
P
os
te
d
on

5
N
ov

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
68
85
00
3.
v
2
—

e-
P
ri
n
ts

p
o
st
ed

on
T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Pro-Edge: A Programmable Edge Network Architecture for

Industrial Internet of Things

Nurzaman Ahmed 1,1, Mehbub Alam 2, Rakesh Matam 2, Ferdous Ahmed Barbhuiya 2, and
Mithun Mukherjee 2

1Indian Institute of Science
2Affiliation not available

November 8, 2023

Abstract

Internet of Things (IoT) with edge computation enhances efficiency, safety, and availability of an industrial automation system.

However, there is a continued effort to increase the reliability of the system with minimal downtime. This can be achieved through

a modular, re-configurable, and integrable system design approach. In this paper, we propose Pro-Edge, a programmable edge

network to reconfigure different services associated with industrial applications and networks. Pro-Edge employs programmable

layers at the edge for re-configuring the sensor/actuator network and applications. The lowermost layer allows to reconfigure

the communication related parameters and the middle layer consists of a Software-Defined Network (SDN) controller that can

dynamically program different modules, handling actuation decisions from the edge. An interfacing protocol between the layers

is proposed to provide reliability by considering the optimal configuration parameters among the layers. As a top-layer, a

priority forwarding mechanism is designed for SDN core communication in case the sensor and actuator are in different edges.

Pro-Edge significantly improves the actuation-latency and is highly energy efficient compared to the existing state-of-the-art.

1

1

Pro-Edge: A Programmable Edge Network
Architecture for Industrial Internet of Things

Mehbub Alam, Student Member, IEEE, Nurzaman Ahmed, Member, IEEE, Rakesh Matam, Member, IEEE,
Mithun Mukherjee, Senior Member, IEEE, and Ferdous Ahmed Barbhuiya, Member, IEEE

Abstract—Internet of Things (IoT) with edge computation
enhances efficiency, safety, and availability of an industrial au-
tomation system. However, there is a continued effort to increase
the reliability of the system with minimal downtime. This can
be achieved through a modular, re-configurable, and integrable
system design approach. In this paper, we propose Pro-Edge,
a programmable edge network to reconfigure different services
associated with industrial applications and networks. Pro-Edge
employs programmable layers at the edge for re-configuring the
sensor/actuator network and applications. The lowermost layer
allows to reconfigure the communication related parameters and
the middle layer consists of a Software-Defined Network (SDN)
controller that can dynamically program different modules,
handling actuation decisions from the edge. An interfacing
protocol between the layers is proposed to provide reliability
by considering the optimal configuration parameters among
the layers. As a top-layer, a priority forwarding mechanism is
designed for SDN core communication in case the sensor and
actuator are in different edges. Pro-Edge significantly improves
the actuation-latency and is highly energy efficient compared to
the existing state-of-the-art.

Index Terms—Edge computing, SDN, Fog Computing, Internet
of Things, Programmable Edge, Industrial IoT, WSAN.

I. INTRODUCTION

Internet of Things (IoT) enabled industrial automation
system involves control-loop communication [1] where an
actuator can be controlled wirelessly. A fractional violation
of designated constraints (in terms of latency or availability)
in such an automation and control system can result in
performance drop or even system outage. Applications re-
lated to machine control, system health, and electrical control
systems popularly use IEEE 802.11/802.15.4-based wireless
communication. Further, to ensure the Quality of Service
(QoS) requirements, SDN can be employed to meet critical
application needs. It separates the network into data and
control planes for managing network resources precisely [2].
However, the current SDN based IoT architectures have no
special measures for control-loop traffic, which if considered is
shown to increase reliability, safety, and uptime of an industrial
automation system. In this paper, we propose Pro-Edge, a

M. Alam, R. Matam, and F. A. Barbhuiya are with the Department of
Computer Science & Engineering, Indian Institute of Information Technology
Guwahati, India, 781015.

N. Ahmed is with the Department of Computer Science & Engineering,
Indian Institute of Technology Kharagpur, India, 721302.

M. Mukherjee is with School of Artificial Intelligence, Nanjing University
of Information Science and Technology, China. E-mail: mehbub@iiitg.ac.in,
nurzaman@cse.iitkgp.ac.in, rakesh@iiitg.ac.in, m.mukherjee@ieee.org, fer-
dous@iiitg.ac.in

Reconfigurable Application Modules
Interfacing and Translation

Reconfigurable Network Parameters

Application Modules for Automation

Network Configurations

Fig. 1: Overview of the proposed scheme

programmable edge network to dynamically reconfigure differ-
ent services associated with applications and networks. Fig. 1
shows the overview of the proposed solution that considers a
programmable approach to reconfigure applications modules
(e.g., different actuation policies) and wireless/wired networks
(e.g., channels, routing, topology). The programmability fea-
ture at the edge and forwarding devices increases the uptime
and reduces the actuation time in control-loop communication.

A. Motivations

IoT systems are widely adopted to automate industrial pro-
cesses, especially to deal with time-sensitive applications [3].
Typically, latency related challenges can be dealt using SDN.
A large number of gateway devices with computing and
storage capabilities are being deployed for controlling and
provisioning of network infrastructure in IoT. Such gateway
devices on the edge can not only provide computing facilities
but also support SDN interfacing for enabling core network
connectivity. The edge performance can be enhanced by
adopting the following:
• Computing on the cloud and edge enable real-time re-

sponses, cost reduction, and ensuring the security of data
and systems [4], [5].

• A large number of low-cost computing devices can be
used at the edge for localized processing and decision
making.

• Multiple wireless sensor and actuator networks (WSANs)
use different gateways to forward their traffic-flows to
the SDN core network. Different edge nodes are also

2

part of the network view available at the SDN controller.
Considering this, an edge controller along with an SDN
controller can dynamically program the edge and WSAN
for reliable and low latency industrial IoT operations.

• The resources at the edge are crucial for dynamically
re-configuring the application servers according to the
applicants’ requested services. Moreover, reconfiguration
of network parameters such as channels, and routing are
essential for reliable networking.

• For adopting intelligence techniques at the edge, pro-
grammability can dynamically tailor a trained module as
per requirements.

A modular, re-configurable and integrable network archi-
tecture for IIoT requires to adopt the above mention technolo-
gies and solutions. Existing works in this direction present
various strategies to enhance different performance metrics,
but are mostly application specific. In other words, most of
the approaches lack flexibility. To increase the re-usability of
network resources and flexibility of network configurations,
a programmable edge platform is important. Network virtu-
alisation and slicing allows a single physical network to be
logically divided into distinct service levels. These mecha-
nisms facilitate the network to support diverse requirements
of different IoT applications [6]. However, a platform is
required to efficiently program different communication and
computational parameters.

B. Contributions

To overcome the challenges of reliable and low latency
actuation, the key contributions of this work are as follows:
• We propose a programmable edge to reconfigure different

services associated with applications and networks. Our
solution creates two programmable layers at the edge
for reconfiguring the sensor/actuator/core network and
applications, respectively.

• A QoS-aware data forwarding mechanism is proposed for
SDN-based communication in case the sensor and the
actuator are in different networks.

• We propose a task programming approach to solve the
issue of high latency during offloading in the case if the
task module is not available in the edge node.

II. RELATED WORKS

In the industrial IoT (IIoT) paradigm about the impact of
edge computing, a lot of relevant researches can be found in
the literature along with the advancements based on learning,
prediction, and Blockchain [7]–[10]. In this context, intelligent
and accurate resource management by Artificial Intelligence
(AI) has a direction which also challenging towards the auto-
mated platform. Moreover, resource management is a crucial
factor for IIoT. The works in [11]–[13] have modelled different
strategies using AI to solved resource management issues up
to a certain extent.

Mahmud et al. [14] proposed a re-configuration mechanism
in IoT through programmability feature using an SDN-based
architecture to achieve improved outcomes considering a large-
scale IoT scenario. Their proposed IoT virtualization technique

(Flow-sensor) aims to reach the sensor nodes when some of the
nodes are out of state and inactive for a longer period.Costanzo
et al. [15] proposed an SDN-enabled IoT architecture for WSN
(SDWN) in order to simplify the network configuration and
resource management of the system. The authors emphasized
SDN integration on WSN networks, mostly its impact on
wireless infrastructure-less networking.

When task type changes , it is not always feasible to pick up
the devices physically and program them again for different
tasks; re-programmability and policy changing technique is
needed as a solution. The authors in [16], proposed a scheme
to address the issues of network management and policy
changing mechanism. They adopted an SDN-based solution
named Software-Defined Wireless Sensor Network (SD-WSN)
for reprogramming features in the network topology. Sensor
OF protocol which is extended from OpenFlow (OF), is used
in their scheme.

To integrate IPv6 over low-power wireless personal area
networks (6LoWPAN) with SDN core networks, Das et al.
[17] proposed a mechanism that tackles the issues faces in
IoT. In this scheme, the authors highlighted the challenges of
high latency, heterogeneity, and packet loss. In [18] and [19],
the authors designed two SDN-based wireless sensor network
management systems for the purpose of device and network
management. For Soft-WSN in [18], without considering net-
work delay and control overhead in the scheme arise questions
of efficiency of the system.

Adopting programmable network techniques using SDN and
network function virtualization (NFV) for mobile traffic in IoT
networks, the authors in [20] proposed an SD-NFV scheme to
reduce the end-to-end delay and improve energy consumption
at the sensor layer devices. A detailed testbed implementation
of SD-NVF is provided in support of the claim that says
improvements of 5%–14% in the network data delivery ratio
and 70% in the sustainability of 6LoWPAN node operational
comparing to traditional approaches. The testbed consists of
two nodes, namely Simple 6LoWPAN and Advance nodes,
along with a border gateway. The workflow of the architecture
is as follows– upon collecting the sensor data, it forwards to
the advanced node; then, from the advanced node, it is further
transmitted to the border gateway. The functionalities of the
border gateway device includes the job of the SDN controller
and coordinator of the network.
µSDN and SD-6LoWPAN are the two architecture proposed

in [21], and [22] aiming for flexible network management
and also to achieve low control overhead in the network.
Implementing both the schemes in Contiki operating system,
the parameter considered in µSDN are latency, energy, and
packet delivery, whereas SD-6LoWPAN is measured in terms
of average latency and overhead control service. However,
the drawback of these two schemes is that it takes higher
processing delay due to the controller adopter and discovery
module. Due to specialized agents, it is not an optimal adapt-
able solution in any network.The open-source implementation
platforms for WSN-based SDN architectures are presented in
literature such as TinySDN [23], [24] , CoAP-SDAN [25] etc.

In [26], Rahman et al. proposed a mechanism to dynami-
cally reconfigurable edge nodes to provide different services

3

Sensor and Actuator Network

Cloud

Edge

A
pp

li
ca

ti
on

s

Gateway
RPL/IPv6/IPv4/..

CoAP/MQTT/...

Machines

Factory

Grid

Sensors Actuators Machine

Factory

SDN and Edge
Controller

SDN
Core Network

IEEE 802.15.4

IEEE 802.15.4e

IEEE 802.11ah

Fig. 2: Pro-Edge Network Architecture and Protocol Stack

in an Industrial IoT scenario. The authors in [27] developed
a model for adaptive configuration to host various services
at the fog node to provide service demands of sensor nodes
at different times. Using edge computing to provide IoT
security, Hsu et al. [28] introduced a reconfigurable security
model that uses a neighbouring edge device that has strong
computation capability. Aiming for Edge computing utilization
by the reconfiguring computing system, a micro-architecture
is implemented by Soliman et al. [29].

TABLE I: Summary of existing works

Paper (Ref.) Priority Reconfigure
WSAN

Reconfigure
App Module

Core
Network

Industry

Soliman et. al [29] 7 3 7 3 7
Rahman et. al [26] 7 3 3 7 7
Chen et.al [27] 7 3 7 7 3
Hsu et. al [28] 3 3 7 7 7

Pro-Edge 3 3 3 3 3

The existing literature on Industrial IoT addresses the issues
of scheduling for low latency and reliable communications.
However, they do not consider the strict time requirements
of sensing and actuating traffic. Also, the proposed solutions
lack centralized control over multiple wireless and backend
communication for monitoring such traffic flows throughout
the network. These solutions lack the programmability of
computation and communication for rendering flexibility in
different edge computing operations. A summary of the exist-
ing works, as compared to Pro-Edge, is presented in Table I.

III. PRO-EDGE: A PROGRAMMABLE EDGE NETWORK FOR
INDUSTRIAL IOT

Herein, we propose a programmable edge network for
reducing the actuation latency and improving the reliability
in terms of packet delivery and availability of actuation
policy. Automation related decisions are processed by a set
of configurable application modules and the related network
configurations (e.g., WSAN and SDN Core) are programmed
dynamically by the SDN and edge controller; we call it a
Pro-Edge Controller. In case if sensor and actuator are from
different WSAN networks, traffic flows are forwarded to the
destined edge nodes using the OpenFlow protocol.

A. System Model

Fig. 2 gives an overview of the proposed network architec-
ture. The edge nodes are equipped with a programmable server
close to the edge device. The proposed system considers a set
of sensors/actuator nodes S = {S1, S2, .. · · ·Sn}, where n is
the maximum number of devices deployed in an industry field.
There can be more than one sensor or actuator in a single
device, and a single device may contain a sensor and actuator
together. A set of gateway devices G = {G1, G2, · · · , Gm},
where m is the maximum number of gateway devices, are
responsible for providing network infrastructure to the sensor
and actuator node and interfacing to the SDN core network.
The SDN core network has a set of forwarding nodes C =
{C1, C2, · · · , Cl}, where l is the maximum number of core
network devices. The gateway and core devices are controlled
by an SDN controller named Pro − Edge controller. The
Pro − Edge controller programs the devices for dynamic
data forwarding and actuation policy implementation. We keep
a set of actuation policies A = {A1, A2, · · ·Ay}, where y is
the maximum number of policies, in an edge module. The
edge modules are installed over the gateway devices. Also,
the controller can also program the configurable parameters
such as sleep cycle, topology, etc., for the WSAN.

B. Edge Layer for Sensor and Actuator Network

An edge node handles the reconfiguration of an existing task
or configuring a new task, related to WSAN. This, also helps
for effectively routing data to a destination. Other network and
device configurations such as channels, device sleep cycles,
power control, etc., are considered for dynamic programming
by the controller. The proposed layer support WSANs such as
6LoWPAN under the control of the 6LBR and TCP/IP under
WiFi-AP.

C. Edge Layer for Industrial Applications

The SDN controller functionality is designed to manage
edge nodes that are responsible for executing a set of actuation
policies, using application programming interfaces (APIs). The
controller can configure different parameters related to a set
of actuation policies based on a request from the edge node.
The proposed programmability allows creating different slices
of functions over the same physical network. For example, a
set of threshold values, aEi = {a1, a2, · · · , at}, where t is the
maximum threshold, are maintained for an edge node i. This
enables the edge nodes to execute certain actuation decisions
based on threshold values. The controller can dynamically alter
these criteria in the same network.

Provisioning the limited resources at the edge, every end-
user task cannot be processed by the connected edge devices.
In such a scenario, the current status of each edge device is
used to determine whether to accept or reject task. To compute
the status, we consider some of the main parameters such as
next availability of service time for delay-sensitive tasks, CPU
utilization of the edge device, remaining energy, availability of
RAM and storage. The status of each edge node is calculated
as:

Fi = {F c
i , F

e
i , F

m
i , F

s
i }, (1)

4

where F c
i , F

e
i , F

m
i and F s

i are ith edge device’s status
of time of availability and computation capacity, energy,
memory (RAM) and storage, respectively. We calculate these
parameters to obtain the status of an edge device as

1) Time and CPU utilization status: To find next availabil-
ity of service time, it needs to take two factors into
consideration, i.e., total computation time of a task and
time required by tasks waiting at the queue, which can
be calculated as:

T avl
i = T c

i,k +

k∈K∑
QK

TQK
, (2)

where T c
i,k and TQK

are computation time required at
edge node i for a task k and the sum of time required to
compute all the tasks holding by the queue, respectively.
As a result the total computation time is calculated as

T c
i,k =

V k
data∑pk

max

p=1k
rik,p

, (3)

where pkmax denotes the maximum number of periods
that the task k can hold. Whereas, rik,p denotes allocated
computation resource at the ith edge node for the task,
k during the time period, p. And V k

data is the input data
for the task, k.

pkmax =
⌊Dk

Xi

⌋
, (4)

Dk and Xi represent the delay for task k and the
constant time of each period p, respectively. Note that
T c
i,k ∝ V k

data and T c
i,k ∝ 1

rik,p

, it derives that if volume
gets increased, the computation time also gets increased.
But with a cost of increased allocated resources, the
computation time decreases. We calculate Rk

need in Eq.
5 that finds the required resource for task k in million
instructions per second (MIPS). For processing 1-bit
data of image, i.e., the processed data Rk

need MIPS
needed.

Rk
need = Iik.V

k
data, (5)

After obtaining the required resource for a task, k a
condition arises that we should allocate a little more
resources for the task. This condition can be seen in Eq.
6 as below:

Rk
need ≤

p=1∑
pk

rik,p, (6)

Moreover, the total resources allocated for ith node is
greater than the resource needed by all the tasks at i for
the time period p is:∑

k∈Kj
p

rik,p ≤ Ri, (7)

Finally, we calculate the remaining computation time at
ith node as:∑
T,pt

max

Ri(k) =
∑

T,pt
max

(
Rk

need −
p′k∑
p=1

rik,p

)
= F c

i , (8)

where,
∑

Tpt
max

Ri(k) defines the remaining
computation resource for all the task need to be
completed before the time period ptmax. Here

∑p′k
p=1 r

i
k,p

is the resource allocated, p′k is the number of period
that the task k has run and Rk

need is the resource needed
as calculated in Eq. 5.

2) Energy status: We calculate the amount of energy con-
sumed at different states for a task as:

Ei
total = Ei

tx + Ej
rx + Ei

c + Ei
id + Ei

sl, (9)

where Ei
tx, E

j
rx, E

i
c, E

i
id and Ei

sl represent the amount
of energy consumption at transmission, reception, com-
putation, idle and sleeping state, respectively. Energy
consumed at each computation state can be calculated
as

Ei
∂ = ωi

∂ρ
i
∂ , (10)

where, ωi
∂ and ρi∂ are the power need, and the total time

needed by the edge node i in state ∂. To calculate the
remaining energy at an edge node i, we assume that the
edge node has Einitial Joule amount of energy at the
beginning. We find the remaining energy as

Ei
rem(p) = Einitial − Ei

∂(p) = F e
i , (11)

here, Ei
∂(p) is the total amount of consumed energy that

is calculated as

Ei
∂(p) =

p∑
P=0

Ei
total(P), (12)

here p ∈ P is a specific time quantum.

3) Memory status: We calculate the amount of memory
needed by a task k as

M i
need =M i,k1

need +

km∑
k2

M i
Queue(K), (13)

here, M i,k1

need is the memory amount needed for storing
instructions of the code/program in the RAM by the
task k1 which is currently available in ith edge node
for execution and K = {k1, k2, k3, ..., km}, where m
is the maximum number of tasks. Also, k1 is the task
currently in execution state and rest are the tasks are in
the task queue of ith edge node. So,

∑km

k2
M i

Queue(K)
represents the memory needed for queuing tasks in the
RAM. Now, we calculate the remaining memory as

M i
Rem =M i

initial −M i
need = Fm

i , (14)

where M i
initial is the edge nodes dedicated memory.

5

4) Storage Status: Similarly, for memory status calculation,
we first calculate the storage needed by a task k at ith

edge node as

Si,p
need = Si,p

k + Si,p
data + Si,p

result = F s
i , (15)

here, Si,p
k is the required storage size for task k to

complete in time period p, Si,p
data is the required storage

size to store the sensed data which need to be processed
for time period p and Si,p

result is the required storage size
for storing results of processed data for time period p.
Now, in Eq. 16, we find the remaining storage status of
the edge node i as

Si
Rem = Si

initial − S
i,p
need, (16)

here Si
initial is the edge nodes dedicated storage capacity

and Si,p
need is the total amount of storage utilizing by ith

edge node.
Algorithm 1 presents the proposed programming operation for
the module. The controller maintains a list of modules and
their priority. We assume that the required library for all the
tasks is already available in the targeted edge node. Whenever
there is a requirement of programming (i.e., installing or
configuring) a particular module, the controller first checks the
priority. Accordingly, the most important task to the controller
is programmed initially. However, to provide fairness for
failed programmability, the associated task is uplifted with an
increment in its priority value.

Algorithm 1: Application Module Programming
Inputs: A set of programmable parameters,

P = {P1, P2, P3, · · · , Pz}
Output: Priority and fairness-based programmability

1 for Request of programming do
2 Check parameter(s) and to which module it/they

belong(s) to
3 Check priority of the module’s policy
4 Send a message to edge node requesting

programming
5 if Positive acknowledgement received then
6 Create API with selected P
7 Start programming module with highest

priority pm
8 else if Negative acknowledgement received then
9 pm = pm + 1

10 else
11 Try sending a message again after time τ

D. Priority-aware Flow-placement

We redefined a flow in the network considering the re-
sources and introduced a new field in the flow table and header
to identify the proposed flow type. The packet IN header is
modified to add resource version and name within the data
field. Once the resource name is known to the controller, the

Edge
Core Network

C
on

tr
ol

le
r

a. Sensor and Actuator
are in same network

Edge

Edge

EdgeEdge

b. Sensors and Actuator are
in different network

Fig. 3: Sensor and actuator placement in WSAN

associated flow-rules are dynamically placed at the requested
device. The proposed flow placement scheme prioritizes the
traffic dealing with the programmability of resources, as
depicted in Algorithm 2. The resource manager module in the
controller keeps a record of all essential available resources
for making future programming decisions.

Algorithm 2: Automation-intensive priority flow
placement
Inputs: Flows with priority
Output: Flow placement and forwarding

1 Classify flows with decreasing priority as per the
resources

2 if Automation-related packet received then
3 Check priority value in the table
4 if Multiple priority flows detected then
5 Process flow with highest priority value

6 else
7 Process flow as first come, first serve basis

8 else
9 Continue default actions

E. Sensor-Actuator Delay Model: Actuation Latency

We present an analysis of communication delay between a
sensor and its associated actuator device. The various factors
that contribute to this delay are contention at the sensor,
propagation delay, processing delay, and the time taken at the
actuator. Moreover, due to higher priority traffic (for some of
the critical applications), a significant delay can be observed
at a lower priority traffic caused by the channel contention and
admission control.

A Raspberry-Pi-4 device with a quad-core processor is used
to analyze multi-processor CPU Scheduling and to measure
transmission latency. The network is setup such that a trans-
mission is facilitated on a channel at a specific time slot that
is chosen after contention. For independent flows in a multi-
processor system, the time units in the CPU for processing a

6

flow and the particular time slot where a packet transmission
occurs are considered equivalent. We map a processor to
each deployed channel as many-to-many cardinality. Tasks
are executed on a multiprocessor; each flow is mapped to a
task. Based on the quad-core processor of the device utilised
in our test-bed, we make the following analysis for response
time: only one transmission is allowed in each channel at each
time slot, provisioning that WSAN does not allow concurrent
transmission.

For m number of channels are scheduled for flow FL =
{FL1, FL2, FL3, ..., FLn}. Each flow is calculated as:

FLx = (Dx, Px, Sx, Rx, Cx), (17)

where Dx, Px, Sx, Rx and Cx are deadline, period, start
time, route and transmission count, respectively. All the links
between the senor to actuator at Sx for communication
medium is defined by the route Rx. We assume at most
x (re)transmissions are scheduled for one link in order to
improve reliability and we obtain Cx=|Rx| ×. Px, i refers
to ith packet of FLx. We calculate end-to-end delay for the
packet Px,i as:

Dx,i = Cf
d + Ct

x,i + Cx, (18)

here Cf
d and Ct

x,i denotes conflict delay and contention delay,
respectively.

Further, to evaluate the latency in complete task execution,
the following two cases are considered:

1) Both sensor and actuator are in the same WSAN.
2) Sensor and actuator are in the different WSAN.

These instances are elaborated in Fig. 3. Total delay in both
the scenarios is depicted by equation 19 and equation 20,
respectively.

δ1 = δcontsn + δs−eprop + δprocedge + δe−aprop + δact (19)

δ2 = δcontsn + δs−eprop + δprocedge + δcore + δe−aprop + δact (20)

Here, δcontsn , δs−eprop, δ
proc
edge, δ

e−a
prop and δact represent different

delays i.e., delay representing contention at sensor device,
delay in propagation from sensor to edge device, processing
delay at the edge, propagation delay from edge to actuator
device and finally delay at the actuator device, respectively.

IV. PERFORMANCE EVALUATION

The performance of the proposed scheme is analyzed
through simulations and on a test-bed. The details of the
parameters related to these experiments are mentioned in
Table II. We consider existing edge and cloud-based actuation
control solutions as benchmarks for comparing with Pro-Edge.

A. Experimental Setup

An experimental test-bed is setup as shown in Fig. 4.
We consider an industrial automation scenario, where motion
and ultrasonic sensors are used to monitor the movement
and distance of automated robots. We consider three differ-
ent types of tasks: (i) to check the movements of a robot

TABLE II: System and other parameters used in the perfor-
mance analysis

Testbed Parameter Value
No. of Edge nodes 6
No. of Controller 1 (POX) [30]
APIs Python/C-Socket API, Openflow [31]
Switch Platform OVS [32]
Edge and Gateway Device RaspberryPi
End device ESP8266
Sensors and Actuator Motion, Ultrasonic, and LED
Simulation Parameter Value
Simulator tool WorkflowSim [33] and iFogSim [34]
of clients (Max) 160
of edge nodes (Max) 60
of Tasks 20
Cloud RAM 49150 Mb
Edge node RAM 4096 Mb
Terminal Node RAM 1024 Mb
Cloud CPU Cycle 5000 mips
Edge CPU Cycle 3000 mips
Client node CPU Cycle 700 mips
Cloud bandwidth (100(up), 10000(down))Mbps
Edge node bandwidth (10000(up), 10000(down))Mbps
Client node bandwidth (10000(up), 10000(down))Mbps
Programmable Parameter Value
Example Modules Sensing and Actuating
Decision Parameters Policies, Threshold values, Variables
SDN Core Parameters Flow - Add, Modify, Modify-Strict,

Delete, Delete Strict
WSAN Parameters Channels, Slots, Superframe, Paths

(RoboMovement), (ii) to check how far the machine hands are
(RoboDistance), (iii) to generate an alert based on a threshold
value (RoboAlert). All these tasks are run by the nearest
Pro-Edge node (one of the Raspberry Pi devices). Multiple
requests for such tasks are generated from multiple clients.
At first, the ultrasonic and motion sensor collect the data
that is programmed through the mote (ESP8266); the mote
is connected to an edge node with an access point using
the constrained application protocol (CoAP). The edge node
compares the data with a pre-defined threshold and makes an
actuating decision. Concurrently, it also checks if the actuator
is connected to it. If it is, then it immediately implements
the actuation decision. Otherwise, it requests the Pro-Edge
controller to forward the data to the targeted edge node. The
Pro-Edge controller uses the core network (nodes) to forward
the actuation related data to the destination edge node. Lastly,
if the actuation policy is to be modified/changed, the Pro-edge
controller uses an edge reconfiguration interface to program
the task.

B. Performance Metrics

The following metrics are used to evaluate the performance
of the proposed programmable network.

1) Actuation Time: It is the time difference between sens-
ing and actuation. The edge node uses the sensed data
for decision making and actuation.

2) Network Usage: It is the total network bandwidth used
for data and task-related communication. The proposed
scheme forwards data and control packets throughout
network.

7

C
or

e
N

od
es

Access Point

Edge Nodes

ESP8266 ESP8266

Actuator
LED

Sensor 1
Ultrasonic sensor

Sensor 2
Motion sensor

Pro-Edge Controller

Core Nodes

Fig. 4: A prototype of Pro-Edge with the components – (i)
Sensors, (ii) Actuators, (iii) Mote, (iv) Core nodes, (v) Access
point (vi) Edge nodes, and (vii) Pro-Edge controller

3) Energy Consumption: This is the average energy con-
sumed by the edge nodes and clouds. Due to task pro-
cessing and transmission/reception of data, each device
consumes energy.

4) Execution Time: Time taken to execute a task at the
computing devices. As most of the devices are resource
constrained, it is a crucial parameter.

5) Cost: It is the amount of network and computing re-
sources spent for execution of all the given tasks.

C. Performance Results

1) Test-bed Evaluation: For implementation, we use Rasp-
berry Pi devices connected by ESP8266 for connectivity
with WSANs. In additions these Raspberry Pi devices with
computing capability can be regarded as edge nodes. The edge
consists of two major components – WiFi-AP and OpenFlow
Virtual Switch (OVS). Using Ethernet and WiFi interface
attached with gateway devices, the traffic flows are sent from
localized network Openflow-based forwarding. It deserves to
mention that the WiFi-AP successfully assigns IP addresses to
both interfering networks, i.e., WSAN and SDN core network.
In our proposed configurable software module for the edge
nodes with APIs handles the actuation decisions and WSAN
network scheduling for control loop traffic.

In our initial experiments, we aim to quantify the difference
in latency if decisions are made through Pro-Edge versus the
traditional cloud and edge architecture for an increasing num-
ber of clients. Later, we measure the service response time in
case of task availability through programming in comparison
to traditional task offloading schemes. Data forwarding using
SDN for real-time task processing is compared with non-SDN
based solutions. For individual tasks, we measure the overall
actuation time as shown in Fig. 5a. The controller places flow
rules for forwarding among the edge-cum-router nodes. With
an increasing number of edge nodes, the delay increases as it
may require to forward the data/alert among multiple nodes.

 0

 20

 40

 60

 80

 100

 120

RoboMovement RoboDistance RoboAlert

A
c
tu

a
ti

o
n

 T
im

e
 (

m
s)

Tasks

2 Edge Nodes
3 Edge Nodes

4 Edge Nodes

(a)

 0

 100

 200

 300

 400

 500

 600

2 4 6 8 10

A
c
tu

a
ti

o
n

 T
im

e
(m

s)

Number of Clients

Pro-Edge
Edge

Cloud

(b)

Fig. 5: Actuation time in the testbed prototype

Fig. 5b shows the test-bed results in terms of average actua-
tion time with an increasing number of clients (i.e., number
of requests). The proposed scheme significantly reduces the
actuation time with the use of dynamic task reconfiguration
and data forwarding. With more number of requests for tasks,
it may require to offload the same to other edge through
core nodes, but with a cost of increased latency in traditional
approach. Pro-Edge with SDN controller reduces actuation
delay up to 200% and 400% as compared to Edge and Cloud-
based decisions, respectively. Dynamic configuration to the
actuation policies, dynamic data forwarding, and new module
installation in the proposed scheme, shows improved results
in terms of actuation latency.

2) Simulation analysis of the proposed scheme: We con-
sider 20 core nodes with sensor and actuator devices in
different regions of the network. Fig. 6a shows the average
actuation time (sensing to actuation) in the network. It can be
observed that the delay increases significantly as the number
of clients increase. Latency in cloud-based actuation is high
when the number of clients cross 30. Although decisions made
through an edge-device significantly reduces the delay, Pro-
Edge further lowers it by re-configuring the actuation policy
and flow rules at run-time. Thus, waiting time is reduced
using the proposed scheme. Similarly, programmability on the
decision parameters of edge-devices, reduces the number of
edge nodes and the overall network usage (can be seen in
Fig. 6b) for executing a task. In contrast, cloud and edge based
solutions find other computing nodes in case the current edge
is overloaded.

We also measure the average energy consumption in the
network to execute a task as requested by the clients. As
shown in Fig. 6c, with an increasing number of clients, the
energy consumption is higher. The key energy consumption
elements are processing and communication. Pro-Edge lowers
the processing requirement and overall communication by
utilizing a fewer number of edge nodes in the network. Also,
with more number of edge nodes, a slightly better energy
consumption can be seen using Pro-Edge (refer Fig. 6d).

Further, to analyze the effect on average execution time, we
experimented with four edge nodes for an increasing number
of clients as shown in Fig. 6a. We observed a significant
improvement in terms of execution time when the client count
is higher. Fig 6b shows the performance of the proposed
scheme with 100 clients and number of edge nodes up to
60. In a network with resource-constraint IoT devices and
backbone routers, executing a task and forwarding the data

8

 0

 500

 1000

 1500

 2000

 2500

 3000

 15 20 25 30 35 40 45 50

A
c
tu

a
ti

o
n

 T
im

e
 (

m
s)

Number of Clients

Pro-Edge
Edge

Cloud

(a) Actuation Time

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 15 20 25 30 35 40 45 50

N
et

w
o

rk
 U

sa
g

e
(k

b
)

Number of Clients

Pro-Edge
Edge

Cloud

(b) Network Usage

 0

 10

 20

 30

 40

 50

 60

 70

 20 40 60 80 100 120 140 160

A
v

er
a

g
e

E
n

er
g

y
 (

J
)

Number of Clients

Pro-Edge
Edge

(c) Energy Consumption

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70

A
v

er
a

g
e

E
n

er
g

y
 (

J
)

Number of Edge Node

Pro-Edge
Edge

(d) Energy Consumption

Fig. 6: (a) Average actuation time, (b) Overall network usage, (c) Average energy consumed with 4 edge nodes, (d) Average
energy consumed with 100 clients

 0

 5

 10

 15

 20

 25

 30

 35

20 40 60 100 160

A
v
g
.
E

x
ec

u
ti

o
n

 t
im

e
(m

s)

Number of Clients

Pro-Edge
Edge

Cloud

(a) Execution Time

 0

 5

 10

 15

 20

 25

 30

 35

16 24 36 48 60

A
v
g
.
E

x
ec

u
ti

o
n

 t
im

e
(m

s)

Number of Edge Nodes

Pro-Edge
Edge

Cloud

(b) Execution Time

 0

 50

 100

 150

 200

 250

 300

 350

 400

20 40 60 100 160

T
o
ta

l
C

o
s
t

Number of Clients

Pro-Edge
Edge

Cloud

(c) Cost

 0

 50

 100

 150

 200

 250

 300

 350

 400

16 24 36 48 60

T
o
ta

l
C

o
st

Number of Edge Nodes

Pro-Edge
Edge

Cloud

(d) Cost

Fig. 7: (a) Execution time with 4 edge nodes, (b) Execution time with 100 clients, (c) Total cost with 4 edge nodes, (d) Total
cost with 100 clients

to the respective edge and gateway nodes for actuation is
challenging. Our solution executes multiple tasks with a lesser
number of edge nodes, which reduces the number of decisions
in terms of offloading and data forwarding. Also, the SDN
controller placed the required flow-rules for forwarding with
low latency to the respective destination node.

The proposed scheme reduces overall cost in using the
resources such as number of network components, CPU, and
storage (refer Fig. 6c). With the use of programmable edge and
dynamic flow-rule placement, Pro-Edge utilizes the available
resource in the network in an efficient manner. As shown
in Fig. 6d, with the increase in number of edges, total cost
increases significantly in case of cloud processing. Utilizing
the edge devices for computation, this cost is reduced in
edge computing approaches. Moreover, our scheme utilizes
an optimal number of edges for the computing purposes.
Therefore, Pro-Edge shows the least cost as compared to the
traditional edge and cloud-based approaches.

V. CONCLUSION

This paper presented Pro-Edge, an edge computing archi-
tecture for future IIoT applications. The proposed solution re-
duces actuation and offloading time, increase task availability,
and provides dynamic actuation policy creation. Our approach
reduces latency and increases response time significantly com-
pared to edge and cloud-based architecture. Although Pro-
Edge is experimented for an industrial automation scenario, it
is suitable for all applications that involve sensor and actuator
operations. As part of future work, mechanisms to handle the
failure of edge devices is planned.

REFERENCES

[1] G. Berardinelli, P. Mogensen, and R. O. Adeogun, “6G subnetworks for
Life-Critical Communication,” in 6G Wireless Summit (6G SUMMIT),
pp. 1–5, IEEE, 2020.

[2] V. Balasubramanian, M. Aloqaily, and M. Reisslein, “An sdn architec-
ture for time sensitive industrial iot,” Computer Networks, vol. 186,
p. 107739, 2021.

[3] I. Al Ridhawi, S. Otoum, M. Aloqaily, Y. Jararweh, and T. Baker, “Pro-
viding secure and reliable communication for next generation networks
in smart cities,” Sustainable Cities and Society, vol. 56, p. 102080, 2020.

[4] J. Al-Jaroodi, N. Mohamed, and I. Jawhar, “A service-oriented middle-
ware framework for manufacturing industry 4.0,” ACM SIGBED Review,
vol. 15, no. 5, pp. 29–36, 2018.

[5] W. Z. Khan, M. Rehman, H. M. Zangoti, M. K. Afzal, N. Armi,
and K. Salah, “Industrial internet of things: Recent advances, enabling
technologies and open challenges,” Computers & Electrical Engineering,
vol. 81, p. 106522, 2020.

[6] A. Ksentini and N. Nikaein, “Toward enforcing network slicing on RAN:
Flexibility and resources abstraction,” IEEE Communications Magazine,
vol. 55, no. 6, pp. 102–108, 2017.

[7] H. Liao, Z. Zhou, X. Zhao, L. Zhang, S. Mumtaz, A. Jolfaei, S. H.
Ahmed, and A. K. Bashir, “Learning-based context-aware resource
allocation for edge-computing-empowered industrial iot,” IEEE Internet
of Things Journal, vol. 7, no. 5, pp. 4260–4277, 2019.

[8] E. Oyekanlu, “Predictive edge computing for time series of industrial
IoT and large scale critical infrastructure based on open-source software
analytic of big data,” in 2017 IEEE International Conference on Big
Data (Big Data), pp. 1663–1669, IEEE, 2017.

[9] T. Kumar, E. Harjula, M. Ejaz, A. Manzoor, P. Porambage, I. Ahmad,
M. Liyanage, A. Braeken, and M. Ylianttila, “BlockEdge: blockchain-
edge framework for industrial IoT networks,” IEEE Access, vol. 8,
pp. 154166–154185, 2020.

[10] M. Lavassani, S. Forsström, U. Jennehag, and T. Zhang, “Combining
fog computing with sensor mote machine learning for industrial iot,”
Sensors, vol. 18, no. 5, p. 1532, 2018.

[11] W. Zhang, Z. Zhang, S. Zeadally, H.-C. Chao, and V. C. Leung, “Masm:
A multiple-algorithm service model for energy-delay optimization in
edge artificial intelligence,” IEEE Transactions on Industrial Informat-
ics, vol. 15, no. 7, pp. 4216–4224, 2019.

[12] Y. Hao, Y. Miao, L. Hu, M. S. Hossain, G. Muhammad, and S. U. Amin,
“Smart-edge-cocaco: Ai-enabled smart edge with joint computation,

9

caching, and communication in heterogeneous iot,” IEEE Network,
vol. 33, no. 2, pp. 58–64, 2019.

[13] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for
the internet of things with edge computing,” IEEE network, vol. 32,
no. 1, pp. 96–101, 2018.

[14] A. Mahmud, R. Rahmani, and T. Kanter, “Deployment of flow-sensors
in internet of things’ virtualization via openflow,” in 2012 Third FTRA
International Conference on Mobile, Ubiquitous, and Intelligent Com-
puting, pp. 195–200, IEEE, 2012.

[15] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, “Software
Defined Wireless Networks: Unbridling SDNs,” in 2012 European
Workshop on Software Defined Networking, pp. 1–6, 2012.

[16] T. Luo, H.-P. Tan, and T. Q. Quek, “Sensor OpenFlow: Enabling
software-defined wireless sensor networks,” IEEE Communications let-
ters, vol. 16, no. 11, pp. 1896–1899, 2012.

[17] R. K. Das, N. Ahmed, F. H. Pohrmen, A. K. Maji, and G. Saha,
“6LE-SDN: An Edge-Based Software-Defined Network for Internet of
Things,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7725–7733,
2020.

[18] S. Bera, S. Misra, S. K. Roy, and M. S. Obaidat, “Soft-WSN: Software-
defined WSN management system for IoT applications,” IEEE Systems
Journal, vol. 12, no. 3, pp. 2074–2081, 2016.

[19] A. De Gante, M. Aslan, and A. Matrawy, “Smart wireless sensor
network management based on software-defined networking,” in 2014
27th Biennial Symposium on Communications (QBSC), pp. 71–75, IEEE,
2014.

[20] B. R. Al-Kaseem, Y. Al-Dunainawi, and H. S. Al-Raweshidy, “End-
to-end delay enhancement in 6LoWPAN testbed using programmable
network concepts,” IEEE Internet of Things Journal, vol. 6, no. 2,
pp. 3070–3086, 2018.

[21] M. Baddeley, R. Nejabati, G. Oikonomou, M. Sooriyabandara, and
D. Simeonidou, “Evolving SDN for low-power IoT networks,” in
2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft), pp. 71–79, IEEE, 2018.

[22] M. L. Miguel, E. Jamhour, M. E. Pellenz, and M. C. Penna, “SDN
architecture for 6LoWPAN wireless sensor networks,” Sensors, vol. 18,
no. 11, p. 3738, 2018.

[23] B. T. De Oliveira, L. B. Gabriel, and C. B. Margi, “TinySDN: Enabling
multiple controllers for software-defined wireless sensor networks,”
IEEE Latin America Transactions, vol. 13, no. 11, pp. 3690–3696, 2015.

[24] B. T. de Oliveira, R. C. A. Alves, and C. B. Margi, “Software-
defined wireless sensor networks and internet of things standardization
synergism,” in 2015 IEEE Conference on Standards for Communications
and Networking (CSCN), pp. 60–65, IEEE, 2015.

[25] J. Kim, F. Filali, and Y.-B. Ko, “A lightweight CoAP-based software
defined networking for resource constrained AMI devices,” in 2015 IEEE
International Conference on Smart Grid Communications (SmartGrid-
Comm), pp. 719–724, IEEE, 2015.

[26] T. Rahman, X. Yao, G. Tao, H. Ning, and Z. Zhou, “Efficient edge nodes
reconfiguration and selection for the Internet of Things,” IEEE Sensors
Journal, vol. 19, no. 12, pp. 4672–4679, 2019.

[27] L. Chen, P. Zhou, L. Gao, and J. Xu, “Adaptive fog configuration
for the industrial internet of things,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 10, pp. 4656–4664, 2018.

[28] R.-H. Hsu, J. Lee, T. Q. Quek, and J.-C. Chen, “Reconfigurable security:
Edge-computing-based framework for iot,” IEEE Network, vol. 32, no. 5,
pp. 92–99, 2018.

[29] W. G. Soliman, B. K. Priya, D. A. Reddy, P. Anusha, and D. R. K. Reddy,
“Reconfigurable microarchitecture-based pmdc prototype development
for iot edge computing utilization,” IEEE Sensors Journal, vol. 21, no. 2,
pp. 2334–2345, 2020.

[30] S. Kaur, J. Singh, and N. S. Ghumman, “Network programmability using
POX controller,” in ICCCS International Conference on Communication,
Computing & Systems, IEEE, vol. 138, p. 70, sn, 2014.

[31] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM computer communication review,
vol. 38, no. 2, pp. 69–74, 2008.

[32] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, et al., “The Design and
Implementation of Open VSwitch,” in 12th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 15), pp. 117–
130, 2015.

[33] W. Chen and E. Deelman, “WorkflowSim: A toolkit for simulating
scientific workflows in distributed environments,” in 2012 IEEE 8th
International Conference on E-Science, pp. 1–8, 2012.

[34] R. Mahmud and R. Buyya, “Modelling and simulation of fog and
edge computing environments using iFogSim toolkit,” Fog and edge
computing: Principles and paradigms, pp. 1–35, 2019.

