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Abstract

With the increasing complexity of simulation studies, and thus increasing complexity of simulation experiments, there is a high

demand for better support for their conduction. Recently, model-driven approaches have been explored for facilitating the

specification, execution, and reproducibility of simulation experiments. However, a more general approach that is suited for a

variety of modeling and simulation areas, experiment types, and tools, which also allows for further automation, is still missing.

Therefore, we present a novel model-driven engineering (MDE) framework for simulation studies that extends the state-of-the-

art by means for knowledge sharing across domains, increased productivity and quality of complex simulation experiments, as

well as reusability and automation. We demonstrate the practicality of our approach using case studies from three different

fields of simulation (stochastic discrete-event simulation of a cell signaling pathway, virtual prototyping of a neurostimulator,

and finite element analysis of electric fields), and various experiment types (global sensitivity analysis, time course analysis, and

convergence testing). The proposed framework can be the starting point for further automation of simulation experiments, and

therefore can assist in conducting simulation studies in a more systematic and effective manner. For example, based on this

MDE framework, approaches for automatically selecting and parametrizing experimentation methods, or for planning following

activities depending on the context of the simulation study, could be developed.
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Supplementary Material

Table 1: Base meta model for conducting simulation experiments in finite element analysis. A geometric model, a physical
model, and a solver need to be provided and configured. Optionally, observations and derived properties can be specified. The
rows describe the different input properties of the meta model. Sub-properties are denoted by “•”. Alternative meta model
parts are indicated by “→”.

Name Description Type Choices Required

G
eo

m
et

ri
c

M
od

el

studyName Name of the simulation study String – no
dimensions Number of dimensions Integer, > 0, ≤ 3 – yes
geometry Choose geometry type Alternative – yes
→meshFile Path to mesh file String – yes
→geometryFile Path to geometry file String – yes

geometryValues Define the geometry Map – no
•subDomain Geometry element (key) String – no
•subDomainValue Value of geometry element Real – no

Ph
ys

ic
al

M
od

el

physics Choose a physical model String EQS, ... yes
materialProperties Define materials and their properties Map – yes
•materialName Material used in the model (key) String – yes
•conductivityValue Conductivity of the material Real – yes
•permittivityValue Permittivity of the material Real – yes

boundaryCondition Choose a boundary condition Alternative – yes
→dirichlet Dirichlet boundary condition Map – yes
•boundary Name of the boundary (key) String – yes
•boundaryValue Boundary value Real – yes

→vonNeumann Von Neumann boundary condition Map – –
... ... ... ... ...

frequency Frequency value Real – yes

Si
m

ul
at

io
n

solver Choose a solver type String MUMPS, ... yes
element Choose an element type String CG, ... yes
degree Degree of the polynomial Integer – yes
meshRefinement Use iterative mesh refinement Map – no
•refinedSubDomain Name of the subdomain to be refined (key) String – no
•refinementCycles Number refinement steps Integer – no

O
bs

er
va

tio
n

observationPoints Points at which equations are solved Map – no
•observationPosition Coordinates of the observed point (key) Array<Real>, length∈ {1..3} – no
•observationAlias Alias for the observation String – no

outputFormat Choose an output format String XMDF, ... no
observables Calculation of derived properties Map – no
•derivedPropertyName Name of the derived property (key) String – no
•derivedPropertyExpression Expression for calculating the property String – no

1
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Pia Wilsdorf , Jakob Heller , Kai Budde , Julius Zimmermann , Tom Warnke ,

Christian Haubelt , Dirk Timmermann , Ursula van Rienen , Member, IEEE ,

and Adelinde M. Uhrmacher

Abstract—With the increasing complexity of simulation studies,
and thus increasing complexity of simulation experiments, there is
a high demand for better support for their conduction. Recently,
model-driven approaches have been explored for facilitating
the specification, execution, and reproducibility of simulation
experiments. However, a more general approach that is suited for
a variety of modeling and simulation areas, experiment types, and
tools, which also allows for further automation, is still missing.
Therefore, we present a novel model-driven engineering (MDE)
framework for simulation studies that extends the state-of-the-
art by means for knowledge sharing across domains, increased
productivity and quality of complex simulation experiments,
as well as reusability and automation. We demonstrate the
practicality of our approach using case studies from three
different fields of simulation (stochastic discrete-event simulation
of a cell signaling pathway, virtual prototyping of a neurostim-
ulator, and finite element analysis of electric fields), and various
experiment types (global sensitivity analysis, time course analysis,
and convergence testing). The proposed framework can be the
starting point for further automation of simulation experiments,
and therefore can assist in conducting simulation studies in a
more systematic and effective manner. For example, based on
this MDE framework, approaches for automatically selecting
and parametrizing experimentation methods, or for planning
following activities depending on the context of the simulation
study, could be developed.

Index Terms—Computer simulation, knowledge representa-
tion, formal specifications, software reusability, model-driven
development, design for experiments

I. INTRODUCTION

MODELING and simulation has become a key tool
in many sciences and engineering disciplines [1]. A

simulation study is usually characterized by iterative model
refinements, intertwined with problem analysis, conceptual
modeling, and various experimentation activities, as illustrated
in modeling and simulation life cycles [2]–[4] (see Fig. 1). Due
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to its complexity, there is a high demand for approaches that
allow simulation studies to be conducted in a more effective
and systematic manner. Especially support for conducting
simulation experiments is of increasing interest, as they drive
important activities, such as the calibration, validation, and
analysis of models and are essential for the reproducibility
of simulation results. With new computational power, new
availability of data, and the strengthened role of simulation
experiments in advancing science within the different domains,
the requirements referring to simulation studies and experi-
ments become more rigorous, the variety and complexity of
simulation experiments increases, and the field of modeling
and simulation is rapidly evolving.

To support simulation experiments, a clear separation of
concerns between model and experiment is necessary [5].
Following the reproducibility crisis [6], a variety of approaches
have been developed for capturing simulation experiments ex-
plicitly and machine-accessibly. This is reflected, for example,
in domain-specific languages such as SESSL (“Simulation
Experiment Specification via a Scala Layer”) [7], [8] and
SED-ML (“Simulation Experiment Description Markup Lan-
guage”), or reporting guidelines such as MIASE (“Minimum
Information About a Simulation Experiment”) [9] and the re-
porting guidelines for finite element analysis studies in biome-
chanics [10]. Also modeling and simulation frameworks, such
as the Simulation Automation Framework for Experiments
(SAFE) [11], plug-in based approaches [12], or approaches for
packaging simulation experiments as reproducible objects [13]
add to the reproducibility and portability of simulation exper-
iments.

Model-driven engineering (MDE) based approaches can
provide additional support in the specification and execution
of simulation experiments. In an MDE approach, meta mod-
els require certain experiment inputs, guide users through
the experiment specification, and finally generate executable
code [14]. Current MDE approaches for simulation exper-
iments realize and demonstrate this for the generation of
experiment designs for parameter scans [14] and hypothesis
testing [15]. However, they concentrate on specific fields of
simulation, support only a specific experiment type, or are
tightly coupled with specific tools. As a consequence, their
applicability and thus their impact on the way simulation
experiments are conducted is limited. Also, some typical
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benefits of MDE [16], such as improved knowledge sharing
and further automation, are not yet available or not fully
exploited for simulation experiments. Thus, a more general
approach is desirable that can support simulation experiments
more broadly and thus assist in conducting entire simulation
studies more effectively and systematically.

In this paper, we present a novel MDE framework that
enhances the state-of-the-art of conducting simulation experi-
ments in the following ways:
• Improved knowledge sharing across domains: Experiment

meta models make knowledge about the structure and
ingredients of simulation experiments explicit. By build-
ing various kinds of meta models and storing them in
repositories, we allow modelers and developers to share
knowledge about simulation experiments between the
different communities, e.g., finite element analysis or vir-
tual prototyping. These usually develop their simulation
methodology and tooling independently, although the way
simulation experiments are specified and conducted rarely
differ and thus could be supported by the same pipeline.

• Increasing productivity and quality for complex exper-
iments: For novice modelers, MDE clearly facilitates
the specification of simulation experiments via targeted
graphical user interfaces and code generation. We pro-
vide additional support via an experiment validator and
allow for support of complex simulation experiments via
meta model composition. Due to the focus on complex
experiments, also experienced modelers can benefit.

• Reusability: The meta models give meaning to the ingre-
dients of simulation experiments. Together with an easy-
to-use, tool-independent format and a variety of backend
bindings, we support the flexible and automatic reuse
of simulation experiments. This is of interest when the
performance of different simulation tools needs to be
compared [17], or model alternatives implemented using
different modeling and simulation approaches shall be
evaluated [18].

• Automation: Further automation of simulation experi-
ments can be achieved if the knowledge about the various
simulation experiments (given by meta models) is put
into relation with context knowledge about the simulation
study (e.g., given by conceptual models [19], prove-
nance [20], or documentation [21]), as in these cases, sim-
ulation experiment specifications may be automatically
generated and executed [22]. As our approach provides
means for integration with various other frameworks,
it presents a valuable basis for further automation of
simulation experiments.

We demonstrate the above features and benefits of the
approach using concrete examples from three case studies. The
studies are part of the Collaborative Research Centre (CRC)
1270 ELAINE1, which aims to develop novel electrically
active implants for bone and cartilage regeneration as well
as for deep brain stimulation. In each of the three studies a
different modeling and simulation approach/domain is in focus
(i.e., stochastic discrete-event simulation of a cell signaling

1https://www.elaine.uni-rostock.de/en/
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Fig. 1. Overview of the modeling and simulation life cycle with its main
artifacts and activities.

pathway, virtual prototyping of a neurostimulator, and finite
element analysis of electric fields).

The paper is organized as follows. In Section II, we provide
an overview of related work. In Section III, we present the
design of our novel model-driven approach for conducting
simulation experiments. Details of the open-source implemen-
tation are given in Section IV. In Section V, we demonstrate
the benefits of our approach using three real simulation studies.
Finally, we end the paper with conclusions and future work in
Section VI.

II. RELATED WORK

Model-driven approaches for modeling and simulation so far
have mostly focused on the generation of (executable) simula-
tion models [24]–[26], models in distributed settings [27], or
multi-formalism modeling [28].

With regards to simulation experiments, MDE has been ap-
plied in the context of experiment design, and hypothesis test-
ing. Teran-Somohano et al. [14] support the specification and
execution of simple simulation experiments based on factorial
designs, e.g., parameter sweeps. The approach by Dayıbaş
et al. [29] is based on an own domain-specific language
for experiment design and semi-automatic transformations to
multiple execution platforms. Yilmaz et al. [15] propose the
generation of experiment designs from hypotheses and outline
an overarching goal-hypothesis-experiment framework.

Simulation experiments are also generated without explicit
meta models or MDE frameworks. These usually target spe-
cific problems within the modeling and simulation life cycle.
Lorig [30], for instance, generates efficient experiment designs
for hypothesis testing based on formally specified hypotheses.
Peng et al. [31] support the successive composition of models
by generating simulation experiments for composed models.
More specifically, statistical model checking experiments of
individual models are reused and adapted for the composed
model based on explicit experiment specifications and explicit
behavioral properties. Similarly, properties of extended or
refined models can be checked [32]. Cooper et al. [33] focus
on supporting the comparison of electrophysiology models
using typical experiment types of that domain, i.e., time
course analyses and steady-state analysis. Concrete experiment
specifications (protocols) conducted with previous models
are stored in an online database and can be repeated with
new models. Ruscheinski et al. [21] present a pipeline for

https://www.elaine.uni-rostock.de/en/
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Fig. 2. Four-layered MDE architecture [23] for simulation experiments. The level of abstraction decreases from left to right. The experiment meta models
(consisting of base experiment and experiment type, see layer M2), developed based on a meta modeling formalism (layer M3), are at the heart of the approach.
Based on M2, a tool-independent, exchangeable experiment specification can be generated (M1), which then forms the basis to derive an executable, tool-
specific specification (M0) based on tool-specific mapping information. The generated experiment specification can then be automatically executed using
a backend binding. Additional support components such as meta model repositories, graphical user interfaces, and validators help conducting simulation
experiments effectively. The experiment generation pipeline may be used either manually, or integrated with other support software, for example, workflow-
based, via an API.

generating a number of different experiment types including
local sensitivity analysis, optimization, and statistical model
checking. This pipeline was expanded by experiment schemas
in Wilsdorf et al. [34] to support multiple simulation tools and
approaches.

In this paper, we generalize the latter experiment generation
approach further using the MDE paradigm. The main novelties
are a) the separation into two types of meta models (domain
meta models and experiment type meta models) and a corre-
sponding composition mechanism, b) a meta model repository,
c) bi-directional transformations and execution bindings for a
variety of tools, and d) an application programming interface
(API) for easy integration with other frameworks. As a result,
our framework flexibly supports the conduction of diverse,
complex experiment types, and it enables the sharing and
reusing of knowledge even across different modeling domains
and tools. Furthermore, our framework provides the foundation
for automatically generating and reusing simulation experi-
ments during the various phases of a simulation study, and thus
for conducting entire simulation studies in a more systematic
and effective manner.

The development of meta models, as part of an MDE frame-
work, is closely related to the development of ontologies as
both represent knowledge in a structured manner. Ontologies
for modeling and simulation have been developed to facilitate
data exchange, interoperability, and annotation of simulation
resources [35]. Most ontologies define the components and
concepts in simulation models instead of simulation experi-
ments, e.g., the Discrete Event Simulation Component Ontol-
ogy (DESC) [36], or the Discrete-event Modeling Ontology
(DeMO) [37]. However, some ontologies overlap with meta
models for simulation experiments, e.g., the ontology for
capturing physics-based models by Cheong and Butscher [38]
and our meta model for Finite Element Simulation Studies
(see Sec. V) both include the boundary condition and material
properties.

III. MODEL-DRIVEN APPROACH FOR CONDUCTING
SIMULATION EXPERIMENTS

We develop a novel model-driven approach for conducting
simulation experiments. Its central features are the separation
into two types of meta models (domain meta models and
experiment type meta models) and a corresponding com-
position mechanism, a meta model repository, bi-directional
transformations and execution bindings for a variety of tools,
and an API for easy integration with other frameworks. The
approach as a whole can improve knowledge sharing across
domains and approaches, increase productivity and quality for
complex experiments, make simulation experiments reusable,
and automatically generate and execute simulation experi-
ments in various settings.

A. Framework Overview

Our approach for supporting the conduction of simulation
experiments is based on the MDE principle. The central idea
of MDE is combining meta models (i.e., a structured repre-
sentation of concepts) with means for code generation [39].
Typically, MDE is realized in an architecture with four levels
of abstraction and translations between them [23]. Fig. 2
illustrates our four-level MDE approach for simulation ex-
periments. Experiment meta models of the various domains
and approaches of modeling and simulation are represented
by the level (M2). In addition to the definition of these
so-called base experiments, meta models for a variety of
experiment types (e.g., sensitivity analysis (SA) or simulation-
based optimization) exist. These two types of meta models
can be composed flexibly to create meta models of complex
simulation experiments. How meta models can be constructed
is defined at the level of the meta meta model (M3), for
example, one could use formalisms such as UML class dia-
grams [40] or schema languages [41], [42] to express the meta
models. But experiment meta models are not only developed
from scratch, therefore we store them in a repository from
which parts can be reused by related areas of simulation or
by other experiment types. The newly developed meta models
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are again stored in the repository and thereby complement
the knowledge collection about simulation experiments. A
composed meta model (consisting of base experiment and
experiment type) can be loaded via an interface (GUI or
API). The loaded meta model dictates which inputs have to
be provided to specify a valid simulation experiment. An
experiment validator provides guidance for the modeler. If
all inputs required by the meta model have been collected,
a concrete tool-independent experiment specification (model
M1) is generated. This general representation of the simulation
experiment can now be easily reused, and some tools might
also be able to import this specification directly. To receive
an executable experiment instance (M0), the M1 specification
is automatically transformed to code of a target backend and
subsequently executed using the respective tool binding. In
the following, we will describe the distinct features of our
framework further.

B. Meta Modeling Language

At the highest level of abstraction in our framework, the
meta meta model is situated. The meta meta model is essen-
tially the language in which the meta models are specified.
Meta meta models are usually self-referential (i.e., they define
themselves). As a result, no further layers above M3 are
required.

A meta modeling language needs to encompass means for
comfortably developing a new meta model for a particular
simulation domain and/or approach (base experiment), or a
particular type of simulation experiment (experiment type).
We have identified the following requirements:

• Hierarchical structuring via components and nested input
properties;

• Unique names for components and input properties;
• Standard data types such as boolean, string, integer, real,

as well as arrays;
• Enumeration of admissible values, and specification of

default values;
• Maps to associate a key property with one or more other

properties;
• Alternative specifications for input properties;
• Constraints to define simple type restrictions or the car-

dinality of an input property, and optionally relations
between multiple input properties.

UML [40] is widely used for meta modeling software sys-
tems. UML class diagrams allow for a graphical notation that
is intelligible to software developers as well as domain experts.
The expressiveness of UML class diagrams can be comple-
mented with the Object Constraint Language (OCL) [43].
Another way of meta modeling are schema languages like
XML Schema [41] or JSON Schema [42]. They describe
the structure of text documents, and therefore directly ship
with a data exchange format (XML or JSON) for the layer
M1. They also encompass built-in means for defining simple
constraints. For detailed syntax and semantics of the constraint
languages, we refer the reader to the OCL specification and
the XML/JSON Schema specifications.

Listing 1. A base meta model of a fictive modeling domain defined in JSON
Schema.

1 {
2   "$id" = "BaseExpExample",
3   "properties": {
4     "model": {
5       "properties": {
6         "modelPath": {"type": "string"}
7       },
8       "required": ["modelPath"]
9     },

10     "simulation": {
11       "properties": {
12         "simulator": {
13           "type": "string",
14           "enum": ["SSA", "Hybrid"],
15           "default": "SSA"
16         },
17         "replications": {
18           "type": "integer",
19           "exclusiveMinimum": 0
20         },
21         "stopCondition": {
22           "properties": {
23             "oneOf": [
24               "stopTime": {
25                 ...
26       },
27       "required": ["simulator", "replications",
28                  "stopCondition"]
29     },
30     "observation": {
31       ...

We found that both UML and JSON Schema are appropriate
ways of specifying the experiment meta models. With the
workings of our model-driven approach in mind, we decide to
use JSON Schema in the following. However, if conversions
between the different meta modeling languages exist, the
actual choice of formalism becomes less important.

C. Composition of Modeling Domains and Experiment Types

The meta models describe the structure and ingredients
of simulation experiment specifications. We distinguish base
meta models and experiment type meta models. Base meta
models describe simple experiments (i.e., runs with single
parameter configurations) in a specific domain or modeling ap-
proach. Meta models for experiment types, on the other hand,
allow for supporting complex experiments where parameters
are varied and specific analyses are conducted on the outputs.

A base meta model for a fictive domain can be seen in
Listing 1 (meta models for experiment types can be created
analogously). The meta model is defined using JSON Schema
and contains all the necessary information in one, hierar-
chically structured file. It structures simulation experiments
of the fictive domain into a model component, a simulation
component, and an observation component. Each component
encloses various other input properties, characterized by type
information, choices, default values, and constraints. For ex-
ample, the constraint exclusiveMinimum: 0 was added
inside the property replications. To express which inputs
are required for specifying a valid simulation experiment,
the keyword required can be used. Also, default values
can be expressed explicitly, e.g., for setting SSA (stochastic
simulation algorithm) as the standard simulator type of the
domain. Moreover, to express alternatives the keyword oneOf
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is used, as in the case of stopCondition, which can be
given by a) a specific stop time, or b) an expression on the
model output. To build a valid simulation experiment that
conforms to the meta model, exactly one of these alternatives
needs to be applied. However, to keep the example short we
do not specify these options further and omit details of the
observation component.

For specifying a simulation experiment at least a base meta
model needs to be selected and filled with concrete input
values. However, the base meta models can also be flexibly
composed with the various meta models for experiment types
to create a meta model for the current experimentation task at
hand. Using the composition mechanism, complex simulation
experiments (such as statistical model checking, parameter
estimation, steady state analysis, etc.) can be supported for
any modeling approach or domain. This is possible due to
the orthogonality of the base experiment specification and the
experiment type specification. Note that in this paper we focus
on the main experiment types and their methods, and do not
discuss further analyses (i.e., post-processing or plotting of the
results). However, this could be added as another component
in the meta models. The language SED-ML [9], for instance,
allows the specification of various plot types including axis
labels, etc.

D. Meta Model Repository

The developed meta models are stored in a model repository.
This gives users (modelers) access to a variety of meta
models that they can flexibly compose, as discussed earlier.
For developers, the existing meta models contained in the
repository can be the starting point for developing new ones.
Often, depending on the needs of the new domain or approach,
not everything has to be developed from scratch, but meta
model components can be exchanged, added, or modified.
Here, the reuse of knowledge about simulation experiments is
not limited by specific domains and approaches. For example,
research in the context of discrete-event simulation [5], [7] and
computational biology [44] has identified a few common con-
stituents of basic simulation experiment specifications: model
configuration, simulation initialization, and observation. With
respect to experiment types, meta models can be extended
to include more elaborate methods, e.g., by new sampling
strategies or distance measures.

E. Interfaces

Our pipeline can be used in two ways. The first option is
a dynamic graphical user interface (GUI), which we provide
with our framework. Depending on the selected base meta
model and the experiment meta model, a tailored GUI is
generated to support modelers in specifying their simulation
experiments. Fig. 3 shows a screenshot of a GUI generated
from the meta model example shown in Listing 1, and a meta
model for SA. In the GUI the meta model components are
displayed as individual tabs (“Model”, “Simulation”, “Obser-
vation”), input properties as rows, and alternative definitions
are selected via drop-down menus where, depending on the
selection, other input properties become available as in the

Fig. 3. Screenshot of the experiment generation GUI. For a given meta
model, and depending on the provided inputs, new input fields are generated.
Validation errors are reported at the top right if the inputs do not conform
to the meta model. The generated experiment specifications (tool-independent
and tool-specific) are displayed at the top left.

case of “Stop Condition”. The selection of the domain or
approach and the experiment type takes place in the tab
“Meta Model”. Thereby, an additional tab for the experiment
type “Sensitivity Analysis” was created (Fig. 3). The tab
“Backends” is used to select the code generation target.

As the second option, we provide an API. It allows flex-
ible integration of our model-driven framework with other
software. Via the API, the meta models can be selected and
composed, the experiment inputs can be passed and validated,
the GUI can be opened, the target backend can be chosen, and
experiment code can be generated or parsed. Consequently,
one could integrate our framework with a procedure that au-
tomatically extracts certain experiment inputs from the model
documentation (parameter tables or conceptual model) [20],
[21], or automatically generates simulation experiments from
inside a workflow system (see Sec. V). If not all input fields
dictated by the meta model can be filled automatically, the
simulation experiment can be completed manually through the
user interface.

F. Experiment Validation

Before inputs are passed on to the next layer (M1) to
produce a concrete tool-independent experiment specification,
the entered values have to be validated. The validator checks
conformance with the chosen meta models, and thus both
structural checks and type checks are carried out. After each
validation cycle, the validator gives immediate feedback to
the user (see Fig. 3) or the application, depending on which
interface is used for the interaction. This step-by-step guidance
supports inexperienced users, but also experienced users can
benefit, as they do not have to concern themselves with the
intricate details of simulation experiment specifications, and
instead can concentrate on important tasks such as output
analysis and result interpretation.

Listing 2 shows a created JSON document at the layer
M2. The document is validated according to the meta model



6

Listing 2. Simulation experiment filled according to the JSON meta model
defined in Listing 1. Validation errors in the specification are marked red.

1 {
2   "model": {
3     "modelPath":
4   },
5   "simulation": {
6     "simulator": "SSA",
7     "replications": 100.5 ,

8     "stopTime": 3000
9   },

10   ...
11 }

example described above. The validation is unsuccessful due
to the missing property modelPath and due to using the
wrong data type for the input property replications.

G. Transformations and Bindings

The experiment meta models provide a general vocabu-
lary that all modeling and simulation tools can refer to and
communicate with. Meta models are therefore one way for
improving the interoperability of modeling and simulation
software. To go from an abstract experiment specification
in a tool-independent format to executable code, the meta
models have to be mapped to the syntax of actual modeling
and simulation tools. During this transformation step, also
differences in the terminology need to be resolved. E.g., the
concept of the stochastic simulation algorithm
(SSA) has numerous implementations and is therefore known
under different names such as NextReactionMethod() or
GibsonBruck() method.

Often one wants to generate code for a single tool and thus
in a single language. However, it is not uncommon to run the
simulations in one tool, collect the results, and then run the
analysis in another. Our transformation mechanism supports
the combination of tools for simulation and analysis, and thus
allows generating a combination of two scripts in two different
languages. Moreover, for certain experiment types, such as SA,
the toolchain can be divided further (see Section V-B).

Another important feature of the transformations is their
bidirectionality. This means that we can (backward) parse a
concrete experiment specification of a specific language and
represent it in the canonical format. From there, forward trans-
formations can generate the same experiment for a different
tool, or the experiment may be reused and adapted for a
different purpose.

Although it seems arduous to implement a transformation,
it is far more efficient than to connect all pairs of tools
individually. Moreover, once agreed upon in the community,
the structure and vocabulary of a meta model is persistent and
will rarely change but rather be extended with new content
which will lead to some extensions in the transformations. It
might also be beneficial to maintain transformations to distinct
versions of the same M&S tool or to legacy systems for
keeping older simulation experiments reproducible and, for
example, for testing the tool itself. In addition, the experiment
meta models provide guidelines for implementing new tools

and therefore promote a more structured approach for devel-
oping modeling and simulation software.

In addition to the code transformations, we maintain so-
called bindings to the various tools for which code is gener-
ated. The bindings allow us to automatically run the generated
experiment specifications with the chosen backend. Note that
a suitable backend could also be chosen automatically for
a given task since the transformations make explicit which
experimentation methods are implemented where.

IV. IMPLEMENTATION

Our model-driven framework for conducting simulation
experiments is realized in Java 1.8. This proof-of-concept
implementation, thus far, comprises meta models for the three
simulation domains and different experiment types, as well
as transformations and bindings to several backends (see
Evaluation). The source code is publicly available in a Git
repository2.

At the heart of the implementation are the simulation
experiment meta models which are implemented using JSON
Schema, Draft-07 [42]. We selected JSON Schema as a basis
to formulate our schemas, since over the past years JSON
has probably become the most popular format for exchanging
data on the web, and therefore a variety of capable parsers
and validators exist. For a selected schema, our dynamic GUI,
implemented using JavaFX, generates the necessary input tabs
and fields (as shown in Fig. 3). All collected user inputs are
stored in the multipurpose data interchange format JSON [45].
The JSON files are validated against the JSON schemas using
an open-source JSON Schema validator for Java, based on the
org.json API [46].

For the mapping between the general schema inputs and the
syntax of actual modeling and simulation tools, we use the
template engine FreeMarker [47]. FreeMarker has a built-in
template language in which the mappings can be specified. For
each backend and schema input property, a mini template is
implemented. A master template joins all the template snippets
together. The template engine takes this master template and
fills the template variables with the data from the JSON file.

V. EVALUATION

Applying MDE for simulation experiments has positive
effects on the building and sharing of knowledge, the pro-
ductivity and quality of code, the reusability, as well as the
automatic generation of simulation experiments. This will
ultimately lead to entire simulation studies being conducted
in a more effective and systematic manner.

We demonstrate the benefits using three case studies from
the context of electrically active implants (stochastic discrete-
event simulation of a cell signaling pathway, virtual pro-
totyping of a neurostimulator, and finite element analysis
of electric fields). We believe that well-designed examples
are the best way to convince modelers to adopt MDE of
simulation experiments in their daily practice and to integrate
this approach with other toolchains.

2https://git.informatik.uni-rostock.de/mosi/exp-generation

https://git.informatik.uni-rostock.de/mosi/exp-generation
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TABLE I
BASE META MODEL FOR CONDUCTING EXPERIMENTS USING STOCHASTIC DISCRETE-EVENT SIMULATION. TO CREATE A VALID SIMULATION

EXPERIMENT, VARIOUS INFORMATION ABOUT THE MODEL, THE SIMULATION, AND THE OBSERVED QUANTITIES HAS TO BE PROVIDED. EACH ROW
DESCRIBES AN INPUT PROPERTY OF THE META MODEL. SUB-PROPERTIES ARE DENOTED BY “•”. ALTERNATIVE META MODEL PARTS ARE INDICATED BY

“→”.

Name Description Type Choices Default Required

M
od

el

modelFile Specify the simulation model Alternative – – yes
→folder Folder of the simulation model String – – yes

fileName Name of the simulation model String – – yes
→reference Reference to the simulation model String – – yes
configuration Configure the model parameters Map – – no
•parameterName Input parameter name (key) String – – no
•parameterValue Input parameter value Real – – no

Si
m

ul
at

io
n

simulator Choose simulation algorithm String SSA, Hybrid, ... SSA yes
replications Number of simulation replications Integer, > 0 – 1 yes
randomSeed Initialize random number generation Long, > 0 – – no
parallelThreads Number of parallel threads Integer, > 0 – 1 no
stopCondition Type of stop condition Alternative – – yes
→stopTime Stop at specific point of time Real, > 0 – – yes
→stopExpression Stop based on simulation state String – – yes

O
bs

er
va

tio
n

observables Specify the observables Map – – yes
•observationExpression Expression on model entities (key) String – – yes
•observationAlias Alias for observation expression String – – no

observationTime Choose option for observation Alternative – – yes
→observationTimes Observe at specific points of time Array<Real>, > 0 – – yes
→observationRange Observe time range and interval Array<Real>, length=3 – – yes
outputFormat Choose reporting format String CSV, ... – no

In the following, we first develop meta models to capture
the characteristics of the base simulation experiments of
these three modeling domains and discuss how knowledge
about simulation experiments can be exchanged within, but
also between the different modeling domains and approaches.
Next, we demonstrate that, based on the base meta models
composed with a shared meta model for the experiment
type “global sensitivity analysis”, three complex simulation
experiments can be specified in a straightforward manner.
Then, we show how our JSON-based format can function as
a standard exchange format to facilitate the automatic reuse
of simulation experiments, e.g., for the cross-validation of
two related models. Finally, we show how our approach can
be used to automatically generate simulation experiments by
extracting information from a workflow.

Note that all the experiments we describe are only snap-
shots of the three studies in the form of single simulation
experiments. During the simulation studies, of course, further
analysis steps with the same or other experiment types (e.g.,
simulation-based optimization or statistical model checking)
are involved, until the initial research questions can be an-
swered. For these further steps, our approach can be applied
analogously.

A. Improved Knowledge Sharing across Domains

Our three case studies are conducted in the context of
electrically active implants. However, they focus on differ-
ent aspects involved in the development of such implants
and therefore require different modeling and simulation ap-
proaches. Consequently, they require different meta models
for the conduction of their basic experiments. In this section,

we introduce meta models for these approaches, i.e., the base
experiments for stochastic discrete-event simulation, virtual
prototyping of heterogeneous systems, and finite element anal-
ysis in electromagnetics. This demonstrates the versatility of
our approach, and—most importantly—its value for improving
knowledge sharing within and across the diverse domains and
approaches of modeling and simulation.

1) Meta Model for Stochastic Discrete-Event Simulation:
Stochastic discrete-event simulation (DES) is applied for
modeling systems where the variables change at discrete
time points, and the time of the next event is determined
stochastically [48], [49]. In cell biology, e.g., modeling and
simulating stochastic effects is of significant interest, espe-
cially for processes that involve low copy numbers [50].

Table I3 shows the developed DES meta model which
comprises three essential components, i.e., model configura-
tion, simulation initialization, and observation (represented by
sections in the table). In the meta model, each component of
a simulation experiment requires specific inputs (table rows).
For instance, typical ingredients for a stochastic simulation
are now made explicit, such as the number of replications,
the random seed, and the number of parallel threads (see
simulation component). Each input is characterized by a
unique name, a description, a data type, a set of choices,
a default value, and information about whether this input
is required or optional (table columns). Properties of type
Map (e.g., configuration) assemble related inputs as key-
value pairs. The assembled sub-properties are indicated by
“•”. Other properties (e.g., model, stopCondition, or

3For the paper, we use tables to represent the meta models in a compact
and readable way. The implementation as JSON Schema documents can be
viewed in our source code.
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TABLE II
MODIFIED META MODEL COMPONENT FOR VIRTUAL PROTOTYPING OF HETEROGENEOUS SYSTEMS. IN CONTRAST TO SIMULATIONS THAT ARE ONLY

BASED ON DISCRETE EVENTS, HERE ALSO A TIME STEP HAS TO BE CONFIGURED FOR THE NUMERICAL INTEGRATION. THE ROWS DESCRIBE THE
DIFFERENT INPUT PROPERTIES OF THE META MODEL. SUB-PROPERTIES ARE DENOTED BY “•”. ALTERNATIVE META MODEL PARTS ARE INDICATED BY

“→”.

Name Description Type Choices Default Required

Si
m

ul
at

io
n

replications Number of simulation replications Integer, > 0 – 1 yes
randomSeed Initialize random number generation Long, > 0 – – no
parallelThreads Number of parallel threads Integer, > 0 – 1 no
stopCondition Type of stop condition Alternative – – yes
→stopTime Stop at specific point of time Real, > 0 – – yes
→stopExpression Stop based on simulation state String – – yes
timeStep Time step of the simulator Map – – yes
•timeStepSize Size of time step Real – – yes
•timeStepUnit Unit of time step String s, ns, ... – yes

observationTime) are of type Alternative and provide
different ways of specifying a property. The different options
are indicated by “→”. For instance, the simulation model can
be provided by either a folder and filename (local files) or a
reference to an online resource.

The above meta model generalizes the structure and ingredi-
ents of simulation experiments at the level of the modeling and
simulation approach (i.e., DES). It can therefore be used for
supporting the specification and execution of basic simulation
experiments in various modeling domains, such as cell biology
or digital circuits.

2) Meta Model for Virtual Prototyping of Heterogeneous
Systems: Virtual prototyping allows for the design and de-
velopment of products via modeling and simulation where
building real prototypes is infeasible, e.g., due to ethical
concerns, as in the case of neurostimulators. The fundamental
paradigm for modeling and simulation of digital circuits is
DES. This means that the knowledge about the ingredients
of simulation experiments captured in the DES meta model
can be applied there as well. However, some virtual proto-
types include components outside of the digital domain (e.g.,
to model the voltage levels of a battery) and thus require
continuous-time representation. For these models, using the
DES meta model for the simulation experiments does not
suffice. However, using our framework, we can, with relatively
low effort, define a new experiment meta model for virtual
prototyping of heterogeneous systems based on the existing
DES experiment meta model. The model configuration com-
ponent and the observation component can be reused from the
shared meta model repository as they are. Only the simulation
initialization component needs to be adapted for the new
simulation approach (see Table II). The main difference is
that now a fixed time step and time step unit are included,
at which the discrete-time and continuous-time models are
synchronized. Furthermore, the modified meta model does not
include the type of solver or scheduler explicitly as this is
usually assigned automatically to specific semantics defined
in the language standard (e.g., SystemC-AMS [51]). Thus, the
solver or scheduler is part of the simulation model and not
changed in experiments.

3) Meta Model for Finite Element Analysis in Electromag-
netics: Finite element analysis (FEA) is a general method

that is capable of treating complex geometries and accurately
computing, e.g., the properties and effects of electric fields
in deep brain stimulation. As FEA is a completely different
modeling and simulation approach, no parts from the previ-
ously defined base meta models can be reused, and a new
one is developed. Due to the separation in geometric model
and physical model, the experiment meta model for FEA (see
supplementary material, Table 1) has two new components:
geometric model and physical model. These are complemented
by a simulation component that comprises information about
the type of solver, and accuracy of the solution (given by
the coarseness of the mesh). For the observation component,
derived quantities can be specified as well as coordinates at
which to evaluate these quantities.

Note that this first draft of the FEA experiment meta model
was developed with the background of electromagnetics in
mind. Future efforts should aim to support FEA more gener-
ally. In particular, the various inputs and constraints depending
on the type of physics need to be identified. In addition,
multiphysics applications where mechanics, electromagnetics,
and thermodynamics are coupled are of potential interest. In
each discipline, PDEs comprising material properties together
with geometrical constraints are the basis of the modeling
approach [52]. Hence, the current meta model can provide
a basis for further discussions and adjustments.

B. Increasing Productivity and Quality for Complex Experi-
ments

Besides sharing information about the base experiments,
our approach is designed to share meta models for diverse,
complex experiment types. Table III, for instance, shows a
meta model for global SA, that could be added to any of
the above-described base meta models. It comprises various
important ingredients for the specification of global SAs,
such as factor ranges and factor distributions, as well as a
choice of different sampling strategies: Monte Carlo (MC) and
Quasi-Monte Carlo (QMC) [53], Orthogonal Latin Hypercube
(OLHC) [54], and Polynomial Chaos expansion (PC) [55].
For the first three strategies, the samples are used directly
to calculate the indices. With PC on the other hand, first a
surrogate model is constructed based on which the indices are
computed. As index type, e.g., Sobol indices [56], [57] can
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TABLE III
META MODEL FOR THE EXPERIMENT TYPE “GLOBAL SENSITIVITY ANALYSIS”. TO CREATE A VALID SENSITIVITY ANALYSIS EXPERIMENT, VARIOUS

INFORMATION ABOUT THE MODEL FACTORS HAS TO BE PROVIDED AS WELL AS INFORMATION ABOUT THE SAMPLING PROCEDURE (EXPERIMENT
DESIGN), AND INSTRUCTIONS FOR CALCULATING THE SENSITIVITY INDICES. THE ROWS DESCRIBE THE DIFFERENT INPUT PROPERTIES.

SUB-PROPERTIES ARE DENOTED BY “•”. ALTERNATIVE META MODEL PARTS ARE INDICATED BY “→”.

Name Description Type Choices Default Required

E
xp

er
im

en
t

D
es

ig
n

factors Information about the model factors Map – – yes
•factorName Name of the factor (key) String – – yes
•factorMinimumValue Lower bound on the factor value Real – – yes
•factorMaximumValue Upper bound on the factor value Real – – yes
•factorDistribution Assumed distribution of the factor String Uniform, Normal, ... Uniform yes
•factorDistributionParameters Parameterize the distribution Map – – no
•distributionParameterName Parameter of the distribution (key) String – – no
•distributionParameterValue Initialize the distribution parameter Real – – no

samplingStrategy Choose the sampling strategy String MC, QMC, OLHC, PC, ... MC yes
sampleSize Number of samples Integer – – no

In
de

x indexType Choose type of sensitivity index String Sobol, ... – yes
bootstrapCI Calculate confidence interval with bootstrapping Boolean – false no

be used, which are variance-based measures. The first-order
Sobol index of factor xi describes the individual contribution
of this factor to the overall variance in the output V (y):

Si =
Vxi [Ex∼i(y|xi)]

V (y)
.

The total-order sensitivity index, Ti, accounts for all the
contributions to the output variation due to factor xi (i.e., first-
order index plus higher-order interactions):

Ti =
Ex∼i

[Vxi
(y|x∼i)]

V (y)
.

Having made explicit the ingredients of global SA as a
meta model, we can easily specify simulation experiments
to calculate Sobol indices for various simulation models.
We show this for three different models by composing the
respective base meta model with the SA meta model. This
has the potential to increase productivity during the simulation
study, since guidance is provided via a specialized GUI and
input validation. Moreover, complicated details of the code
are abstracted away by the model-driven approach. Thus, the
modeler does not have to worry about how to combine the
simulation tools and analysis tools in a complex experiment.
Fig. 5 shows three different ways of performing a Sobol
analysis—they all can be generated using the same meta
model.

1) Sensitivity Analysis of a Wnt Signaling Model: To under-
stand how electrically active implants affect the differentiation
and proliferation of cells (and thus the composition and
regeneration of tissue), the impact of external electric fields
on central cellular signaling pathways needs to be studied.
The Wnt/β-catenin signaling pathway is one of the central
pathways that regulate proliferation as well as differentiation
of cells [58]. Deregulated forms of this pathway are involved
in several human cancers and developmental disorders [59].
Effects on membrane-related dynamics are of particular inter-
est for the development of electrically active implants. Lipid
rafts, specialized microdomains of the membrane, have been
found to sense the electric field and to direct cellular responses
of cells [60]. Therefore, a Wnt simulation model [61] has

been extended to capture both raft- and non-raft-associated
endocytic processes of the Wnt/β-catenin receptor LRP6 in
detail, including stochastic effects [62].

The model4 is written in ML-Rules [63] and simulated using
stochastic DES. Therefore, the experiment meta model for
DES can be used to guide through the specification of the
base experiment. Then, the modeler is guided through the
definition of the global SA. There, the modeler is interested
in the global sensitivity of the observed quantity, which is
the fraction of the cell membrane receptor LRP6, with regard
to the parameters kenonraft and keraft , which represent the
internalization rates of bound LRP6 receptor complexes, and
the parameter kLRAss. Furthermore, the modeler specifies
uniform distributions for the factors as well as minimum and
maximum values. As the sampling strategy, an OLHC design
with 1750 samples is selected.

Once all inputs for the SA have been collected, executable
experiment code can be generated, i.e., a combination of
an R script with a SESSL script, as illustrated in Fig. 5A.
Since we have implemented bindings to both SESSL and R,
the composed experiment can also be automatically executed.
Fig. 4A presents the results of the experiment. They show
almost no impact of the parameter keraft on the results. The
variances of each of the other two parameters (kenonraft and
kLRAss) make up about half of the variance of the result.

2) Sensitivity Analysis of a Battery Model: Deep brain
stimulation is a therapy option for a multitude of neurological
disorders. While it is widely implemented into the clinical
routine especially for Parkinson’s disease and Dystonia, the
underlying mechanisms are not fully understood. Since most
experiments cannot be performed directly on humans due
to ethical reasons, animal testings are necessary. However,
rodent-specific implants require a highly optimized level of
miniaturization and power consumption compared to human
implants. Physical prototyping is not feasible as the pursued
runtime is more than a year. Therefore, virtual prototyping is

4The Wnt model, the SA experiment, and the analysis results are available
at https://github.com/SFB-ELAINE/Case-Study-Endocytosis

https://github.com/SFB-ELAINE/Case-Study-Endocytosis
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Fig. 4. First- and total-order Sobol indices calculated for the three models. Whereas the Wnt model (A) and the electric fields model (C) show linear behaviors,
the difference between the first and total order values of the battery model (B) indicates that the behavior of the model is governed by the interaction of
parameters.
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Fig. 5. Schematic of the generated code for the three sensitivity analysis (SA)
experiments. The experiments take the user-given base inputs and SA inputs,
and produce Sobol indices as outputs.

used to design neurostimulators for rodents [64]. The model5

considers the interplay between various heterogeneous system
components (i.e., battery, boost converter, microcontroller,
and stimulation unit) and thus combines digital as well as
analog components. Whereas previous studies focused on the
optimization of voltage levels inside the system, this study
focuses on understanding the implications of different battery
parameters on the overall runtime.

As they vary over different battery types, the internal resis-
tance Ri, the battery capacity Q, and the polarization constant
K are of special interest. To facilitate the analysis of these
parameters, the modeler uses the model-driven framework and

5The described SA experiment and the analysis results are available at https:
//github.com/SFB-ELAINE/Case-Study-Neurostimulator. Unfortunately, the
battery model itself cannot be provided, as it is part of a closed-source project.

selects the meta model for global SA (Table III) to enhance an
already specified base experiment. First, parameter ranges and
Gaussian distributions are specified for the three factors, and
a Quasi-Monte Carlo sampling is selected with 1000 samples.
A schematic of the generated code, based on the Python
package UncertainPy [65] and SystemC-AMS [51], is shown
in Fig. 5B. The generated experiment is started automatically,
however, due to the complexity of the model, even after
12 hours, the analysis did not converge. Therefore, the exper-
iment was terminated to find a more efficient approach. With
the assistance of the model-driven framework, the sampling
strategy could easily be substituted by Polynomial Chaos ex-
pansion (PC), and the experiment was automatically repeated.
Using PC, the runtime could be reduced to less than 3 hours.
The SA results are depicted in Fig. 4B and show that the model
response is strongly determined by interactions between the
parameters. The internal resistance seems to have a particularly
strong effect on the overall battery runtime. Consequently, one
should aim for measuring this parameter in (real) experiments
and pre-select batteries with a lower internal resistance.

3) Sensitivity Analysis of an Electric Fields Model: The
third simulation study aims to compute the electric field distri-
bution in a specific chamber [66], [67]. Based on the computed
field distributions, the biological response of the stimulated
biological sample can be linked to certain specifications of the
electrical stimulation set-up. A global SA6 is used to evaluate
the influence of the dielectric parameters on the electric field
strength at specific locations of the cells.

Following the structure of the meta model, the modeler
enters all the required information (i.e., various material
properties as factors and their value ranges) and assumes
uniform distributions. Polynomial Chaos expansion is chosen
as the sampling method, as is an often applied method in
FEA where simulation runs are computationally expensive.
Fig. 5C shows the generated code which combines the Python
package EMStimTools [68] with UncertainPy [65]. The first-
and total-order Sobol indices are shown in Fig. 4C. The results

6The model, the described SA experiment, and the analysis results are avail-
able at https://github.com/j-zimmermann/EMStimTools/tree/master/examples/
experimentSchemas

https://github.com/SFB-ELAINE/Case-Study-Neurostimulator
https://github.com/SFB-ELAINE/Case-Study-Neurostimulator
https://github.com/j-zimmermann/EMStimTools/tree/master/examples/experimentSchemas
https://github.com/j-zimmermann/EMStimTools/tree/master/examples/experimentSchemas
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Listing 3. Cross-validation experiment in the exchangeable JSON format,
with the inputs (blue) already adapted for the Haack et al. model.

1 {
2   "model": {
3     "modelFile": {
4       "folder": "models",
5       "fileName": "M2_2.mlrj"
6     }
7   },
8   "simulation": {
9     "simulator": "SSA",

10     "replications": 10,
11     "stopCondition": {
12       "stopTime": 960
13     }
14   },
15   "observation": {
16     "observables": {
17       "observationExpression": ["Cell/Nuc/Bcat"]
18     },
19     "observationTime": {
20       "observationRange": {
21         "observationRangeStart": 0,
22         "observationRangeEnd": 960,
23         "observationRangeInterval": 6
24       }
25     }
26   }
27 }

suggest that a change in the permittivity of the medium does
not influence the field strength. Hence, the permittivity can
be neglected in future uncertainty analyses for this kind of
problem and similar input parameters.

C. Reusability

The final Wnt model (introduced in Sec. V-B1) is the result
of successively extending simpler model versions. The original
Wnt model by Lee et al. (2003) [69] was extended by raft-
and redox-dependent signaling events in a study by Haack et
al. (2015) [61]. This new model was then extended further
by endocytic processes in Haack et al. (2020) [62]. To ensure
that the basic model behavior was not changed due to the
extensions, various cross-validation experiments are required
that compare the trajectories of the variables of interest.

Therefore, the original simulation experiments of the Lee
et al. study shall be reused and repeated with the extended
model. However, the original experiments were specified in
SED-ML [9] and the corresponding model in SBML [70] (see
BioModels [71] entry7). In contrast, the Wnt model by Haack
et al. (2015/2020) was specified using the rule-based modeling
language ML-Rules [63], and the experiments are conducted
using the experiment specification language SESSL [7]. Thus,
in order to replicate results from the Lee study, the SED-
ML experiment specification needs to be adapted for the new
model, and translated to SESSL. This can be supported by the
model-driven approach.

First, a meta model for DES directs the automatic parsing
of the original specification and provides meaning to the parts
of the experiment specification. As the experiment type is a
time course analysis, a base meta model suffices to capture all
the inputs. Once transformed to the quasi-standardized JSON
format, the experiment specification can be adapted to work

7https://www.ebi.ac.uk/biomodels/BIOMD0000000658
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Fig. 6. Results of the cross validation of the Lee et al. model and the Haack et
al. model (after applying a scaling factor of 0.28) to the β-catenin trajectory.

with the Haack model. E.g., the file name and the simulation
stop time (due to the use of different time scales) need to
be changed. To perform the adaptions automatically, for some
experiment parts additional knowledge in the form of ontolo-
gies is required. E.g., UniProt [72] provides a unique identifier
for each protein and allows to transform the observation
expressions from one model to another. Listing 3 shows the
experiment specification in the JSON-based exchange format,
after being adapted for the Haack model.

After the adaptions are completed, the SESSL-specific ex-
periment can be generated and executed automatically. The
result of the cross validation is depicted in Fig. 6. It compares
the trajectories of the key protein β-catenin, an indicator of the
pathway’s activity, produced by the Lee and the Haack model
(with adapted time scale) when stimulated with a transient
Wnt stimulus. Both β-catenin curves show the same peak at
the same time. This means that the extensions applied in the
study by Haack et al. do not alter the central dynamics of the
pathway.

D. Automation

In the previous subsection, we already saw one case of
automation, i.e., we demonstrated that a well-designed MDE
pipeline is the foundation for reusing simulation experiments
automatically [22] and allows integrating with ontologies. Now
we go one step further and show that we can integrate this
approach with other frameworks for supporting simulation
studies as a whole, e.g., artifact-based workflows.

In an artifact-based workflow, the central products of sim-
ulation studies are identified and made explicit as artifacts.
These include the conceptual model, the simulation models,
and the simulation experiments. Each artifact is characterized
by stages a modeler can move through to achieve certain
milestones, and preconditions called guards [4]. Fig. 7 shows
the conceptual model artifact of an artifact-based workflow for
finite element studies [73]. While moving through the stages
of the conceptual model, meta-information about the model
is collected, such as the modeling objective, requirements,
and input data. The meta-information collected inside of the

https://www.ebi.ac.uk/biomodels/BIOMD0000000658
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Fig. 7. The Conceptual Model artifact of the artifact-based workflow with all
its stages, guards and milestones, adapted from [73]. Since the milestone of the
Specifying objective-stage has been achieved, two other stages can be entered:
the modeler can start with creating the simulation model or the conceptual
model can be (further) assembled. In this example, the modeler enters the
Assembling conceptual model-stage and adds a new behavioral requirement.
As long as the conceptual model is not fully assembled, it cannot be validated
and therefore the guard of that stage is disabled.

various artifacts can be used in the automatic generation of
simulation experiments.

For instance, in [73] a finite element simulation study of an
electrical stimulation chamber was conducted with assistance
from the workflow. The collected information could be used
to automatically generate a convergence test for this model.
The convergence of numerical methods is of high importance
in order to retrieve meaningful results from a numerical
simulation [74]. In a convergence experiment, the mesh is
incrementally refined until the estimated discretization error
lies below a given error threshold or until the maximum
number of iterations is reached. A meta model for convergence
experiments, therefore, requires the following inputs: 1) the
region of interest, 2) an error metric allowing to estimate the
discretization error for a given region, 3) the maximum number
of iterations or an error threshold to control the error, 4) an
initial meshing hypothesis, i.e., the minimal and maximum
size of the finite elements, to initialize the meshing algorithm.

By connecting our pipeline to the workflow system, some
of these inputs required by the meta model can be filled au-
tomatically by extracting meta-information from the artifacts,
e.g., the region of interest and the error metric could have
been specified as requirements in the conceptual model [4].
Other inputs are specific to convergence studies, e.g., the initial
minimal and maximum size of the elements, and thus need
to be filled manually (using our GUI) or with default values
(specified in the experiment meta model).

Fig. 8 shows the results of the convergence experiment
that was generated semi-automatically for the model of the
electrical stimulation chamber. It shows how the observed
variable (current at electrode 1) converges with increasing
degrees of freedom in the finite element model, and that the
refinement could terminate after the fourth iteration.

VI. CONCLUSIONS

In this paper, we have presented an MDE framework for
supporting the conduction of simulation experiments. Central
features of the approach are the composition of different types
of meta models, a meta model repository, bidirectional code
transformations, a variety of tool bindings, and an API.

We have demonstrated how the framework contributes to
improving knowledge sharing within but also across the
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Fig. 8. Convergence of the current w.r.t. the number of degrees of freedom
(DOFs). Note that for a large number of DOFs, numerical issues may arise
due to the small size of individual elements.

different simulation domains and approaches (i.e., stochastic
discrete event simulation of a cell signaling pathway, virtual
prototyping of a neurostimulator, and finite element analysis
of electric fields). There, the introduction of meta models for
base experiments and meta models for complex experiment
types proved crucial. Their on-demand composition guided the
modeler in specifying complex experiments while catering to
rather diverse demands of the respective simulation studies,
and thus furthers the productivity of the modeler and the qual-
ity of complex experiments. Furthermore, we have shown the
framework’s practicality for automatically reusing simulation
experiments for cross-validation of related models, and for au-
tomatically generating and executing simulation experiments,
e.g., for conducting convergence tests initiated by a workflow
system. We showed that the presented approach fulfills typical
expectations associated with model-driven engineering and
will be an asset for more effective and systematic simulation
studies.

For future work, we plan to increase support for the
development of new meta models of base experiments and
meta models of complex experiment types, i.e., through the
composition and reuse of meta model parts with a clear
notion of inheritance. What should become part of a meta
model, needs to be debated in the various modeling and
simulation communities, possibly via standardization bodies
such as SISO [75]. Regarding the automatic support, we plan
to build further support components on top of the MDE
pipeline, such as an automatic selection and parametrization
of experiment types and methods.

ACKNOWLEDGMENT

The authors would like to thank Fiete Haack for his excel-
lent support in conducting the Wnt experiments.

REFERENCES

[1] E. Winsberg, Science in the age of computer simulation. University of
Chicago Press, 2010.



13

[2] O. Balci, “A life cycle for modeling and simulation,” Simulation, vol. 88,
no. 7, pp. 870–883, Feb. 2012.

[3] R. G. Sargent, “Verification and validation of simulation models,” J.
Simul., vol. 7, no. 1, pp. 12–24, Feb. 2013.

[4] A. Ruscheinski, T. Warnke, and A. M. Uhrmacher, “Artifact-based
workflows for supporting simulation studies,” IEEE Trans. Knowl. Data
Eng., vol. 32, no. 6, pp. 1064–1078, 2020.

[5] B. P. Zeigler, Multifacetted Modelling and Discrete Event Simulation.
Academic Press Professional, Inc., 1984.

[6] S. J. E. Taylor, T. Eldabi, T. Monks, M. Rabe, and A. M. Uhrmacher,
“Crisis, what crisis – does reproducibility in modeling simulation really
matter?” in Proceedings of the 2018 Winter Simulation Conference
(WSC), 2018, pp. 749–762.

[7] R. Ewald and A. M. Uhrmacher, “SESSL: A domain-specific lan-
guage for simulation experiments,” ACM Trans. Model. Comput. Simul.,
vol. 24, no. 2, pp. 1–25, Feb. 2014.

[8] T. Warnke, T. Helms, and A. M. Uhrmacher, “Reproducible and flexible
simulation experiments with ML-Rules and SESSL,” Bioinformatics,
vol. 34, no. 8, pp. 1424–1427, Apr. 2018.

[9] D. Waltemath, R. Adams, F. T. Bergmann, M. Hucka, F. Kolpakov, A. K.
Miller et al., “Reproducible computational biology experiments with
SED-ML - the simulation experiment description markup language,”
BMC Syst. Biol., vol. 5, no. 1, pp. 1–10, Dec. 2011.

[10] A. Erdemir, T. M. Guess, J. Halloran, S. C. Tadepalli, and T. M.
Morrison, “Considerations for reporting finite element analysis studies
in biomechanics,” Journal of Biomechanics, vol. 45, no. 4, pp. 625–633,
2012.

[11] L. F. Perrone, C. S. Main, and B. C. Ward, “SAFE: Simulation
automation framework for experiments,” in Proceedings of the 2012
Winter Simulation Conference (WSC), 2012, pp. 1–12.

[12] J. Himmelspach, R. Ewald, and A. M. Uhrmacher, “A flexible and
scalable experimentation layer,” in Proceedings of the 40th Conference
on Winter Simulation (WSC), 2008, pp. 827–835.

[13] J. Salecker, M. Sciaini, K. M. Meyer, and K. Wiegand, “The NLRX R
package: A next-generation framework for reproducible netlogo model
analyses,” Methods in Ecology and Evolution, vol. 10, no. 11, pp. 1854–
1863, 2019.

[14] A. Teran-Somohano, A. E. Smith, J. Ledet, L. Yilmaz, and
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