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Abstract

We present a data-driven approach for probabilistic wind power forecasting based on conditional normalizing flow˜(CNF). In

contrast with the existing, this approach is distribution-free (as for non-parametric and quantile-based approaches) and can

directly yield continuous probability densities, hence avoiding quantile crossing. It relies on a base distribution and a set of

bijective mappings. Both the shape parameters of the base distribution and the bijective mappings are approximated with neural

networks. Spline-based conditional normalizing flow is considered owing to its universal approximation capability. Over the

training phase, the model sequentially maps input examples onto samples of base distribution, where parameters are estimated

through maximum likelihood. To issue probabilistic forecasts, one eventually map samples of the base distribution into samples

of a desired distribution. Case studies based on open datasets validate the effectiveness of the proposed model, and allows us

to discuss its advantages and caveats with respect to the state of the art. Code will be released upon publication.
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Continuous and Distribution-free Probabilistic Wind
Power Forecasting: A Conditional Normalizing

Flow Approach
Honglin Wen, Student Member, IEEE, Pierre Pinson, Fellow, IEEE, Jinghuan Ma, Jie Gu, and Zhijian Jin

Abstract—We present a data-driven approach for probabilis-
tic wind power forecasting based on conditional normalizing
flow (CNF). In contrast with the existing, this approach is
distribution-free (as for non-parametric and quantile-based ap-
proaches) and can directly yield continuous probability densities,
hence avoiding quantile crossing. It relies on a base distribution
and a set of bijective mappings. Both the shape parameters of the
base distribution and the bijective mappings are approximated
with neural networks. Spline-based conditional normalizing flow
is considered owing to its non-affine characteristics. Over the
training phase, the model sequentially maps input examples onto
samples of base distribution, given the conditional contexts, where
parameters are estimated through maximum likelihood. To issue
probabilistic forecasts, one eventually maps samples of the base
distribution into samples of a desired distribution. Case studies
based on open datasets validate the effectiveness of the proposed
model, and allows us to discuss its advantages and caveats with
respect to the state of the art.

Index Terms—Conditional normalizing flow, deep learning,
density estimation, probabilistic forecasting, wind power.

NOMENCLATURE

Functions
ϕ(·) The function that estimates the shape parameters of

base distribution
τk(·) The transformer function in the k-th transform that

maps z
(k−1)
t,i to z

(k)
t,i

ck(·) The conditioner function in the k-th transform that
outputs the conditionals

fYi,t(·) Probability density function of Yi,t

q(α)(·) Quantile function with level α
Tk(·) The function that maps z

(k−1)
t to z

(k)
t

Models
G The model for base distribution
M The whole model
Random variables
Y t The random variable for wind power generation values

in general form at time t
Zt The intermediate random variable at time t
Yi,t The random variable for wind power generation value

at wind farm i at time t
Variables
xt The input features at time t
yt The realization of Y t

zt The realization of Zt
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I. INTRODUCTION

A. Motivation

As an essential tool to assess and accommodate wind power
generation uncertainty, short-term probabilistic wind power
forecasting (PWPF) has gained increasing interest in recent
decades. It generally takes numerical weather prediction and
historical values as input features, in order to model and
communicate the probability density of wind power generation
at some time in the future. Such densities may be for a unique
lead time and location (hence, univariate), or jointly for several
lead times and/or locations (referred to as multivariate) [1]. It
has become common now to decouple the estimation of the
marginal probability density function of each variable and of
the interdependence structure in the multivariate PWPF [2].
In other words, univariate PWPF is usually recognized as the
cornerstone of PWPF problems.

A classical approach for univariate PWPF relies on as-
sumptions (often referred to as parametric approach) for the
distribution of future wind power generation, the parameters
of which are estimated via statistical and machine learning
methods. For instance, the Gaussian, Beta, Generalized Logit-
Normal, etc could be used [3]. Although it is convenient to
develop models based on such assumptions, the distribution of
wind power at hand may not match the assumptions. This is
primarily due to the wind power generation process, in other
words, the nonlinear power curve that converts energy from
the wind into electric power [4]. Concretely, the characteristics
of wind power generation distributions differ a lot depending
on predicted weather conditions, as illustrated by [5] for
instance. This has motivated many to look for distribution-
free approaches, i.e., that do not rely on a specific assumption
for the densities to model and communicate as forecasts.
Certainly the most popular distribution-free approach, also
referred to as non-parametric, is quantile regression (QR) [6],
which allows to relax the use of distributional assumptions for
the case of univariate probabilistic forecasting. It has achieved
great success in the Global Energy Forecasting Competition
2014 (GEFCom 2014) for instance, and has become a main-
stream solution owing to its state-of-the-art performance and
simplicity of use. However, it requires parallel models to be
fitted for each quantile, which raises the cost of computation
when the whole distribution is needed. In addition, it only pro-
vides discrete quantiles, which may lead to quantile crossing
– quantiles of the whole distribution are inconsistent.

Till now, parametric models with distributional assumption
and QR are still the most effective methods [1] with prominent
characteristics. That is, parametric models characterize the
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whole distribution efficiently, whereas QR models are free
of distributional assumptions. For multivariate PWPF, the
complex interdependence structures of multivariate distribu-
tion can be modeled using copula models [7]. By estimating
the marginal probability density function (PDF) via non-
parametric methods and modeling the complex interdepen-
dence structure, the copula method is allowed to model
complicated multivariate distribution. However, the copula-
based approach relies on strong assumptions regarding the
probabilistic calibration of predicted marginals, while it often
underestimate the strength of the dependence structure among
the various variables. Eventually, it remains an open issue to
develop an efficient, continuous and distribution-free proba-
bilistic forecasting model that obtains whole distribution at
once.

B. Related Works

Univariate probabilistic forecasting usually translates to
communicating quantile forecasts, prediction intervals (PIs),
and predictive densities. Quantile forecasts and PIs are specific
characteristics of predictive densities, which are most often
obtained by QR. Based on this approach, several machine
learning models such as neural network (NN) [8] and gradient
boost machine [9] have been adopted to estimate conditional
quantile functions. It is then simple and effective to construct a
PI with two corresponding quantile functions. A (1−β)×100%
PI can be constructed by the pair of quantiles (α, 1− β + α)
where α ∈ (0, β). For instance, the pair (β/2, 1 − β/2) is
typically selected in the literature [10], [11]. However, both
quantiles and PIs only provide partial information of probabil-
ity densities, the applications of which can hardly cover power
systems operation based on stochastic programming where the
whole distribution of future wind power generation is often
required.

As a result of this, it has been an active research topic
to communicate densities in the PWPF community. Besides
the aforementioned parametric approach, resampling and ad-
vanced density estimation techniques have been adopted, as
reviewed in [1], [12]. The idea of resampling method lies
in estimating the PDF of empirical errors of point forecasts,
which therefore makes the method distribution-free. In order
to issue conditional densities for the PWPF, fuzzy inference
has been applied to classify the forecast conditions into several
modes [5]. But such finite classifications cannot continuously
adapt to all forecast conditions. Furthermore, the quality of
estimated densities is strongly related to the performance of
utilized point-forecast models. The non-parametric density
estimation method, namely kernel density estimation (KDE)
has been popular among the PWPF community due to its
universal approximation capability. In particular, models based
KDE usually deduce the density of a finite population selected
by k-nearest neighbors [13]. As with the resampling method,
this method is still limited in modeling conditional densities,
since the employed k-nearest neighbors operation is restricted
in dealing with heterogeneous distributions. That said, once
k is fixed, the KDE-based model cannot adaptively select the
finite population. In addition, the k-nearest neighbor operation

suffers from the curse of dimension. Recently, mixture density
network (MDN) has been applied in PWPF, as it can model
more complex distribution (compared to a Gaussian) through
the comic combination of Gaussian distribution [14]. But it
would get stuck in mode collapse, i.e., the ultimate estimated
distribution would collapse into a Gaussian distribution, and
training instability [15].

Multivariate probabilistic forecasting often communicates
scenarios as forecasts, which are drawn from predictive densi-
ties. The scenario generation procedure is based on probability
integral transform (PIT) and the interdependence structure
[2]. Concretely, one draws realizations from the estimated
multivariate standard Gaussian distribution, and converts the
realizations into scenarios of wind power generation via in-
verse PIT. Besides, an emerging approach is to directly learn
multivariate densities based on advanced generative models
such as the generative adversarial network (GAN) adopted in
[16]. The GAN is composed of a generator and a discriminator,
where the generator is responsible for generating scenarios
at the operation stage. Although it is computationally more
efficient than the copula method, it suffers from notorious
training instability caused by the game between the generator
and discriminator at the training phase [17]. Moreover, it only
presents the applicability of GAN in generating scenarios,
and as such is not focused on producing various forms of
probabilistic forecasts e.g. predictive densities in univariate
and multivariate setups. Indeed, it has not even been assessed
by proper statistical scores. The most related work is [18],
which compares the performance of several generative models,
i.e., GAN, variational auto-encoder, and an integration-based
normalizing flow (NF). But their primary focus is to compare
the performance of deep-learning based generative models. It
is reported in [18] that the performance of the integration-
based NF is limited, let alone compared to state-of-the-art QR
models. Besides, they are unaware of the differences between
affine NF (which is indeed is equivalent to parametric models
with Gaussian distributional assumption) and integration-based
NF models. Therefore it leaves issues such as applicability
of NF and the relationship between NF and existing models
uncovered.

C. Proposed Method and Main Contributions

As a basis for this work, we get inspiration from [5] and
[19], which relied on the idea of transforming samples of
bounded stochastic process at hand to make them more suit-
able to be modeled by a Gaussian (or multivariate Gaussian)
variable. Besides, parametric models always serve as good
candidates for estimating the underlying distributions of wind
power generation [20]. Thus, it is appealing to set a parametric
model to learn a base distribution, and transform the base
distribution to the desired distribution (in the view of the
underlying distribution of wind power generation) with an
affordable cost. Indeed, it is allowed by the conservation of
probability measure [21], which translates into saying that one
can transform a variable that follows an arbitrary distribution
into a variable that follows a desired distribution with the assis-
tance of bijective mapping (transform). Here, instead of using
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a manually designed transform, we implement such transforms
via the NF [22], [23]. An NF framework is composed of a base
distribution and a sequence of trainable bijective mappings.
Both the shape parameters of base distribution and bijective
mappings are modeled by neural networks (NNs). Besides,
such transforms ought to be non-affine so that the model
can flexibly characterize the wind power distribution under
different conditions.

Concretely, we establish a distribution-free PWPF model
based on a combination of a parametric model with Gaussian
distributional assumption and a conditional auto-regressive NF
[24], which is applicable to both univariate and multivariate
PWPF applications. Unlike copula models where the marginal
PDF and interdependence structure are modeled separately,
here the joint probability density is derived through the chain
rule of probability, i.e., the product of conditional probability
densities. In particular, such conditional probability densities
are also dependent on input features. The base Gaussian
distribution are estimated by the parametric model, whose
realizations are then mapped into those of the desired dis-
tribution via a spline-based NF [25]. By using the non-affine
characteristics of spline-based NF, the model is allowed to
characterize the predicted distribution of wind power gener-
ation more flexibly. The spline operates in an elementwise
manner, i.e., the mapping for each dimension is specified by
the outputs of an NN that takes contextual features and the
values of previous dimension as inputs. All the parameters are
estimated simultaneously based on the maximum likelihood.
Case studies validate the effectiveness of the proposed model,
which achieves state-of-the-art.

The main contributions of the paper are: (i) The proposal of
a distribution-free PWPF model, which suffices to handle the
bounded characteristics of wind power by using the power of a
parametric model with Gaussian distributional assumption and
non-affine transforms. (ii) The demonstration of its applicabil-
ity to model the whole predictive distribution, which avoids
the quantile crossing issue in the univariate PWPF and still
presents competitive performance that is comparable to state-
of-the-art QR models. (iii) A new perspective for conditional
PDF estimation for PWPF based on the function theory, which
offers complimentary understanding to merits and caveats of
distribution-free approaches versus parametric approaches.

The remainder of this paper is organized as follows. In
section II, the problem formulation and methodological com-
ponents of normalizing flows are introduced. Our approach
to their application to univariate and multivariate wind power
probabilistic forecasting is described in section III. Section
IV summarizes data sources and experiment implementation.
The results obtained are presented in Section V, where the
performance comparison with existing models is discussed.
Section VI concludes this paper.

II. METHODOLOGICAL COMPONENTS

A. Preliminaries

The most important base property to consider for nor-
malizing flows is the concept of conservation of probability
measure.

✠ �

✟ ✁
✂

✄

Fig. 1: Illustration of transform.

Definition 1 (Conservation of Probability Measure) :
Denote the PDF defined on Z ⊆ Rd as fZ(z) : Z → [0,+∞),
the PDF defined on Y ⊆ Rd as fY (y) : Y → [0,+∞), and
an invertible transform as T : Z → Y . For any subset ω ⊆ Z ,
we have ∫

z∈ω

fZ(z)dz =

∫
y∈γ

fY (y)dy. (1)

where γ = {T (z)|z ∈ ω}, as illustrated in Fig. 1. By utilizing
the change of variable, z = T−1(y), we convert the formula
into∫

y∈γ

fZ(T
−1(y))|det JT−1(y)|dy =

∫
y∈γ

fY (y)dy,

where JT−1(y) denotes the Jacobian matrix s.t.

JT−1(y)i.j =
∂yi
∂zj

.

As it holds for any subset γ ⊆ Y , we have

fY (y) = fZ(T
−1(y))|det JT−1(y)|. (2)

B. Problem Formulation

Consider we have p wind farms whose generation is driven
by a multivariate stochastic process. For wind farm i, let yi,t
denote the generation value at time t, which is a realization
of the corresponding random variable Yi,t. Then, let fYi,t

(y)
and FYi,t(y) respectively denote the PDF and cumulative
distribution function (CDF) of Yi,t. The univariate PWPF boils
down to estimating the PDF of Yi,t+H , i.e., f̂Yi,t+H |t, given
information Ωi,t up to t via a model M, i.e.,

f̂Yi,t+H |t = fYi,t+H |t(y|Ωi,t;M, Θ̂), (3)

where H is the forecasting horizon, and Θ̂ represents the
estimation of real parameters Θ. Certainly, information from
nearby wind farms could be used to improve the forecasts, if
available [26]. The information may contain previous wind
power generation values, i.e., {yi,t−l, · · · , yi,t−1, yi,t}, and
some exogenous features such as numerical weather predic-
tions (NWPs). Accordingly, one can also obtain the CDF of
Yi,t+H by integrating f̂Yi,t+H |t, namely F̂Yi,t+H |t, the inverse
function of which specifies quantiles. For instance, the pre-
dicted α-th quantile q̂

(α)
t+H|t is given by

q̂
(α)
t+H|t = F̂−1

Yi,t+H |t(α). (4)

A PI with nominal level (1 − β) × 100% can be formed by
two quantiles, q̂(β/2)t+H|t and q̂

(1−β/2)
t+H|t , i.e.,[

q̂
(β/2)
t+H|t, q̂

(1−β/2)
t+H|t

]
. (5)
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Fig. 2: Illustration of model estimation stage.

Indeed, multivariate PWPF aims at communicating the joint
probability distribution of a collection of future random vari-
ables. For instance, the multivariate PWPF may communicate
the joint probability distribution of random variables at several
future time, i.e., Yi,t+1, · · · , Yi,t+H , which is expressed as

f̂Yi,t+1,··· ,Yi,t+H |t = fYi,t+1,··· ,Yi,t+H |t(y|Ωi,t;M, Θ̂), (6)

and that at several sites, i.e.,

f̂Y1,t+H ,··· ,Yp,t+H |t =

fY1,t+H ,··· ,Yp,t+H |t(y|Ω1,t, · · · ,Ωp,t;M, Θ̂).
(7)

In multivariate PWPF, one often draws several realizations as
scenarios from the estimated distribution. For instance, one can
draw realizations from f̂Y1,t+H ,··· ,Yp,t+H |t, which are denoted
as ỹ

(s)
1,t+1, · · · , ỹ

(s)
p,t+H , i.e.,

ỹ
(s)
1,t+1, · · · , ỹ

(s)
p,t+H ∼ f̂Y1,t+H ,··· ,Yp,t+H |t. (8)

Without loss of generality, we write the future random variable
as Y t (which may be univariate or multivariate), and its
realization as yt. The information is denoted as Ωt, whose
realization is xt. In this paper, we refer to xt as contextual
features, to make them distinguished from the inputs of NF.
Hence, the cornerstone of PWPF can be written in a compact
form, i.e.,

f̂Y t|t(y|xt) = fY t|t(y|xt;M, Θ̂). (9)

In this paper, we assume that Θ does not change with
time, which therefore can be estimated from training datasets
Xtrain and Y train. It can be also considered in an online
setting, where parameters vary with time. With the estimated
model at hand, to issue a forecast at time t, it is only required
to feed xt into the model and yield results as described in (9).

The classic parametric approach usually sets M as a model
with distributional assumption, such as Gaussian and Logit-
normal, whereas Θ̂ denotes the parameters of a function
that maps contextual features to the shape parameters of
distribution. With the conservation of probability measure, we
consider an intermediate random variable Zt that follows a
specific distribution fZt(z), whose realization is denoted as
zt. Let T map zt into yt, i.e.,

yt = T (zt; Θ̂T ), (10)

where Θ̂T denotes the estimation of parameters of transform T
(whose real parameters are denoted as ΘT ). Now we consider
to model the distribution of Zt via a parametric model G,

✟�

✁ ✌✂✄

✟�

✌✂☎✆✝�
✒✡✞

✠☛�

Fig. 3: Illustration of operational forecasting stage.

whose parameters are denoted as ΘG . The estimation of ΘG
is denoted as Θ̂G . Then, the model M consists of G and T ,
i.e., M = {G, T}, whose parameters are Θ = {ΘG ,ΘT }. The
conceptual framework of training stage is shown in Fig. 2. In
other words, by learning G and T , we can estimate the model
M.

C. Flow Model for Forecasting

Here we implement the conceptual model T via normalizing
flows. Generally, the transform T in an NF consists of a series
of invertible functions T1, T2, . . . , TK [23], i.e.,

T = T1 ◦ T2 ◦ · · · ◦ TK , (11)

where ◦ denotes the symbol of composition. For each Tk,
we denote its input as z

(k−1)
t , which is the realization of the

random variable Z
(k−1)
t . Accordingly, its output is denoted

as z
(k)
t , which is the realization of the random variable Z

(k)
t .

Particularly, Z
(0)
t follows the base distribution specified by

G, whereas Z
(K)
t is Y t. For simplicity of notations, we drop

subscript of density function in what follows.
Two significant calculation passes in NF models are forward

and inverse passes. Such computation between z
(k)
t and z

(k−1)
t

for instance is respectively described as

z
(k)
t = Tk(z

(k−1)
t ; Θ̂Tk

), z
(k−1)
t = T−1

k (z
(k)
t ; Θ̂Tk

),

where Θ̂Tk
represents the estimated parameters of Tk. In

particular, we obtain f(z
(k)
t |xt) through f(z

(k−1)
t |xt) and the

mapping Tk, which is bijective in z
(k−1)
t as well as z

(k)
t and

parameterized by xt [27]. We have

f(z
(k)
t |xt) = f(z

(k−1)
t |xt)|

∂z
(k−1)
t

∂z
(k)
t

|

= f(T−1
k (z

(k)
t ; Θ̂Tk

,xt)|xt)|det JTk
(z

(k−1)
t )|.

(12)

Consequently, the forward and inverse passes in CNF are
expressed as

z
(k)
t = Tk(z

(k−1)
t ; Θ̂Tk

,xt), z
(k−1)
t = T−1

k (z
(k)
t ; Θ̂Tk

,xt).
(13)

With the sequential transforms, we have

yt = T (z
(0)
t ; Θ̂T ,xt), z

(0)
t = T−1(yt; Θ̂T ,xt).

where Θ̂T denotes the parameters of T , which is a collection
of Θ̂Tk

, i.e., Θ̂T = {Θ̂T1
, · · · , Θ̂TK

}.
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The Jacobian determinant is computed by

log |det JT (z(0)
t )| = log |

K∏
k=1

det JTk
(z

(k−1)
t )|

=

K∑
k=1

log |det JTk
(z

(k−1)
t )|.

Ultimately, we build the connection between the PDF of z(0)
t

and that of yt, i.e.,

log f(yt) = log f(z
(0)
t ) +

K∑
k=1

log |det JTk
(z

(k−1)
t )|.

Such Tk in the NF model is implemented via NNs, and
is required to be invertible and have a tractable Jacobian
determinant.

The introduced CNF model is trained based on max-
imum likelihood. As we assume that parameters Θ will
not change with time, we can estimate them from train-
ing dataset Y train = [y1,y2, · · · ,yN ]⊤ and Xtrain =
[x1,x2, · · · ,xN ]⊤. The loss function is defined as

L = − 1

N

N∑
n=1

log f(yn|xn)

= − 1

N

N∑
n=1

[log f(T−1(yn;xn)) + log |det JT (T−1(yn;xn))|].

(14)

At the training stage, we estimate Θ̂ by minimizing the loss
function L. To issue a forecast at time t, we feed xt into the
base model and all transforms, which is illustrated in Fig. 3.
Then, we derive the density of z(0)

t , i.e.,

f̂(z
(0)
t |xt;G, Θ̂G).

Based on it, we could draw L realizations:

z̃
(0),1
t , · · · , z̃(0),L

t ∼ f̂(z
(0)
t |xt;G, Θ̂G). (15)

By transforming each realization z̃
(0),i
t via T , i.e.,

ỹi
t = T (z̃

(0),i
t ;xt, Θ̂T ), (16)

we can obtain L realizations of f̂(yt|xt;M, Θ̂), namely
ỹ1
t , · · · , ỹL

t . In particular, we can obtain the α-th quantile
of f̂(z

(0)
t |xt;G, Θ̂G), which is denoted as q̂

(α)
G , and then

transform it via T to obtain the quantile of f̂(yt|xt;M, Θ̂),
i.e.,

q̂
(α)
M = T (q̂

(α)
G ;xt, Θ̂T ) (17)

D. Relationship with Classic Methods

Here we discuss the relationship between this method and
classic methods. In what follows, we assume the base distri-
bution as a standard normal distribution, i.e., z(0)

t ∼ N (0, I).

1) Gaussian Distribution: Models with Gaussian distribu-
tional assumption [28], [29] are described as

yt ∼ N (µt(xt),Σt(xt)),

where µt(xt) and Σt(xt) are the corresponding shape param-
eters, which are specified by xt and estimated via statistical
learning. They can be translated into setting the transform T
as the composition of affine transforms. That is,

yt = T (z
(0)
t ;xt) = At(xt)z

(0)
t + bt(xt),

where At(xt) and bt(xt) are the corresponding matrix and
vector specified by xt. Then the problem boils down to
estimating At(xt) and bt(xt) from data. As affine transforms
cannot change the family of distributions, yt still obeys
Gaussian distribution,

2) Logit-Normal Distribution: The logit-normal distribu-
tion [19] can be derived by applying a logit-normal transform
to a Gaussian distribution, i.e.,

yt ∼ L(µ(xt),Σt(xt)).

It can be interpreted as setting the transform T in a normalizing
flow as a combination of affine transforms and a sigmoid
transform. Using the affine transforms, we derive

z
(K−1)
t ∼ N (µt(xt),Σt(xt)),

where µt(xt) and Σt(xt) are specified by xt. Then the logit-
normal transform operates element-wise on z

(K−1)
t , i.e.,

yt,i =
exp(z

(K−1)
t,i )

1 + exp(z
(K−1)
t,i )

,

where yt,i and z
(K−1)
t,i respectively represent the i-th element

of yt and z
(K−1)
t .

3) Mixture Density Network: Mixture density network is a
popular model that outputs the parameters of Gaussian mixture
models. It is described as

f(yt|xt) =
∑

πi(xt)f(yt;µi(xt),Σi(xt)),

where
∑

πi(x) = 1. Models based on mixture density
networks can be regarded as setting T as a conic combination
of affine transforms. That is,

yt = T (z
(0)
t ;xt) =

∑
πi(xt)Ti(z

(0)
t ;xt),

where Ti operates as

Ti(z
(0)
t ;xt) = Ai

t(xt)z
(0)
t + bit(xt),

where Ai
t and bit are parameters, specified by xt.

4) Gaussian Copula: The model based on Gaussian Copula
[2] is an instance of NF, which is specified by an element-wise
monotone function g and a correlation matrix Σt specified by
xt. That is,

z
(K−1)
t = At(xt)z

(0)
t ∼ N (0,Σt(xt)),

yt,i = g(z
(K−1)
t,i ;xt).

Indeed, any desired distribution can be obtained by trans-
forming a Gaussian distribution through a specific mapping.
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Fig. 4: Illustration of inverse path in the k-th transform.
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Fig. 5: Illustration of forward path in the k-th transform.

Such mapping proceeds each value in the domain in the
same manner, such as the aforementioned Logit-Normal trans-
form. Therefore, the mapping is required to be specified by
conditional information, so that the derived distribution is
allowed to adapt to different wind conditions. Although the
conic combination enables deriving more complex distribu-
tions compared to Gaussian distributions, it is restricted by the
number of mixing components. With regard to the Gaussian
copula model, it is developed for multivariate modeling. By
modeling the well-calibrated marginal PDF and correlation
structure, one can yield the the ultimate joint probability
density in a distribution-free way. However, as mentioned
above, it highly relies on the estimation of marginals and tends
to underestimate the covariance structure, which often impedes
its performance.

III. FORECASTING APPLICATIONS

The basic approach for conditional normalizing flows de-
scribed in the above can readily be used for forecasting
applications, in both univariate and multivariate settings. We
choose a Gaussian distribution as the base distribution whose
shape parameters are learned by an NN and adopt a non-
affine flow to obtain a piece-wise non-Gaussian distribution.
Let µ̂t, Σ̂t denote the estimated shape parameters of base
distribution, which are determined by a function of xt, namely
ϕ(xt; Θ̂G). In other words, with the Gaussian distributional
assumption, the model G described in Section II-B reduces to
the function ϕ(xt; Θ̂G). It is described as

µ̂t, Σ̂t = ϕ(xt; Θ̂G). (18)

A. Probabilistic Forecasting Applications

1) Univariate Probabilistic Forecasting: In the univariate
case, each intermediary variable (for instance the k-th in-
termediary variable) and shape parameters of the Gaussian
distribution are scalars, which are rewritten as z

(k)
t , µt, and

σt. The estimated shape parameters of base distribution µ̂t, σ̂t

are derived via

µ̂t, σ̂t = ϕ(xt; Θ̂G). (19)

Tk is a univariate function that operates as

z
(k)
t = Tk(z

(k−1)
t ;xt, Θ̂T ). (20)

2) Multivariate Probabilistic Forecasting: The most rele-
vant computation to consider for multivariate forecasting is the
transform described in (13). Here, let us consider a function
τk in the transform Tk that operates elementwise and relies
on previous dimensions and contextual information. Take the
computation of i-th dimension as an example, i.e., the forward
path and inverse path between z

(k−1)
t,i and z

(k)
t,i . In the inverse

path, τ−1
k maps z

(k)
t,i into z

(k−1)
t,i via

z
(k−1)
t,i = τ−1

k (z
(k)
t,i ; ck(z

(k)
t,1:i−1,xt; θ̂ck), θ̂τk), (21)

where z
(k)
t,1:i−1 represents [z

(k)
t,1 , · · · , z

(k)
t,i−1]

⊤, θ̂τk represents
the parameters of τk, and c(z

(k)
t,1:i−1,xt; θ̂ck) is a function that

outputs conditionals. In other words, Θ̂Tk
contains θ̂τk and

θ̂ck . The forward path is described as

z
(k)
t,i = τk(z

(k−1)
t,i ; ck(z

(k)
t,1:i−1,xt; θ̂ck), θ̂τk). (22)

Using the terminology of [30], ck(·) and τk(·) are respectively
referred to as the conditioner and transformer. Illustration of
such calculation procedure is shown in Fig. 4 and Fig. 5.

Remark 1: With the chain rule of probability, we decompose
the joint probability density f(z

(k)
t |xt) into a product of

conditional probability densities, i.e.,

f(z
(k)
t |xt) =

d∏
i=1

f(z
(k)
t,i |z

(k)
t,1:i−1,xt).

As shown in Section II-C, the training stage is relied on
the inverse path and the computation of likelihood. In-
deed, the inverse path described in (21) is associated with
f(z

(k)
t,i |z

(k)
t,1:i−1,xt), which translates into saying that the com-

putation of likelihood will preserve the conditional structure
of multivariate distribution. The forward path can be translated
into sampling z

(k−1)
t from f(z

(k−1)
t |xt) and computing via

(22), which can be also regarded as sampling z
(k)
t,i from

f(z
(k)
t,i |z

(k)
t,1:i−1,xt).

Remark 2: The univariate probabilistic forecasting can be
interpreted as a special case of multivariate probabilistic
forecasting. As with (22), we rewrite (20) as

z
(k)
t = τk(z

(k−1)
t ; ck(xt; θ̂ck), θ̂τk).



IEEE TRANSACTIONS ON SUSTAINABLE ENERGY 7

TABLE I: Case study settings.

Type of variable Input feature Forecasting
horizon Type of interdependence Dataset

Case 1 univariate NWP 24 none GEFCom 2014
Case 2 univariate previous values of length 6 1 none NREL, France wind farm
Case 3 multivariate previous values of length 6 6 temporal interdependence France wind farm
Case 4 multivariate previous values of length 6 1 spatial interdependence NREL

B. Base Distribution

The function ϕ(·) described in (18) and (19) is implemented
by an NN of Nϕ layers. Denote the outputs, weights, and bias
of the l-th layer respectively as hϕ,l

t , W ϕ,l, and bϕ,l. The l-th
layer operates as

hϕ,l
t = W ϕ,lhϕ,l−1

t + bϕ,l. (23)

Specially, hϕ,0
t = xt. After each layer, a non-linear element-

wise operator ReLu(·) is followed, i.e.

ReLu(hϕ,l
t,i ) = max(hϕ,l

t,i , 0). (24)

The output layer will yield µ̂t and Σ̂t.

C. Non-affine Transform

In this section, we describe the conditioner and transformer
of the adopted transform.

1) Conditioner: The function ck(·) is set as an additive
model and implemented by an NN. Concretely, it contains two
parts: the function of z

(k)
t,1:i−1 and the function of xt. Then,

ck(·) is described as

ck(z
(k)
t,1:i−1,xt; θ̂ck) = ck,1(z

(k)
t,1:i−1) + ck,2(xt), (25)

where ck,1(·) and ck,2(·) are the two component functions.
ck,2(·) is implemented by an NN, similar to that of ϕ(·).
Specially, as the length of z(k)

t,1:i−1 changes for each dimension,
it is implemented via a model named as MADE [31].

2) Transformer: The main idea of a spline-based NF is to
implement the transform as a monotonic spline [25]. Each
τk is represented as a piece-wise function which contains
M segments specified by M + 1 coordinates (knots). The
knots are obtained from the conditioner ck(·) and denoted as
{(αk,m, βk,m)|m = 0, · · · ,M}. Accordingly, the transformer
τk(·) is split into M segments, each of which is a simple
monotonic function. Every two nearby segments will meet at
internal knots {(αk,m, βk,m)|m = 1, · · · ,M − 1}. Specifi-
cally, we use monotonic rational-quadratic splines, which are
defined by derivatives at internal knots besides the knots. They
are also derived from the conditioner ck(·) and denoted as
{δk,m|m = 1, · · · ,M − 1}. We define

sk,m =
βk,m − βk,m−1

αk,m − αk,m−1
,

ξ(z
(k−1)
t,i ) =

z
(k−1)
t,i − αk,m−1

αk,m − αk,m−1
.

The rational-quadratic function in the m-th bin is expressed
as

rk,m(ξ) =βk,m−1+

(βk,m − βk,m−1)[sk,mξ2 + δk,m−1ξ(1− ξ)]

sk,m + [δk,m + δk,m−1 − 2sk,m]ξ(1− ξ)
,

where ξ represents ξ(z
(k−1)
t,i ). That is,

τk(z
(k−1)
t,i ) = rk,m(ξ), if z

(k−1)
t,i ∈ [αk,m−1, αk,m]. (26)

Specifically, when z
(k−1)
t,i < αk,0 or z

(k−1)
t,i > αk,M , we set

τk(·) as equivalent transform, i.e.,

τk(z
(k−1)
t,i ) = z

(k−1)
t,i , if z

(k−1)
t,i ∈ (−∞, αk,0] ∪ [αk,M ,∞).

(27)
As τk(·) is monotonic, the inverse path can be computed

analytically by solving a quadratic equation, i.e.,

ξ(z
(k−1)
t,i ) =

2C

−B −
√
B2 − 4AC

, (28)

where
A =(βk,m − βk,m−1)(sk,m − δk,m−1)

+ (z
(k)
t,i − βk,m−1)(δk,m + δk,m−1 − 2sk,m),

B =(βk,m − βk,m−1)δk,m−1

− (z
(k)
t,i − βk,m−1)(δk,m + δk,m−1 − 2sk,m),

C = −sk,m(z
(k)
t,i − βk,m−1).

It implicitly defines the inverse function τ−1
k (·).

IV. CASE STUDY

In this paper, we validate the proposed approach in both
univariate cases (Case 1, Case 2) and multivariate cases (Case
3, Case 4), , which cover typical applications in probabilistic
wind power forecasting. Case 1 and case 2 differ in forecast
horizons. Specifically, Case 1 aims at day-ahead forecasting,
whereas Case 2 focuses on forecasting within minutes to
hours. Case 3 aims at characterizing the joint distribution of
wind power values for various lead times, jointly. Case 4 deals
with the joint distribution of wind power values at several
geographical locations. Their settings are described as follows
and summarized in Table I.

1) Case 1: It is a day-ahead PWPF case based on GEF-
Com 2014 data1, where numerical weather predic-
tions (NWPs) are taken as inputs and the predictive PDF
of wind power at each time step is issued as forecast.

1Available at http://blog.drhongtao.com/2017/03/gefcom2014-load-
forecasting-data.html
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2) Case 2: It is a very-short-term PWPF case where previ-
ous values of wind power generation are taken as inputs,
and the predictive PDF of wind power at future time
is issued as forecast. The horizon is set as 1 here for
validation based on NREL2 and France wind farm data3.

3) Case 3: It is a scenario generation case based on France
wind farm data, which considers temporal interdepen-
dence. Specifically, we generate scenarios of future 6
time steps, which can be used in electricity market.

4) Case 4: It is a scenario generation case based on NREL
data, which considers spatial interdependence of multi-
ple sites. The horizon is set as 1. Specifically, we choose
data from 5 nearby wind farms for validation.

As feature selection is not the focus of this paper, in Case 2,
Case 3, and Case 4, the length of input features is determined
by a preliminary test, which is varied from 4 to 24 and em-
pirically set as 6. Certainly, models may be further improved
by finely selecting the features. But it is fair for all models as
they use the same input features.

A. Dataset Description

Three open datasets are used for validation, i.e., data
from GEFCom 2014, NREL, and France wind farm. The
GEFCom 2014 dataset provides NWPs that contain wind
speeds and directions at 10-m and 100-m, and corresponding
normalized wind power generation values. It is an hourly data
set collected in 2012 and 2013, and contains a total of 16,800
samples. We randomly select data from 5 wind farms for
experiments. The France wind farm data and NREL data are
time series. Data from the France wind farm are collected
from four wind turbines, whereas NREL data are generated by
simulation at various sites. The resolution of the France wind
farm data is 10-min, whereas that of the NREL data is 15-
min. Specifically, we select France wind farm data collected in
2013 which contain 52355 samples, and NREL data collected
in 2012 which contain 35040 samples for validation. In each
case, we split 70% of the data as a training set, 10% as a
validation set, and 20% as a test set according to [32].

B. Assessment Metrics

In this paper, reliability diagrams and PI width are used
to assess the reliability and sharpness of univariate predictive
densities. The comprehensive quality of predictive probability
density in univariate cases is assessed by continuous ranked
probability score (CRPS) as suggested by [33]. And, the
quality of predictive probability density in multivariate cases
is assessed by scenarios in terms of energy score (ES) and
variogram score (VS) as suggested by [34], [35], which are
allowed to measure the dependence within scenarios. All of
them are averaged over the whole test data.

1) CRPS: Let Ft(y) denote the CDF of Yt and yt denote
the observation at time t. The CRPS is defined as:

CRPS(Ft, yt) =

∫
y

(Ft(y)− 1(y − yt))
2dy, (29)

2Available at https://www.nrel.gov/grid/wind-toolkit.html
3Available at https://opendata-renewables.engie.com/explore/index

where 1(·) is unit step function, which represents the empirical
CDF of observation.

2) ES: Given a set of scenarios {ỹ(i)
t |i = 1, · · · , S} and

observations yt, the ES is defined as

ES =
1

S

S∑
i=1

∥yt− ỹ
(i)
t ∥2−

1

2S2

S∑
i=1

S∑
j=1

∥ỹ(i)
t − ỹ

(j)
t ∥2, (30)

where ∥ · ∥2 is the d-dimensional Euclidean norm.
3) VS: Let yt,i and ỹt,i respectively denote the i-th dimen-

sion of the observation yt and a scenario ỹt. The VS is defined
as

VS =

d∑
i,j=1

(|yt,i − yt,j |p − E(|ỹt,i − ỹt,j |p))2, (31)

where

E(|ỹt,i − ỹt,j |p) ≈
1

S

S∑
s=1

|ỹ(s)t,i − ỹ
(s)
t,j |

p.

Here we set p as 0.5 as suggested by [35].

C. Benchmarks

1) Univariate Cases: We set both parametric and non-
parametric models as benchmarks. For the parametric ap-
proach, we choose NN models that rely on Gaussian and
logit-normal distributional assumptions, and refer to them as
NN-G and NN-L respectively. They share the same basic NN
structure with the proposed model. An MDN is established,
as it is allowed to model more complex distributions com-
pared to Gaussian distributions. As for the non-parametric
approach, we include two popular distribution-free models,
namely KDE [13] and quantile regression gradient boosting
machine (QRGBM) [9] as benchmarks, since they are proved
effective in the GEFCom 2014. The QRGBM is an ensemble
model that iteratively fits new tree model to minimize the
quantile loss. Concretely, in the KDE, we determine the nearest
100 neighbors of each test sample and use their corresponding
wind power values to estimate the predictive PDF. In addition,
the climatology model is adopted as a naive benchmark model,
which estimates the predictive probability density using all
training data.

2) Multivariate Cases: For multivariate cases, we mainly
use NN-G, and NN-L as benchmark models, since they are
the most popular ones. Besides, the multivariate probabilistic
ensemble (MuPEn) [36] is adopted as a naive benchmark. It
is a generalized model of the complete-history persistence,
which conducts random sampling without replacement from
historical scenarios for each test sample.

D. Implementation Details

1) Univariate Cases: The base distributions of NN-G, NN-
L, and the proposed model are set as Gaussian distributions.
The NN that determines shape parameters of the Gaussian
distributions contains 2 hidden fully connected layers (each
has 512 units). For fairness, we use the same amount of
transforms (concretely, 5 transforms here) for NN-G, NN-L,
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TABLE II: CRPS values in Case 1 (percentage of nominal
capacity).

1 3 5 7 9
Climatology 19.30 18.38 21.36 18.10 18.79
NN-G 9.45 8.98 8.51 7.43 8.48
NN-L 9.33 8.62 8.88 7.40 8.88
QRGBM 9.72 8.57 8.32 7.62 8.27
KDE 10.07 8.76 8.64 7.76 8.56
MDN 9.57 8.58 8.19 7.52 9.22
Proposed
model 9.08 8.35 8.14 7.09 8.28

and the proposed model. All the transforms are implemented
by NNs with 2 hidden fully connected layers, each of which
contains 256 units. Such transforms in the proposed model
are specified as neural spline transforms4, whereas they are
are designed as affine transforms in the NN-G and NN-L.
particularly, for NN-L, we use a sigmoid transform behind
the 5 affine transforms. All hyper-parameters are tuned by
cross validation. The results on condition of different hyper-
parameters are reported in the appendix. The MDN for use
contains 10 Gaussian components, both the weights and shape
parameters of which are estimated by an NN.

2) Multivariate Cases: For multivariate cases, NN-G, NN-
L, and the proposed model use the same NN architecture in
univariate cases. The only difference is that we adopt the auto-
regressive structure here to model the joint probability density.
It is implemented based on a masked auto-encoder [31] that
forces each variable to only rely on the previous variables in
a given order via masks. Besides, we permute variable orders
after each transform, as PDF is permutation-invariant.

NN-G, NN-L, and the proposed model are established via
Pytorch and trained by the Adam optimizer [37]. The learning
rate is determined through a grid search and ultimately set
as 1e-4. It decays 1/3 per 300 iterations. The QRGBM is
implemented based on lightGBM5, the hyperparameters of
which are set according to the winner of GEFCom 2014 [9].
KDE is implemented by using scikit-learn6.

V. RESULTS AND DISCUSSION

A. Case 1

1) CRPS: CRPS values are presented in Table II. It is seen
that all the benchmark models and the proposed model out-
perform climatology model. Amongst the benchmark models,
KDE has slightly worse performance than others, which sug-
gests that it is overly simplified to approximate the conditional
PDF by the density of neighborhood population. Concretely,
the distribution of samples is not homogeneous, which means
that more samples could be taken to better estimate the
conditional PDF if the neighborhood distribution is dense.
However, once the criterion to select neighborhood samples
is fixed, e.g. value of k in k-nearest neighbors here, it cannot

4Code is available at https://github.com/honglinwen/Conditional-
normalizing-flow-for-wind-power-forecasting

5https://lightgbm.readthedocs.io/en/latest/
6https://scikit-learn.org/stable/
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Fig. 6: Illustration of probability density of 100-th sample in
test set.

adaptively adjust the population, on which the conditional PDF
estimation is based. On the contrary, NN-G, NN-L, QRGBM,
MDN, and the proposed model can adaptively estimate the
conditional PDF/quantile by excavating the similarity of input
features via parameterization or entropy measure. It also
suggests that the performance of KDE can be further improved
by carefully designing such population selection criterion and
making use of the similarity of neighborhood samples. The
QRGBM outperforms the NN-G and NN-L in 3/5 of cases
as it is distribution-free. However, the other two cases suggest
that the independent fitting in QRGBM may accumulate errors.
MDN is comparable with NN-G and NN-L, which may be ex-
plained as that it is harder to estimate weights and component
distributions jointly in the MDN compared to NN-G and NN-
L (where only shape parameters are required to be estimated).
The weight of MDN, namely πi(xt) can be interpreted as the
possibility that samples will fall in the i-th mixing distribution.
Then, by increasing the number of distributions to infinite, the
approximation capability will accordingly increase, i.e.,

f(yt|xt) =

∫
π(xt)f(yt;µi(xt),Σi(xt))dπ(xt).

However, MDNs often occur mode collapse and training insta-
bility when the number of mixing components is large or the
dimension of variables is high. In this case, we investigate the
number of mixing components via a grid search, concretely,
3, 10, 20, 50, 100. It turns out that the training of MDN
is unstable even for 20 mixing components. Obviously, the
proposed model exceeds benchmarks in all cases.

The comparison between NN-L and NN-G shows that
the logit-normal transform may deteriorate performance at
times. It reveals that the logit-normal distributional assump-
tion may not hold sometimes, although the realizations of
random variable are forced to fall into the physically defined
interval. We present the predictive probability density of the
proposed model at a selected time in Fig. 6. As illustrated,
the PDF derived by the proposed model are more flexible
than specific families of distributions because the proposed
model is free of any distributional assumptions. In addition, the
proposed model has 1.7 million trainable parameters, which
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TABLE III: CRPS values in Case 2 (percentage of nominal capacity).

Climatology NN-G NN-L QRGBM KDE MDN Proposed
model

France
wind farm 13.40 1.85 1.82 1.92 3.17 2.06 1.83

NREL 21.96 0.25 0.25 0.34 2.58 0.46 0.28
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Fig. 7: Reliability diagram of forecasts at wind farm 1.
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Fig. 8: Width of PI at wind farm 1.

TABLE IV: ES values in Case 3 and Case 4 (percentage of
nominal capacity).

MuPEn NN-G NN-L Proposed
model

Case 3 33.73 9.32 9.20 9.20
Case 4 51.95 2.68 2.64 2.44

are comparable to those of NN-G and NN-L, i.e., 1.6 million
trainable parameters. This means that the proposed model can
flexibly model different wind power distribution characteristics
on condition of predicted wind speeds, with increased but
affordable complexity.

2) Reliability and Sharpness: The reliability diagram and
PI width for wind farm 1 are illustrated in Fig. 7 and Fig. 8.

TABLE V: VS values in Case 3 and Case 4.

MuPEn NN-G NN-L Proposed
model

Case 3 0.3842 0.2711 0.2377 0.2424
Case 4 0.6303 0.0634 0.0524 0.0446

It turns out that QRGBM and the proposed model achieve the
best performance in reliability, which are close to the ideal
case. Strictly speaking, it is unfair to compare a bunch of
independently trained QR models with a single model that
derives the whole distribution, as the computational cost of
QR for a single quantile is much larger. Nevertheless, the
proposed model still achieves comparable reliability, which
confirms its performance. By contrast, the reliability diagrams
of NN-G, NN-L, MDN, and KDE deviate from the ideal to a
certain degree. The deviation of NN-G and NN-L cannot be
totally mitigated, since the families of distribution they define
mismatch the real underlying distribution. Results suggest
that the superiority of the proposed model goes beyond the
distribution-free property compared to the QR and KDE-based
methods, by offering an efficient and continuous conditional
modeling approach.

Fig. 8 demonstrates that the proposed model provides the
shortest PI at all nominal levels. However, the performance of
NN-G in width of PI is comparable to that of the proposed
model, whereas the PI width of NN-L is much wider. For
illustration, we present 90% PI of the NN-G, proposed model,
and NN-L of 10 days in the top, middle, and bottom subplots
of Fig. 9. As shown, the PIs of NN-G violate the bounds of
wind power to a large extent, revealing probability leakage
issue, while PIs of the proposed model and NN-L are more
realistic. Besides, it is demonstrated that PIs of NN-L are
sometimes unnecessarily wide. For example, between 200-
h and 250-h, the upper bound of NN-L is larger than that
of NN-G and the proposed model. Indeed, both the NN-L
and the proposed model can be considered as models derived
from the NN-G by applying transforms. Indeed, the logit-
normal transform in the NN-L applies to all NWP conditions
indifferently, whereas the spline transform of the proposed
model is specified by NWPs. This explains the sacrifice of
NN-L in PI width, which is a side-effect when forcing the
realizations within the boundaries.

B. Case 2

We present the CRPS values of Case 2 in Table III. As
with Case 1, all models are superior to the climatology model.
The performance of NN-G, NN-L, QRGBM, and the proposed
model are demonstrated to be comparable. The gap of perfor-
mance between the KDE and others is enlarged compared to
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Fig. 9: 90% PI of the proposed model of 10 days at wind farm 1, top: NN-G, middle: proposed, bottom: NN-L.

TABLE VI: The training time of models in Case 1 (seconds).

Models NN-G NN-L QRGBM KDE MDN Proposed
Time 56 56 44 14 63 78

Case 1, because of higher dimension of input features which
raises issues for k-nearest neighbors. Comparing the results
of KDE, QRGBM, MDN, and the proposed model with the
results of NN-G and NN-L, we can infer that the Gaussian
and logit-normal distributional assumptions are fairly adequate
in very-short term PWPF. This may be due to the fact that
the structure of temporal interdependence over a short period
of time is simpler than the interdependence spanning several
hours.

C. Case 3 and Case 4

The ES and VS values are presented in Table IV and
Table V. All of NN-G, NN-L, and the proposed model
outperform MuPEn, since the MuPEn draws samples from
the empirical unconditional distribution whereas other models
draws samples from the estimated conditional distributions.
Except for the MuPEn, the ES and VS values in Case 3 are
larger than those in Case 4, which indicates larger uncertainty
in Case 3. This is is caused by the increase in generation un-
certainty as forecasting horizon increases. In both cases, NN-
L and the proposed model exceed NN-G, which suggests the
limited capability of the Gaussian distributional assumption in
complex and high dimensional cases. Besides, the performance
of NN-L and the proposed model is comparable in Case 3, but
differs in Case 4, which suggests that spatial interdependence
is more complex.

D. Discussion on the Base Distribution

Theoretically, the base distribution modeled by G can be
set as any distribution. By learning the transforms, one can
still obtain the estimation of desired distribution. But it means
that one needs to estimate the transforms in a relatively
large space, if the base distribution is considerably different
from the underlying distribution. For illustration, we consider
the wind farm 1 in Case 1 and set the base distribution
as a standard Normal distribution N (0, 1). In theory, this
will not make a lot differences in estimated distributions,
since the standard Normal distribution can be transformed
to any Gaussian distribution by using an affine transform.
But compared to the proposed model, this setting implies a
more complex task, i.e., the flow model requires to estimate
such affine transform besides the non-affine transform. In the
experiments, the CRPS value under the condition of standard
Normal base distribution turns out as 14.9, which is much
larger than that of the proposed model, i.e., 9.22. In other
words, the estimation of base distribution if of significance in
the view of practice.

E. Discussion on Transforms

In this paper, we set the transformers as rational-quadratic
splines. In fact, other splines could also be considered as long
as the transforms are invertible, for instance linear and cubic
splines [38], [39]. However, it is hard to compute the inverse
path of high-degree spline based transforms. As suggested by
[25], calculating the inverse path of a cubic spline is prone
to numerical instability. On the other hand, it is required that
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transforms are flexible enough, which translates into saying
that there is a trade-off between complexity and flexibility.
The adopted rational-quadratic spline based flows are more
flexible than linear and quadratic spline based flows. We use
linear and cubic spline based transforms for a comparative
study in Case 1 and Case 3. The CRPS values for linear and
cubic spline based CNF models on wind farm 1 in Case 1 are
respectively 9.34 and 9.11. The ES values for linear and cubic
spline based CNF models in Case 3 are respectively 9.28 and
9.22. That is, the performance of the rational-quadratic based
flow is superior to that of the linear spline based flow and
comparable to the cubic spline based flow. Certainly, more
advanced normalizing flow models could be used.

F. Distribution-free vs Distributional Assumption

In the case study, QRGBM, KDE, and the proposed model
are distribution-free, whereas NN-G and NN-L rely on dis-
tributional assumptions. Compared to NN-G and NN-L, the
proposed model has increased but affordable complexity due
to its spline operation. Meanwhile, the increased complexity
enables the proposed model to obtain different wind power
distributions on condition of different predicted wind speeds.
Compared to QRGBM and KDE, the proposed model is
superior in efficiently modeling whole conditional PDFs. In
addition, case studies show that distribution-free methods are
not overwhelmingly superior to models with distributional
assumptions. Concretely, NN-G and NN-L rival QRGBM and
KDE in several cases. And in Case 2, the performance of NN-
L is comparable to that of the proposed model, which means
these distributional assumptions are adequate in very-short-
term PWPF. But when it comes to applications with more
uncertainty and more complex interdependence, the proposed
approach always achieves a satisfactory performance with an
acceptable computational cost. Indeed, it has been reported in
[18] that the distribution-free integration-based NF model is
comparable to an affine NF model that is equivalent to NN-
G. We infer that it is resulted from the difficulty in training
the integration-based NF. Intuitively, it will take more effort
to find the desired transform in a larger function space. This
also reveals the trade-off between complexity and flexibility
in modeling distributions.

G. Training Time

The training time of all models in Case 1 is presented in
Table VI, we report the training time of NN-based models in
1000 iterations and 199 independent quantiles of QRGBM. It
shows that the training time of the proposed model is compa-
rable to that of commonly used NN-G, which is affordable. In
general, the training time of the proposed model is governed
by the number of transforms and the number of hidden units.
With more transforms and hidden units, the training time will
increase. However, it still costs time to generate scenarios for
high-dimensional multivariate forecasting.

VI. CONCLUSIONS

The approach for probabilistic wind power forecasting de-
scribed in this paper, based on conditional spline normalizing

TABLE VII: CRPS under different steps of transforms (per-
centage of nominal capacity).

Number of
Transforms 1 2 3 4 5

CRPS 9.93 9.51 9.23 9.25 9.22

TABLE VIII: CRPS under different sizes of hidden units
(percentage of nominal capacity).

Number of
Units 64 256 512

CRPS 9.22 9.08 9.37

TABLE IX: CRPS under different number of knots (percentage
of nominal capacity).

Knots 5 10 20 50
CRPS 9.25 9.08 9.19 9.20

flow, offers a number of advantages with respect to the exist-
ing. It directly estimates the conditional probability density
and does not require any assumption on the distributions
involved. In addition, it is applicable to both univariate and
multivariate PWPF, with high efficiency in terms of both
modeling and computing. Our case-study applications based
on open datasets confirmed the interest of the approach and
its wide applicability for wind power applications.

Parameters are assumed fixed in this paper; therefore it
is still required to explore how to estimate the parameters
in an online learning fashion. Besides, the time for scenario
generation is costly when dimension increases, so we will
focus on finding more efficient methods in the future.

APPENDIX

A. Selection on Hyperparameters

To empirically determine the hyperparameters, we conduct
a preliminary test to validate the influence of number of
transforms, number of units, and number of knots by studying
variants of Case 1. Specifically, we take wind farm 1 as an
example, and present results of several case settings.

1) Number of Transforms: In this case, we set the number
of hidden units in transform as 64, the number of knots as
10, and vary the number of transforms from 1 to 5. The
corresponding results are shown in Table VII. It can be seen
that the CRPS is relatively larger when we use only few
transforms. Consequently, the model is small, which results
in limited capability of fitting ultimate transform and shape
parameter function of base distribution. After reaching at 3
transforms, the gain of increasing transforms is relatively low,
which suggest the capability is enough. Besides, increasing
transforms means increasing layers of deep neural network,
whose training procedure might become difficult when the
model is considerably deep.

2) Number of Hidden Units: Here we fix the number of
transforms as 5, the number of knots as 10, and adjust the
number of hidden units as 64, 256, and 512. Results are
presented in Table VIII. It shows that the fitting capability of
NN in each transform is influenced by the number of hidden
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units. The capability is limited when the number of hidden
units is few. But it might overfit the data if the number of
hidden units is considerable.

3) Number of Knots: In this case, we fix the number of
layers as 5 and the number of hidden units as 256, and look
into the influence of knots by varying the number. We set it
as 5, 10, 20, and 50 respectively, whose results are shown in
Table IX. As we increase the number of knots, the CRPS first
decreases and then increases.
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