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Abstract

Textbook Question Answering (TQA) is the task of answering diagram and non-diagram questions given large multi-modal

contexts consisting of abundant text and diagrams. Deep text understandings and effective learning of diagram semantics

are important for this task due to its specificity. In this paper, we propose a Weakly Supervised learning method for TQA

(WSTQ), which regards the incompletely accurate results of essential intermediate procedures for this task as supervision to

develop Text Matching (TM) and Relation Detection (RD) tasks and then employs the tasks to motivate itself to learn strong

text comprehension and excellent diagram semantics respectively. Specifically, we apply the result of text retrieval to build

positive as well as negative text pairs. In order to learn deep text understandings, we first pre-train the text understanding

module of WSTQ on TM and then fine-tune it on TQA. We build positive as well as negative relation pairs by checking

whether there is any overlap between the items/regions detected from diagrams using object detection. The RD task forces our

method to learn the relationships between regions, which are crucial to express the diagram semantics. We train WSTQ on RD

and TQA simultaneously, \emph{i.e.}, multitask learning, to obtain effective diagram semantics and then improve the TQA

performance. Extensive experiments are carried out on CK12-QA and AI2D to verify the effectiveness of WSTQ. Experimental

results show that our method achieves significant accuracy improvements of $5.02\%$ and $4.12\%$ on test splits of the above

datasets respectively than the current state-of-the-art baseline. We have released our code on \url{https://github.com/dr-

majie/WSTQ}.
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Weakly Supervised Learning for Textbook Question
Answering

Jie Ma, Qi Chai, Jingyue Huang, Jun Liu, Senior Member, IEEE, Yang You and Qinghua Zheng

Abstract—Textbook Question Answering (TQA) is the task of
answering diagram and non-diagram questions given large multi-
modal contexts consisting of abundant text and diagrams. Deep
text understandings and effective learning of diagram semantics
are important for this task due to its specificity. In this paper,
we propose a Weakly Supervised learning method for TQA
(WSTQ), which regards the incompletely accurate results of
essential intermediate procedures for this task as supervision to
develop Text Matching (TM) and Relation Detection (RD) tasks
and then employs the tasks to motivate itself to learn strong
text comprehension and excellent diagram semantics respectively.
Specifically, we apply the result of text retrieval to build positive
as well as negative text pairs. In order to learn deep text
understandings, we first pre-train the text understanding module
of WSTQ on TM and then fine-tune it on TQA. We build
positive as well as negative relation pairs by checking whether
there is any overlap between the items/regions detected from
diagrams using object detection. The RD task forces our method
to learn the relationships between regions, which are crucial to
express the diagram semantics. We train WSTQ on RD and
TQA simultaneously, i.e., multitask learning, to obtain effective
diagram semantics and then improve the TQA performance.
Extensive experiments are carried out on CK12-QA and AI2D
to verify the effectiveness of WSTQ. Experimental results show
that our method achieves significant accuracy improvements of
5.02% and 4.12% on test splits of the above datasets respectively
than the current state-of-the-art baseline. We have released our
code on https://github.com/dr-majie/WSTQ.

Index Terms—Textbook question answering, multi-modality,
diagram understanding.

I. INTRODUCTION

QUESTION answering, such as machine reading com-
prehension [1, 2] and visual question answering [3–

5], has attracted extensive attention due to its popularity
in some intriguing real-world applications, e.g., autonomous
driving [6] and image retrieval [7]. Recently, a new task
Textbook Question Answering (TQA) [8, 9] possessing both
of the characteristics of machine reading comprehension and
visual question answering pushes forward vision-and-language
comprehension. In particular, TQA is the task of answering
diagram and non-diagram questions given multi-modal con-
texts shown in Figure 1, which is analogous to the real-life
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Fig. 1: An example of the TQA task. The olive background text
(the diagram on the right) is the key textual (visual) knowledge
to answer Question 1. The dataset contains no annotations
other than the answer label. The red boxes within the right
diagram are detected by YOLO [10].

process of a human learning new knowledge from a lesson
and estimating achievements. Taking a diagram question as
an example, this task requires a system to have deep semantic
understandings of multi-modal inputs and then predict answers
accurately.

TQA presents some challenges due to its specificity. First,
it is difficult to learn deep semantic understandings of long
textual contexts with limited training data, e.g., only 15,153
samples in the CK12-QA1 train split [9]. The textual contexts,
especially the most relevant text of questions, are very im-
portant to predict answers. For example, the text with olive
backgrounds in Figure 1 is the key knowledge to answer
Question 1. Secondly, it is difficult to learn effective semantic
representations of diagrams without annotations. The seman-
tics of diagrams in textbooks, which are also very essential
to predict answers, are expressed by a collection of items
with 2-dimensional positions and a collection of relationships
between items. Such relationships are expressed by the con-
nections or overlaps between the items. For example, the
diagram of Question 1 shown on the right of Figure 1 depicts
nitrogen cycles by the overlaps between regions and contains
the important visual knowledge to answer this question, i.e.,
the fertilizer flow direction. However, there do not exist
annotations for diagrams such as items and relationships.

In this paper, we propose a Weakly Supervised learning
method for TQA (WSTQ), in which the incompletely ac-

1The TQA dataset is collected from http://www.ck12.org. In this paper, we
call the TQA dataset CK12-QA to distinguish TQA tasks from TQA datasets.
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curate results of essential intermediate procedures for TQA
are regarded as supervision to develop Text Matching (TM)
and Relation Detection (RD) tasks, and then the above tasks
motivate the system to learn strong text comprehension and
excellent diagram semantics respectively. Concretely, we apply
the result of text retrieval that is an important intermediate
procedure for TQA [11, 12] and is used to find the most
relevant text of questions, to develop TM. We consider the text
ti, which is most relevant to the question qi in the lesson lu, as
the matching text of qi and regard the text tj of qj ∈ lv, u 6= v,
as the mismatching text of qi. The text understanding module
of WSTQ is first pre-trained on TM and then fine-tuned on
TQA to learn deep text understandings. We construct positive
and negative relation pairs by checking whether there is any
overlap between the items/regions detected from diagrams
by object detection to develop RD. The detection is also an
important procedure of TQA [13, 14] and is used to obtain
diagram features. The RD task forces our method to learn the
relationships between regions, which are crucial to express the
diagram semantics. To learn effective diagram semantics and
improve TQA performance, our method is trained on RD and
TQA simultaneously, in which the parameters of the diagram
understanding module are shared by both tasks, i.e., multitask
learning. It is worth noting that TM and RD are developed
automatically rather than manually.

We evaluate WSTQ on two TQA datasets including CK12-
QA [9] and AI2D [8]. Experimental results show that our
method achieves the new State-Of-The-Art (SOTA) accuracy
of 52.61% and 72.05% on CK12-QA and AI2D test splits
respectively. To summarize, our contributions are mainly three-
fold.

1) We propose a novel multitask learning framework that
applies TM and RD to drive WSTQ to deepen the text
understanding and learn the effective diagram semantics
respectively.

2) We propose a weakly supervised developing strategy that
uses the results of essential intermediate procedures for
TQA to build TM and RD automatically.

3) We conduct experiments and ablation studies on CK12-
QA and AI2D extensively to verify the effectiveness of
WSTQ. We are the first to report the performance on
various types of questions such as what and how within
the mentioned datasets.

The remainder of this paper is organized as follows. Section
II introduces the related works. Section III describes the task
formulation. The details of our method is described in Section
IV. The experiments on CK12-QA and AI2D are discussed in
Section V. Finally, we make the concluding remarks in Section
VI.

II. RELATED WORK

Researchers have proposed various TQA methods, which try
to address either multi-modality interaction or explainability
challenges. In this section, we introduce how they address the
issues.
Multi-modality Interaction The information interactions be-
tween questions and multi-modal contexts play a key role in

predicting answers. Kembhavi et al. [8] first softly embedded
textual contexts that are most relevant to questions as well
as candidate answers via an attention mechanism and then
projected textual and visual representations into a common
space to predict answers. IGMN [15] finds the contradictions
between textual contexts and candidate answers to build con-
tradiction entity relationship graphs and then reasons over
multi-modal inputs in the instructor of graphs. In contrast, F-
GCN [12] applies graph convolutional networks [16] on textual
contexts and diagrams to build unified graphs that memo-
rize relevant question background information and predicts
answers by reasoning over the graphs. EAMB [17] applies the
essay-anchor attentive multi-modal bi-linear pooling method
to learn the joint representations of text and diagrams. It first
builds textual graphs based on textual contexts and then applies
bilinear-based MFB [18] model to fuse graph and diagram
representations. MoQA [19] regards textual contexts and dia-
grams as knowledge and then selects the top K most similar
knowledge to answer questions. It also explores the TQA
performance obtained by different information representations.
All of the above methods were only conducted on the TQA
validation split [9] due to the unavailable test split at that
time and they were end-to-end trained only on CK12-QA. By
comparison, ISAAQ [14] achieved SOTA results relying on
fine-tuning large pre-trained models, ensemble learning and
large datasets. The textual ISAAQ is pre-trained on RACE
[20], ARC-Easy, ARC-Challenge [21] and OpenBookQA [22]
datasets and fine-tuned on CK12-QA. Similarly, the multi-
modal ISAAQ is pre-trained on VQA abstract scenes, VQA
[3] and AI2D [8] datasets and fine-tuned on CK12-QA.
Explainability Practical TQA methods should not only answer
textbook questions but provide students with explanations
accurately, which helps them have a deeper understanding
of what they have learned. There is only one work XTQA
[11] researching on the TQA explainability. It regards the
whole textual contexts of lessons as candidate evidence and
applies a coarse-to-fine grained algorithm to extract span-
level explanations for answering questions. However, it can
only provide textual explanations for students rather than both
textual and visual explanations.

The challenges WSTQ tries to address are different from
the above works. Similar to RAFR [23], our method tries to
learn effective diagram representations. However, RAFR only
considers the text in diagrams, which causes the loss of visual
information. By contrast, WSTQ not only considers the region
representations but the relationships between them to learn
more effective diagram semantics.

III. TASK FORMULATION

The questions can be classified into three categories includ-
ing Non-Diagram True or False (NDTF) with two candidate
answers, Non-Diagram Multiple-Choice (NDMC) with four
to seven candidate answers, and Diagram-Multiple-Choice
(DMC) with four candidate answers. Following previous
works [11, 14], we split TQA into NDTF, NDMC and DMC.
We regard NDMC and DMC as a multi-class classification and
consider NDTF as a binary classification. We only use the text
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of multi-modal contexts due to the lack of diagrams in some
lessons. An example of multi-modal contexts is shown on the
left of Figure 1. In this section, we describe the formulation
of each subtask.
NDTF and NDMC Given a dataset Sψ consisting of Nψ
triples (qi, ti,Ai) with a question qi ∈ Qψ , text ti ∈ Tψ
and candidate answers Ai ∈ Aψ , NDTF and NDMC can be
defined as follows:

âi = arg max
ai,m∈Ai

p(ai,m|qi, ti), (1)

where ai,m denotes the m-th candidate answer for qi and âi
denotes the predicted class. We use |Ai| denotes the number
of candidate answers. For NDTF, |Ai| = 2 and |Ai| = 7 for
NDMC.
DMC Given a dataset Sφ consisting of Nφ quadruples
(qk, dk, tk,Ak) with a question qk ∈ Qφ, a diagram dk ∈ Dφ,
text tk ∈ Tφ and candidate answers Ak ∈ Aφ, DMC can be
defined as follows:

âk = arg max
ak,m∈Ak

p(ak,m|qk, dk, tk), (2)

where ak,m denotes the m-th candidate answer for qk, âk
denotes the predicted class and |Ak| = 4.

To describe the differences between subtasks, we use differ-
ent subscripts such as qi and qk. In the following subsections,
we do not use the subscripts to distinguish questions belonging
to different subtasks, which may make readers easily under-
stand our method. Following previous works [11, 14], we
devise a corresponding method for answering the questions
of each subtask respectively.

IV. METHOD

In this section, we first provide a brief overview of the archi-
tecture of our method. Then, we describe weakly supervised
learning methods for NDTF and NDMC. Finally, we introduce
a weakly supervised multitask learning method for DMC.

A. Overview

Figure 2 depicts the architecture of our method. We show
the full forms of abbreviations in this figure on the bottom
right. The TM developing is shown on the bottom left of
Figure 2. Here, (q0 + A0, t0) and (q0 + A0, t5) are positive
and negative TM pairs respectively, where A0 denotes the
candidate answers of the question q0, t0 denotes the most
relevant text extracted by information retrieval methods of q0,
and t5 denotes the most relevant text of q5.

We show the RD developing on the bottom right of Figure 2,
where ri,j denotes the j-th region detected by object detection
methods within diagram di. Region pairs with overlaps such as
(ri,15, ri,17) are considered as positive samples. Instead, region
pairs without overlaps such as (ri,0, ri,1) are regarded as
negative samples. In non-diagram question answering, we first
pre-train the text understanding module on TM and then fine-
tune it on NDTF and NDMC respectively. In diagram ques-
tion answering, the parameters of the diagram understanding
module are shared by DMC and RD. The text understanding

Fig. 2: The architecture of our method (WSTQ). We assume
there are 10 questions and use them to develop TM in this
illustration. The full forms of abbreviations are shown on the
bottom right. The parameters of DU are shared with DMC and
RD tasks.

module pre-trained on TM is also fine-tuned on DMC. We
train our method on DMC and RD jointly.

B. Weakly Supervised Learning for NDTF and NDMC

The text understanding is important to answer questions
accurately due to the TQA specificity but it may not be
learned well using limited training data, e.g., only 15,153
samples in the CK12-QA train split. Text retrieval is an
essential intermediate procedure of TQA because it is used
to find the most relevant text of questions. Inspired by this,
we regard the incompletely accurate results of text retrieval
methods as supervision to develop the TM task and train the
text understanding module on TM to overcome the mentioned
issue.

Information Retrieval (IR), Next Sentence Prediction (NSP),
and Nearest Neighbors (NN) methods are applied to retrieve
the most relevant text of questions respectively following
the previous work [14]. Particularly, we first concatenate the
question qi and its candidate answers Ai as a query. Then,
(1) a traditional search engine like ElasticSearch is used to
perform IR. (2) we treat the text retrieval task as NSP using
a Transformer [24] with frozen parameters. (3) we apply
the Transformer to obtain the representations of queries and
sentences within the textual context respectively and compute
the cosine similarity between them to obtain NN. The text
retrieval methods can also be replaced by other technologies
such as TF-IDF [25]. WSTQ applies the above three methods
respectively to explore their differences on TQA performance.

Relevant knowledge may exist in adjacent lessons due to the
TQA specificity, e.g., carbon and living things in Lesson 1 and
carbon cycle in Lesson 2. This would cause a situation where
negative text pairs are relevant. To address this issue, we devise
a strategy to develop a relatively precise TM task. Specifically,
we sort all the questions according to the lesson order and
regard (qi +Ai, ti) as positive text pairs and (qi +Ai, tj) as
negative text pairs, where j =

(
(N/2 + i) mod N

)
, N =
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Nψ +Nφ denotes the number of questions in the dataset, and
tj is the most relevant text of qj .

Obviously, achieving high performance on TM and TQA
requires a deep understanding of the text ti. Inspired by this,
we apply TM, which is developed automatically via weak
supervision, to drive the text understanding module to learn
deep text understandings. Specifically, we first train the text
understanding module on TM by optimizing a binary cross-
entropy loss function LTM. Then, we fine-tune it on NDTF and
NDMC by optimizing LNDTF and LNDMC respectively, which
denote binary and multi-class cross-entropy loss functions.
RoBERTa [26] is applied as the text understanding module
to learn the joint representations of qi, ai,m and ti, and it can
be replaced by existing text representing methods.

C. Weakly Supervised Multitask Learning for DMC

Object detection is also an important intermediate proce-
dure of TQA and is used to extract image/diagram features
[13, 14, 27]. The relationships expressed by the connections
or overlaps between regions play a key role in expressing
the semantics of diagrams. Inspired by these, we first apply
object detection methods such as YOLO [10] to detect regions
and check whether they have overlaps to develop positive as
well as negative relation pairs. Then, we devise the multitask
learning architecture to drive WSTQ to learn on not only RD
but DMC tasks. This enables our method to learn effective
semantic representations of diagrams and achieve good DMC
performance.
Diagram Understanding (DU) WSTQ applies CNNs such
as ResNet [28] to learn a x-dimensional vector of the k-th
region ri,k detected by YOLO within the diagram di. The
coordinate ci,k ∈ R4 of ri,k is projected into a x-dimensional
position vector using a Fully Connected (FC) layer due to
its importance to relationship representations. Our method
considers the arithmetic mean of them to be the representation
d

′

i ∈ Rµ×x of di as follows:

d
′

i =
LN
(
CNNs(ri)

)
+ LN

(
ciWc

)
2

, (3)

where µ denotes the number of regions within di, LN denotes
the layer normalization [29] and Wc ∈ R4×x denotes the
learned weight matrix.
RD Optimization Due to the lack of diagram annotations, our
method only learns the implicit relations instead of explicit
ones such as (subject, relationship type, object) in the visual
relation detection task [30, 31]. To obtain the relationship
scores between regions, our method first repeats the first and
second dimension data of d

′

i µ times, which is denoted as
d

′0
i ∈ Rµ×µ×x and d

′1
i ∈ Rµ×µ×x respectively. Then, they

are multiplied using the Hadamard product � to obtain the
joint representations d

′′

i ∈ Rµ×µ×x. Finally, WSTQ applies
a FC layer to infer the relationship scores sri ∈ Rµ×µ. The
above steps can be denoted as follows:

d
′′

i = d
′0
i � d

′1
i ,

sri = d
′′

iWr,
(4)

where Wr ∈ Rx denotes the learned weight matrix.
Our method regards RD as a binary classification. In this

task, negative relationship pairs are much more than positive
pairs. For example, the diagram with 18 regions shown on the
right of Figure 1 has 18*18=324 possible relationship pairs but
only exists 51 positive relationship pairs. In order to make the
positive samples being focused on, a weighted binary cross-
entropy loss function LRD is applied as follows:

LRD = −
Nφ∑
i=1

(
w+y

r
i log ŷri + w−(1− yri ) log(1− ŷri )

)
,

ŷri = σ(sri ),
(5)

where Nφ denotes the number of questions within DMC,
w+ and w− denote the weights of positive and negative
relationship pairs respectively, yri ∈ {0, 1}µ

2

denotes the labels
of relationship pairs within di, ŷri ∈ [0, 1]µ

2

denotes the
probability of relationship pairs being predicted as positive
classes, µ2 denotes the number of possible relationship pairs
within di and σ denotes the sigmoid function.
Text Understanding (TU) Learning deep understandings of
ti is also important for answering questions of DMC. Hence,
the text understanding module pre-trained on TM is applied
to learn text representations, which has the same setting as the
above subsection. For simplicity, WSTQ applies this module
to learn the joint representations ei,m ∈ Rx of ti, qi and ai,m
as follows:

ei,m = TU(ti, qi, ai,m), (6)

where TU is RoBERTa.
Information Fusing Attention mechanisms are widely used to
obtain the attended representations of diagrams. For example,
top-down [13] and question-guided attention mechanisms [23]
are used to learn the global attended image representations,
which can improve the performance. However, the attention
mechanisms cause reductions of TQA performance in WSTQ.
Therefore, our method treats the weight of each region as
the same and obtains the global diagram representations
dαi ∈ Rx by summing the representation of each region. To
obtain the multi-modal fusion representations fi ∈ R|Ai|×x
of ei ∈ R|Ai|×x and dαi ∈ Rx, WSTQ applies the Hadamard
product � to fuse them. The mentioned steps can be denoted
as follows:

dαi =

µ∑
i=1

d
′

i,

fi = ei � dαi ,
(7)

where d
′

i is the learned diagram representations with µ regions
and |Ai| denotes the number of candidate answers of qi.
DMC Optimization WSTQ uses a FC layer to predict the
scores of candidate answers sai ∈ R|Ai| as follows:

sai = fiWa, (8)

where Wa ∈ Rx denotes the learned weight matrix. WSTQ
regards DMC as a multi-class classification and applies the
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multi-class cross-entropy loss function LDMC to optimize
answer predicting as follows:

LDMC = −
Nφ∑
i=1

yai log ŷai ,

ŷai = softmax(sai ),

(9)

where yai ∈ {0, 1}|Ai| denotes the answer label, ŷai ∈ [0, 1]|Ai|

denotes the probability of candidate answers belonging to
their corresponding classes and softmax denotes the softmax
function.
Multitask Optimization To optimize DMC as well as RD
simultaneously, the weighted sum LMTL of LDMC and LRD

is applied as follows:

LMTL = LDMC + λLRD, (10)

where λ denotes the weight to adjust LRD.

V. EXPERIMENTS

In this section, we first describe the experimental setups
such as evaluation datasets and implementation details. Then,
the results of each subtask within CK12-QA and AI2D are
discussed. Third, we introduce the ablation studies on CK12-
QA. Finally, we show the results on various type of questions
such as how and what.

A. Experimental Setup

Datasets and Evaluation Metrics To the best of our knowl-
edge, existing TQA methods except ISAAQ [14] are only eval-
uated on CK12-QA. Following [14], we evaluate WSTQ not
only on CK12-QA [9] but AI2D [8], which contains textbook
(diagram) questions. Specifically, CK12-QA is developed from
middle school curricula including life science, earth science
and physical science. It is split into a training split with 666
lessons, a validation split with 200 lessons and a test split with
210 lessons. AI2D is developed from grade school curricula
and only consists of diagram questions. The detailed statistic
on each split of the mentioned datasets is shown in Table I. In
CK12-QA, NDTF, NDMC and DMC have 3,490, 5,162 and
6,501 training questions respectively. In AI2D, DMC contains
7,824 training questions. Please Note AI2D only contains
DMC questions. Following previous works [9, 11, 14], we
use accuracy to evaluate our method.

TABLE I: The number of questions within each subtask of
CK12-QA [8] and AI2D [8]. AI2D does not have NDTF and
NDMC questions.

Subtask CK12-QA AI2D
train validation test train validation test

NDTF 3,490 998 912 - - -
NDMC 5,162 1,530 1,600 - - -
DMC 6,501 2,781 3,285 7,824 906 978

Implementation Details We introduce the implementation
detail of each module within WSTQ as follows. In DU,

the pre-trained ResNet-101 backbone is fine-tuned to learn
the x = 1024 dimensional representation of each region
within diagrams. In RD Optimization, WSTQ applies YOLO
that is fine-tuned on AI2D [8] with an initial learning rate
1e−4 to detect regions within diagrams. Our method applies
w+ = 1.5 and w− = 1 to optimize the relation detection. The
RoBERTa-large [26] is applied to be the text understanding
module, which is first fine-tuned on TM and then fine-tuned
on subtasks of CK12-QA. Our method selects the maximum
input sequences of 64 tokens for NDTF and 180 for NDMC,
DMC and TM. In Multitask Optimization, λ = 0.1 is used to
be the weight of LRD.

Our method is trained during 6 epochs by Adam optimizer
[32] with linearly-decayed learning rate and warm-up. We
select the initial learning rate 1e−5 for NDTF, 2.5e−6 for
NDMC, DMC and 1e−6 for TM. The dropout value 0.1 is
chosen to avoid over-fitting. We implement WSTQ based on
PyTorch and run our code on one NVIDIA Tesla V100 card.

B. Results on CK12-QA

Comparison with SOTA Baselines We compare WSTQ with
the previous SOTA methods on CK12-QA validation and test
splits. We select XTQA [11], RAFR [23], ISAAQ [14] to be
baselines because the other works introduced in Section II lack
the results on the test split. The authors of these works have
not released their codes. RAFR analyzes the dependencies
between text within diagrams to build visual graphs and then
applies dual attentions to predict answers. It obtains the best
performance on validation splits compared with the model
without pre-training and fine-tuning. XTQA achieves the best
results on the test splits under the mentioned comparison
conditions. However, their results are rather modest. ISAAQ
achieves the current SOTA results based on fine-tuning the
large pre-trained model, training on large datasets and ensem-
ble learning. Please see details in Section II.

We select three ISAAQ versions including ISAAQIR,
ISAAQNSP, and ISAAQNN that are trained only on CK12-QA
to fairly compare with our method. Please see details about IR,
NSP and NN in Section IV-B. We run the codes of ISAAQ
and WSTQ three times on the same machine with random
seeds. The best result of each time is selected to compute the
average and standard deviation.
Results Table II shows the main result on CK12-QA validation
and test splits. We can see that WSTQIR significantly out-
performs the current SOTA method ISAAQIR, improving the
accuracy on the whole questions of the test split from 47.78%
to 52.61%. The improvement is observed consistently on other
versions of WSTQ, e.g., WSTQNN outperforms ISAAQNN by
5.02% on all the questions of the test split. Our method
performs best on all subtasks, especially on DMC. It can be
seen that WSTQ/ISAAQ with different text retrieval methods
have significantly different performance, which demonstrates
the importance of the text most relevant with questions. The
traditional IR methods such as ElasticSearch may have the best
retrieval performance. We will investigate how to retrieve the
more accurate text in the future, which may improve the TQA
performance substantially. We can also see the generalization
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TABLE II: Accuracy (%) and significance test on CK12-QA validation and test splits of each subtask. NDALL denotes the accu-
racy on non-diagram questions. ALL denotes the accuracy on the whole questions within CK12-QA. NDALL=NDTF ∪ NDMC.
ALL=NDALL ∪ DMC. ∆* denotes the improvement of WSTQ* over ISAAQ*. p-value* denotes the significance test (paired
t-test) between WSTQ* and ISAAQ*.

Validation Test
NDTF NDMC NDALL DMC ALL NDTF NDMC NDALL DMC ALL

RAFR 53.63 36.67 43.35 32.85 37.85 52.75 34.38 41.03 30.47 35.04
XTQA 58.24 30.33 41.32 32.05 36.46 56.22 33.40 41.67 33.34 36.95
ISAAQNN 71.67±0.59 54.34±0.47 61.18±0.14 36.65±1.19 48.33±0.60 72.30±0.94 56.75±0.76 62.40±0.58 33.28±1.66 45.90±0.75
ISAAQNSP 72.01±2.15 54.45±0.57 61.38±1.04 39.54±0.76 49.94±0.38 71.71±1.16 55.31±1.33 61.26±1.27 35.51±1.28 46.67±0.20
ISAAQIR 74.32±1.46 55.53±0.15 62.95±0.66 41.20±0.70 51.55±0.05 75.29±1.17 56.33±0.07 63.21±0.38 35.98±0.76 47.78±0.40

WSTQNN 73.95±0.30 57.89±2.61 64.23±1.47 46.64±0.79 55.01±1.05 74.41±0.92 60.36±1.57 65.46±0.67 39.80±1.02 50.92±0.57
WSTQNSP 72.38±0.29 57.67±0.59 63.48±0.46 48.08±1.03 55.41±0.49 72.74±0.46 58.65±0.40 63.77±0.36 40.97±0.82 50.85±0.36
WSTQIR 76.65 ± 0.62 56.30±0.49 64.33±0.54 50.04±0.78 56.85±0.32 76.68±0.60 57.98±0.29 64.77±0.38 43.32±0.96 52.61±0.63

∆NN +2.28 +3.55 +3.05 +9.99 +6.68 +2.11 +3.61 +3.07 +6.52 +5.02
∆NSP +0.37 +3.22 +2.09 +8.54 +5.47 +1.03 +3.34 +2.50 +5.46 +4.18
∆IR +2.33 +0.77 +1.39 +8.84 +5.30 +1.39 +1.65 +1.56 +7.34 +4.83

p-valueNN 6.37e−2 5.99e−2 4.87e−2 1.28e−4 9.22e−6 1.41e−1 6.64e−4 7.34e−3 4.86e−4 3.61e−4

p-valueNSP 7.82e−1 2.45e−3 3.29e−2 9.74e−4 1.07e−4 2.26e−1 1.41e−2 3.01e−2 3.40e−3 6.15e−5

p-valueIR 3.96e−3 8.13e−2 2.32e−2 2.66e−4 6.67e−4 4.99e−2 2.31e−2 3.93e−3 4.41e−3 7.66e−4

TABLE III: Accuracy (%) and significance test on the AI2D
validation and test splits. ∆ denotes the improvement of
WSTQ over ISAAQ. p-value denotes the significance test
(paired t-test) between WSTQ and ISAAQ.

Model Validation Test
DMC DMC

DQA-NET - 38.47
ISAAQ 68.88±1.70 67.93±0.53

WSTQ 73.62±0.40 72.05±1.55
∆ +4.74 +4.12
p-value 9.30e−3 1.21e−2

ability of WSTQ and ISAAQ on DMC is slightly weaker
than that on NDTF and NDMC, which may be caused by
the difficulty of diagram understanding and the different data
distribution between splits. For the former, explicit relations
between regions like visual relation detection [30, 31, 33] may
improve the diagram understanding. For the latter, fine grained
attentions may enhance the reasoning ability to overcome the
data shift [34, 35].

Furthermore, we conduct the pair-wise significance test
(paired t-test) between WSTQ* and ISAAQ* on each subtask.
We can see that WSTQ is significantly better than ISAAQ
except on NDTF (p ≤ 0.05) within the test split. This demon-
strates the effectiveness of our method. We can also see that
the results of pre-training (fine-tuning) based methods such as
our method and ISAAQ are better than RAFR and XTQA that
are trained from scratch and do not use pre-training and fine-
tuning. We can conclude that large pre-training models can
bring a significant improvement on specific tasks with limited
data.

C. Results on AI2D

Comparison with SOTA Baselines We also compare WSTQ
with the previous SOTA methods on AI2D [8]. There have
a few works on TQA and most of them only conducts
experiments on CK12-QA. DQA-NET [8], which is the first

work on this dataset, answers the questions within DMC by
reasoning over the diagram parse graphs. It does not depend on
pre-training and fine-tuning and its results are rather modest.
ISAAQ [14] is the current best-performing method on this
dataset as well. We choose ISAAQ trained only on AI2D to
compare with our method fairly. AI2D contains no textual
context and does not require to perform information retrieving.
Therefore, there is only one version for our method and
ISAAQ. We use the settings on CK12-QA to obtain the result
on AI2D.
Results Table III shows the accuracy on validation and test
splits of AI2D. We can see WSTQ achieves the new SOTA
performance, significantly improving the accuracy on the test
split by 4.12%. We also conduct the pair-wise significance
test (paired t-test) between WSTQ and ISAAQ. It can be seen
that our method is significantly better than ISAAQ on AI2D
validation and test splits (p ≤ 0.05). The results also show that
our method and ISAAQ significantly outperforms DQA-NET.
In summary, WSTQ pushes forward the SOTA results on two
public datasets, demonstrating its effectiveness.

D. Ablation Study

In order to further analyze WSTQ, we carry out ablation
studies shown in Table IV on the CK12-QA validation split.
The performance differences obtained by different informa-
tion retrieving methods have been shown in the previous
subsections. Here, we only choose WSTQIR to verify the
effectiveness of each module.
W/O Diagrams We remove the diagrams to explore how well
WSTQ performs on DMC. There do not exist diagrams in the
questions of NDTF and NDMC. We can see that the DMC
accuracy decreases by 2.05%, demonstrating the importance
of diagrams for diagram question answering.
W/O TM We do not pre-train text understanding on TM to
verify its effectiveness on text understanding. The accuracy
of NDTF, NDMC, and DMC decreases by 4.40%, 2.46%
and 1.12% respectively, demonstrating the importance of TM
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(a) NDMC-CK12-QA (b) DMC-CK12-QA (c) DMC-AI2D

Fig. 3: Accuracy of WSTQ on various types of questions. We show the results on validation and test splits respectively. We
classify the questions into 8 categories: what, how, which, where, when, who, why and other. Figure (3a) and Figure (3b)
depict the detailed NDMC and DMC accuracy within CK12-QA respectively. Figure (3c) depicts the detailed DMC accuracy
within AI2D.

TABLE IV: Ablation Study on the CK12-QA validation split.
∆ denotes the accuracy decrease (%) without the specified
module. DU represents the diagram understanding module.
TM denotes the text matching task. RD denotes the relation
detection task.

Model NDTF ∆ NDMC ∆ DMC ∆

WSTQIR 77.15 56.80 50.92
W/O Diagrams - - - - 48.87 -2.05
W/O TM 72.75 -4.40 55.60 -2.46 49.80 -1.12
W/O RD - - - - 49.08 -1.84
Freezing DU - - - - 50.20 -0.72

on text understanding. The text understanding module is pre-
trained on a binary classification TM task. It may match better
on NDTF and make bigger contributions compared with that
on NDMC because the former is also a binary classification
task. Actually, we can see that the decrease on NDTF is
more than that on NDMC. This setting also demonstrates
the effectiveness of regarding information retrieval results as
supervision to develop TM.
W/O RD The DMC accuracy drops from 50.92% to 49.08%
and is close to the performance achieved by WSTQ w/o
diagrams, which demonstrates the effectiveness of RD on
semantic representations of diagrams and the effectiveness of
regarding objection detection results as supervision to develop
RD. Combined with the first and this setting, we can conclude
that current diagram understanding has potential improvement.
For example, learning explicit relations and building diagram
graphs [36] under different relations may be effective.
Freezing DU We freeze the diagram understanding module
to explore whether the RD loss in Eq. (5) can be used to
optimize other modules. This loss is specifically designed to
optimize the diagram understanding module, allowing WSTQ
to learn effective semantic representations of diagrams. In this
setting, the variant of our method performs RD with freezing
DU, which means the RD loss is forced to optimize other
modules. We can see that this variant of WSTQ outperforms
that without RD by 1.12%, which proves our argument.

E. Results on Various Types of Questions

Previous works [12, 23] only reported the experimental
results on NDTF, NDMC and DMC, making their model

analyses less detailed. We classify the questions of DMC
and NDMC into 8 categories like [37] to further analyze
our model: what, how, which, where, when, who, why and
other. The questions are classified by determining whether
there exist the above-mentioned class labels. We think the
results on these various types of questions can provide a
comprehensive analysis for WSTQ. For example, achieving
high performance on when, why, where and how questions
usually require the high-level reasoning ability [37]. We do not
classify the questions of NDTF because they do not contain
the above-mentioned labels.

We show the experimental results in Figure 3. Concretely,
Figure (3a) and (3b) show the detailed NDMC and DMC
accuracy within CK12-QA respectively. The DMC subtask
does not contain when, who and why questions. It can be
seen that WSTQ obtains the better performance on all types
of questions within NDMC compared with that within DMC,
which demonstrates multi-modal question answering is more
challenging than textual question answering. We can see the
accuracy of WSTQ on how questions is not as good as
that what questions within CK12-QA, because how questions
may necessitate the high-level multi-hop reasoning ability. For
which questions such as “which letter denotes the mitochon-
drion in this diagram”, they usually require models to have a
deep semantic understanding and word-region alignment.

Figure (3c) shows the detailed DMC accuracy within AI2D.
We can see that WSTQ achieves good results on all types
of questions within the test split, demonstrating its strong
generalization and reasoning ability. Moreover, it can be seen
that our method obtains the better accuracy on AI2D compared
with that on CK12-QA. This may be caused by the following
reasons: (1) Achieving high performance on questions within
CK12-QA usually requires external knowledge but it may
not be necessitated for questions within AI2D. (2) TQA and
AI2D are developed from middle and grade school curricula
respectively, which means questions within the former are
more challenging than that of the latter. The accuracy on how
questions is slightly worse than other types of questions, which
shows the similar situation on CK12-QA.

F. Case Study

We present the case studies for our method. Figure 4 depicts
a qualitative case for each TQA subtask respectively in order
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Fig. 4: Case studies for WSTQIR and its variant without pre-training the text understanding module on TM and without training
the diagram understanding module on RD. The NDTF, NDMC and DMC examples are from CK12-QA. Our method and its
variant use the same relevant text to answer the specific question. Answers marked in green are ground truth. Answers marked
in red are wrong predictions.

to show the strengths of WSTQIR intuitively. WSTQIR and its
variant without pre-training the text understanding module on
TM and training the diagram understanding module on RD
use the same relevant text to answer the specific question but
make very different predictions.

NDTF As can be seen on the top left of Figure 4, the variant
of WSTQIR may not fully comprehend the textual context
and may make predictions solely based on text similarities.
However, our method predicts the answer B with a high degree
of certainty, demonstrating that TM motivates WSTQIR to
learn a deeper text understanding.

NDMC On the bottom left of Figure 4, it can be seen that the
variant predicts a close probability for each candidate answer,
which shows that it may make predictions based on the text
similarity. By contrast, our method predicts extremely different
probabilities for (A, D) and (B, C). Moreover, WSTQIR can
still predict the answer C accurately, although there has a long
distance between felsic lavas and explosively. These demon-
strate TM drives our method to have a deep understanding and
summarization ability for long text. The above cases also show
the strength of considering the results of information retrieval
as supervision to develop TM in spite of some noise existing.

DMC The variant of WSTQIR without pre-training the text
understanding module on TM and training the diagram un-
derstanding module on RD only considers the separate region
information to be the representations of diagrams, resulting
in incorrect predictions. Nevertheless, our method explicitly
predicts the relationships between regions such as seasons for
deep understandings of diagram semantics, making completely
accurate predictions for the questions within DMC. This show
the strength of regarding the results of object detection as
supervision to develop RD despite some noise existing. In
addition, this also intuitively shows RD and TQA can enhance

each other, i.e., the advantage of multitask learning.
In summary, even though the results of intermediate pro-

cedures contain some noisy supervision information (weak
supervision), they can still motivate our method to learn deep
understandings of long text and abstract diagrams with limited
training data.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a weakly supervised learning
method for TQA called WSTQ, which considers the intermedi-
ate procedures that are essential for this task as supervision to
develop TM and RD tasks, and then uses them to drive itself
to learn deep semantic understandings of text and diagrams
respectively. To be more specific, the TM task motivates
WSTQ to learn a deep text understanding. The RD task drives
our method to take into account the relationships between
regions, which are important in expressing diagram semantics.
Extensive experiments and ablation studies demonstrate the
effectiveness of WSTQ and the contribution of each module.
We also show the experimental result on various types of
questions, such as where and when to further analyze our
method.

In the future, we will investigate the following directions.
1) We will explore how to generate the textual attribute for

each detected region and devise an attribute-word guided
attention mechanism to learn more effective vision-
language representations.

2) We will explore how to obtain more accurate relevant
textual context that is important to answer questions
accurately.

3) We will explore how to detect the explicit relationships
between regions and apply graph neural networks to learn
diagram representations under specific relations.
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