time simulator data
are provided. Fig. 3 illustrates the connection of proposed
approaches.

To summarize, the main contribution of this paper can be
enumerated as follows:

1) Development of an offline tool with larger time window
data processing in order to achieve a high precision de-
noising (wavelet-based) and D-PMU BDD using margin-
based maximum likelihood estimator (MB-MLE) for
applications with less time sensitivity

2) Development of an online tool with shorter time window
data processing for rapid denoising and BDD of D-PMU
continuous data streams for fast responding close loops
and online monitoring control room applications based
on an adaptive KF

3) Extension of KF implementation in feeders with sparse
high sampling rate D-PMU measurements, without any
knowledge of system physical model, as a result of
Koopman Mode Analysis (KMA) employment

II. OFFLINE TOOL FOR D-PMU ANOMALY DETECTION
A. Wavelet Filter

Wavelet transform is an extension of Fourier transform
where frequency and temporal analysis is performed simul-
taneously to capture signal frequency evolution through time.
For that, wavelet transform localize features in the data set
with different scales. The fundamental principle of wavelet
transform is the sparse representation of the temporal signal
that means the signal can be presented in the limited large-
magnitude coefficient and the small value wavelet coefficient
are related to noise which can be removed without affecting
the original signal of interest. After thresholding, the signal
is reconstructed with inverse wavelet transform. In this work,
Wavelet transform is utilized to D-PMU signal denoising.

B. Hampel Filter (HF)

Hample filter evaluates data in a sliding window of 2n/
neighbor samples with n’ in each side. The median absolute
deviation (MAD) is computed as follows:

MAD = Median(|X — Median(X)|) (1)

where X presents the window in which the central element
is the sample of interest  and Median(.) calculate the local
median in the input array. M AD provides an estimation of
standard deviation on the window o = 1.4826 M AD.

If the difference of sample from the median of the window,
it bigger than three times of estimated standard deviation o,
It is considered an anomaly as a convention for Hampel filter.
For obtaining the margin of BD, the distance on the sample
from the median is computed as dx = x — Median(X). The
logarithm of dividing this value to three times of estimated
standard deviation gives a metric about the margin of the
possibility of being an outlier. If this metric is positive, the
sample is considered an outlier and vice versa. In the case that
metric is positive, The bigger the metric, the more possibility
to be an outlier from the Hampel filter perspective. If the value
is close to zero, the Hample filter is mostly indecisive about the
sample. Hampel is prone to detect a false bad data anomaly in
steady-state since the standard deviation in the window is fairly
small and a tiny deviation from the median can be considered
as a bad data anomaly. In that case, replacing with median
will not be harmful. However, since we are interested to detect
anomalies with different approaches and combine the results
based MB-MLE, we define the small constant ¢;, to reduce the
chance of detecting outlier in steady-state. Therefore margin
bad data HF defines for each sample as

ox
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Margingr = log(

C. Quartile-based Anomaly Detection (QOB)

Another statistical approach for anomaly detection is
quartile-based anomaly detection. The advantage of this
method is the fact that it does not have a normal distribution
assumption of the data. To implement, data is analyzed in
small windows, and the median and quarter of the window
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Fig. 3: The scheme of proposed online and offline approaches for D-PMU non spatial temporal anomaly detection

are computed. The sample is marked as an anomaly if they
are 1.5 times bigger than the upper quartile or if they 1.5
times below the lower quartile. For obtaining the margin metric
of being an outlier, the distance of each sample from the
median is computed (§z;) and divided by the distance of the
corresponding quartile from the median (6g). The logarithm
of this division gives insight into how likely the sample is an
outlier.

Like Hampel filter, this approach is prone to detect false
positives in steady-state. By the same token, the constant
constant ¢, is added to the denominator of the fraction.
Therefore, margin quartile method can be computed for each
sample as

(51'1'
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Margingp = log(

D. Density-based Spatial Clustering of Applications with
Noise (DBSCAN)

DBSCAN has been deployed for determining outliers in
finding the disturbances from the output of an unsupervised
model [20]. DBSCAN uses two tunable parameters include
threshold ¢ and Minimum Number of Points (MinPts). The
data point in e radius of cluster is merged to it. At least
MinPts data points are needed to form a cluster. The data
points without clusters are determined as outliers.

In this work, to find the margin-based value, the parameter
threshold ¢ which makes each measurement categorized as an
outlier is calculated based using grid search. Subsequently the
parameter Marginppscan = log é is found to determine
the margin of begin outlier with the DBSCAN method for each
sample. The value of ¢ can be estimated based on results from
ground truth data.

E. Margin-Based Maximum Likelihood Estimator (MB-MLE)

Different calculated margin from base-detectors are com-
bined together to make a robust decision about the likelihood
of being bad data anomaly for each sample as follows:

MLE = N(Z ciMargin;) “4)

i€B
where set B8 = {HF, QB, DBSCAN} show the available
based detectors and c¢; is associate confidence factor which

can be obtain based on historical data in the ground truth is
know or using majority voting to estimate the ground truth. For
this work, we assume ¢; = 1 for all i € B. Positive M LE
indicates anomaly and vice versa and the biggest deviation
from zero, indicates more confidence of MB-MLE bad data
anomaly detector.

III. ONLINE TOOL FOR D-PMU ANOMALY DETECTION

Although the introduced offline tools in the previous section,
can determine the anomalies and reduce noise effect with
smoothing techniques with good accuracy. The implementa-
tion of those techniques is time-consuming and they might
not be suitable for the application when fast decision making
is needed. Considering these facts, in this section, we develop
an online D-PMU pre-processing tool using Koopman Mode
Analysis and adaptive Kalman Filter by adjusting the KF
parameters based on the confidence on of the fitted model
with online monitoring. This technique used both temporal
and spatial correlation between synchrophasor measurement
to signal processing.

A. Kalman Filter

KF is an optimal recursive bayesian estimator. If the as-
sumptions of the KF (Linear Dynamic, Gaussian process and
measurement noise) hold, it surpasses any other casual filter. It
consists of two steps namely prediction and correction. In the
prediction step, the model of the system is used to predict the
expected value and uncertainty of the next step measurement.

:in|n—1 = Ain—l\n—l + Bup
Pn|n71 = APn71|n71A/ +Qn

Where A is the linear dynamic of the system, B is signature
of input, and w, in control input at time n.%,_;,—1 and
P, _1jn—1 shows the prior believe on the expected value and
covariance of estimated states. Ty|,—1 and P, represents
those at time n based on prediction and @,, is process noise
covariance.

In the correction step, the value of prediction is modified
based on new observation, and the uncertainty of perdition
reduced based on characteristics of observation.

S



Sp = CPyjn1C' + R,

Kp = Ppnjn1C'S, ™"

= Zpjn-1+ Kn(yn — CZpjn_1)
Py = Pyjn—1(I — K,,C)

(6)

Tn|n

Where C' is signature of output. R, is covariance of
measurement noise and S,, characterize the uncertainty of
measurement. K,, is Kalman gain, y, is measurement at
time n and Z,, and P, shows the posterior believe on
the expected value and covariance of estimated states after
observation.

In our formulation, y is direct and indirect measurements
from different D-PMU contaminated with noise and bad data
anomaly and x indicates measurement without contamination
and Z is estimation of z, B is equal to zero and C equal
to identity matrix with appropriate size therefore y has same
size as x. In the next subsection, we explain how to obtain
linear dynamic model A and adjust parameters R,, and Q,
attentively.

B. Koopman Mode Analysis

Koopman Theory asserts that any underlying nonlinear
system can be described completely with infinite state space
[14]. To find a finite approximation of the Koopman states,
many data-driven mechanisms are suggested. In this work,
we use Dynamic Mode Decomposition to this end. DMD
is a data-driven approach for fitting a linear dynamic to a
set of measurements [21], [22]. Consider that the matrix
Z¥ = [z1,..., 1] represents a window of k' snapshots
consisting n measurement at each snapshot where vector z;
shows the 7th snapshot. The matrix Zf/ is constructed by
stacking different D-PMU’s direct measurement data streams
such as voltage/current magnitude/angel, and frequency and
indirect measurement data stream including active/reactive
power flow on each other. The notation Z! shows a set of
subsequent data where subscript p is the index of the starting
snapshot and superscript ¢ is the index of the last snapshot in
the window. We assume the sampling distance between every
two successive snapshots is constant and is shown with §.
Suppose there exist a linear dynamic A maps data sample z;
to data sample z;,q fori=1,--- k' — 1 as

Zi+1 = AZZ (7)

Generally speaking, measurements are generated from a
nonlinear underlying dynamic. Using DMD, we attempt to
find the best linear dynamic approximation that describes the
relationship between the measurements over the window. In
other words, we try to minimize the residual of the linear
system defines as

cl], e

Where |||, shows norm 2 of matrix. A naive approach to

. . ’ 1+ [

compute linear system is A = Z§ ZF 1" where Zf s
Moore-Penrose pseudo-inverse of Z ~'. The matrix inverse

can be obtained via the LQ method. Nonetheless, Singular
Value Decomposition (SVD) allows more robust numerical
stability [23]. However, it is not computationally efficient to
calculate A directly because k&’ might be large. Therefore, the
DMD algorithm finds eigenstructure linear dynamic without
computing it directly. By employing SVD we have

ZF-1=—ysyr 9)

Regardless of the possible hug dimensions of A, in most
cases, the underlying dynamic of the window can be delineated
with a few m dominant modes which are of the notable
portion of event energy. Using these modes, the equivalent
linear dynamic Ais computed as follows

A=uvrzF-ve! (10)

Where U,, shows first m columns of U. A has same
eigenvalues as A. By eigenvalue decomposition of A we have
AW = AW where diagonal matrix A contains eigenvalues
of A and A matrices. Columns of W are eigenvectors of A.
Eigenvectors of A are computed as ¥ = VQk/VE_ll/V. The jth
diagonal entity of A indicates eigenvalue of jth mode shown
by A; and corresponding eigenvector is jth column of matrix
W denoted by ;.

To Compute energy amplitude of each mode, SVD of
the data window is obtained as Zf, = UpXoVy. The
matrix A; = exp([A1y,- - ,/\m7t]T) indicates evolution of
each mode in the window where A\;,; = /\jT and T =
[0, h,2h, -+, (k' —1)h]". Subsequently, we calculate matrix
=, = YTY ® (AAT)" where ® denote Hadamard product
operator, superscript * indicates Hermitian transpose operator
and T = UI'U. Further, =5 = Diag(A;Vo%oY)" where
the operator Diag(.) place the diagonal entries of square
input matrix into a vertical vector. Finally, m-length vector
Z'Z, is computed where absolute value of the jth
element of = is equal to o; which shows energy amplitude
jth mode of linear system.

Here, we use KMA for finding linear system A that
describes the dynamics of the system based on long and
comprehensive historical data after pre-processing with offline
anomaly and denoising techniques that were introduced in
section 2. From each D-PMU direct measurements such as
voltage/current magnitude/angle and frequency and indirect
measurements such as active and reactive power flow in
different phases are used to find the linear model. The reason
for adding indirect measurement is that it is proofed by adding
more observant, the better linear system can be fitted to
describe the underlying dynamic of system [21]. The fitted
linear model is used for prediction in online KF for denoising
and bad data detection.

— —
—_ =

C. Adaptive Adjustment of Kalman Filter Parameter

With the assumption of having Gaussian Noise, the mean
of estimated value and measurement value overtime must
have the same values. This can be used as an indicator
that the fitted model A, does not describe the dynamic to
the system precisely. The deviation of mean in all estimated



measurements from noisy measurement over a is calculated
as N[n] in each sample n. The average of that over that in
short interval on recent samples with length 5 is called N.
This metric is used to check the credence of the fitted linear
model. Using this parameter, the metric p is defined as

P exp {7a'steepN} +1 e

In the above function, p goes to 1 as when N is zero and
it goes t0 Oypqq + 1 as N goes to 00. Ogpeep determines how
fast this transition occurs. The process noise of the KF is then
updated attentively as Q = pQpqse- It needs to be clarified,
that A is computed offline and used in online pre-processing
using KF. However, if p remains bigger than a preset threshold
for a long period of time (1 day), that means that power grid
topology or dynamic has been changed significantly and a new
linear model A required to be fitted to obtain good results with
online tool.

an

D. Online model update scheme

If the value of parameter N stays big for a considerable
amount of time, it means that the linear model A cannot
describe the behavior of the system anymore and it is essential
to retrain the model. This will trigger offline analysis auto-
matically to compute a new linear dynamic A. For that, we
compute the parameter N = > ken—n, N[k] where [n—ng, n]
indicates the time window that we accumulate the average
deviation of mean in all estimated measurement from noisy
measurement over. ng is chosen to have a time window that
covers half and hour and the model is retrained if the N if
bigger that the threshold ~.

IV. PERFORMANCE EVALUATION
A. Testbed and Test Case Development

For the evaluation purposes of the developed algorithms in
this work, IEEE 33-node test feeder is chosen to be modeled
and simulated in Opal-RT hardware-in-the-loop (HIL) simula-
tor.

Fig. 4 shows the single-line diagram of the developed
IEEE-33 node system in OPAL-RT with extra modifications
compared to the standard model. The HYPERSIM interfacing
simulator is used for software aspect of the model development
with capabilities of DER integration and D-PMU simulation.
The model is capable of being executed in real-time with 50
us timestep and with hardware D-PMUs added to the loop of
the simulation. The developed Battery Energy Storage Systems
(BESS) and PV units are modeled to be operating under the
grid-forming configuration, making the distribution feeder to
be able to operate under a 100% renewable scenarios in an
islanded operation. The modifications on the standard IEEE
system include adding four BESS and PV combined energy
resources at four different loaded nodes of the feeder. The
network has three radial feeders with possible mesh intercon-
nection among themselves. Simulation D-PMUs are modeled
and placed at generation nodes: {1,14,18,22,29,33}. The
monitored instantaneous time domain signals captured from
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Fig. 4: The modified IEEE 33-node system with D-PMU and
DERs

TABLE I: Stationary Operating Scenarios

Operating Scenario 1 | All the renewables dispatching to
the maximum capacity

All the four BESS discharging
with 50% SOC

Zero renewable (loads being
supplied by the grid)

BESS number 3 located at bus 22
is 50% charging

Operating Scenario 2

Operating Scenario 3

Operating Scenario 4

the OPAL-RT solver are sent to simulated D-PMUs for phasor
estimations.

A series of load flow stationary scenarios as well as a com-
prehensive list of practical dynamic events have been modeled
and simulated and all the time-stamped measurements are fed
to the algorithms for efficacy investigations. The stationary
use case development is to have the system operate under the
edge scenarios of either all the power being supplied from
the grid or the system maintains the load by its own in an
islanded operation. Table-I shows a list of load flow operating
scenarios, under which case several dynamic events have been
simulated.

A wide range of dynamic use case scenarios have been
modeled, including breaker operations, load and capacitor
bank switching, generations step up and down, different types
of short circuited bolted and shallow faults as well as islanding
events. Corresponding D-PMU outputted measurements have
been collected and pre-processed, further on timestamped mea-
surements have been used for offline and online validations.

B. Simulation and Validation Analysis

For introducing noise and bad data to synthesis data from
the OPAL-RT, the additive white Gaussian noise with the
variance of 0.01 x u,; added to each measurement ¢, where
w; is the mean of that measurement. Non temporal-spatial
anomaly bad data is acted uniformly to the measurements
with rate 0.001 and change the value of the measurement
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Fig. 5: The result of offline pre-processing for denoising and

bad data compensation using MB-MLE and wavelet analysis

on D-PMU 1, voltage magnitude measurement phase a

to value p; + k; where random variable «; is chosen from
interval [—n;,—0.5n;] U [0.57;,n;] with uniform distribution
where 7, = max(100;,0.211;) and o; and p; are standard
deviation and mean of measurement ¢ respectively.

Fig. 5 shows the performance of suggested offline wavelet
smoothing and MB-MLE BD anomaly detection and compen-
sation technique on the contaminated data with noise and BD
anomaly. As can be seen, all of the bad data are detected
and eliminated from compensated data (at seconds 10.58,
41.73, 51.42), and also, the noise level has been reduced. The
proposed offline tool increases the signal to noise ratio (SNR)
15.241 dB for D-PMU 1 voltage magnitude measurement
phase a (Fig. 5). Table II shows the performance of each base
anomaly detector and their MB-MLE assemble statistically in
terms of the confusion matrix, recall, and precision. Recall
is defined as Recall = T;:r% and precision is defined as
Precision = %. As can be seen, the MB-MLE has
improved both Recall and Precision compare to base detectors.

TABLE II: Statistical comparison of different methods, Con-
fusion matrix (True positive (TP), False positive (FP), False
negative (FN), True Negative (TN)), Recall, and Precision

Method TP FP FN TN Recall  Precision
HF 861 205 13 788713  0.9851 0.8077
QB 861 120 13 788798  0.9851 0.8777

DBSCAN 859 272 15 788646  0.9828 0.7595
MB-MLE 866 31 8 788887  0.9908 0.9654

For online analysis, the signal is processed with offline tools
and a linear dynamic is fitted to describe the linear dynamic.
The linear dynamic is subsequently used to reduce the noise
of the system and compensate for bad data (at seconds 0.41,
8.45, 9.31, 17.29, 14.09, 46.1, and 57.41 ). Fig. 6 shows
that the introduced system can reduce the effect of noise and
bad data significantly and SNR increases 9.78 dB for voltage
measurement D-PMU 2 phase b (Fig. 6). Although with online
KF, BD is not replaced through interpolation as it happens in
the offline tool, it yet reduces the magnitude of BD anomaly
significantly since it utilizes the KMA-based fitted model for
prediction and filter uncorrelated spatial and temporal jumps
in the measurement.

When the dynamic behavior has not been seen in fitting the
linear model A, the process noise parameters of the system are
adjusted adaptively to avoid relying on non-precise parameters
for prediction and rely more on the noisy measurement. In Fig.
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Fig. 6: The result of online denoising and bad data com-
pensation using adaptive Kalman filter on D-PMU 2, voltage
magnitude measurements, phase b

7 the performance of KF is shown when it is exposed to the
dynamic events that have not seen before after 30 seconds.
In 7a no compensation has been made for that and as can
be seen, relying on an imprecise model leads to big bias.
However, in 7b the deviation in the mean of estimated value
and measurements are monitored and adjust the parameters of
the KF. So after 30 seconds, we have a noisier estimation,
however, we reduce the bias from the real value. That is
because we trust less on the inexplicit model for prediction and
rely more on the noisy measurement. 7c shows the p parameter
where @ = 0.1pI, R = I and I indicates the identity matrix
with appropriate dimension.

Although offline tool provides more precise denoising and
BDD than online KMA-based KF filter, it comes with the cost
of having more expensive computational time. For example,
in our simulation using MATLAB software with Core i7
computer, for processing 114 data stream for 60 seconds with
the sample rate of 120 data points per second, it takes 145.642
seconds for the offline tool to process the data. However, the
same process is done in 2.592 seconds using the online tool.
Therefore, based on the application, the appropriate tool can
be selected for pre-processing of phasor measurements.

V. CONCLUSIONS AND FUTURE WORK

In this work, two new approaches are developed for offline
(longer time window data processing) and online (short time
window data processing) denoising and bad data detection
in distribution Phasor Measurement Units (D-PMU). Multiple
base detectors of different types including Hampel filter, Quar-
tile detector and DBSCAN are developed and integrated using
a margin-based maximum likelihood estimator (MB-MLE).
High-frequency noises are processed and removed using a
wavelet denoising method. Koopman Mode Analysis is used
to fit a model to the underlying dynamics based on offline
analysis and used for online denoising and bad data detection
using Kalman Filter (KF) with adaptively adjusted parameters.
Evaluation of performance using synthetic data generated
by the modified IEEE 33 bus test system with multiple D-
PMUs, simulated in real-time in the OPAL-RT confirms the
practicality of the proposed scheme. For the next step, the
validation can be further elevated using a large distribution
network with a decentralized approach to divide the network
into local zones to test the scalability of the proposed scheme.
Also, online parameter adjustment of adaptive KF can be done
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7: Online denoising with D-PMU with Kalman Filter,

voltage angle of D-PMU 3 phase a. after 30 second unforeseen
dynamic act of the system

using deep autoencoder and dynamic features to enhance the
fast response of the adjustment loop before deviation causes
modification in the parameters.
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