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Abstract

Near earth sensing from unmanned aerial vehicles or UAVs has emerged as a potential approach for fine-scale environmental

monitoring. These systems provide a cost-effective and repeatable means to acquire remotely sensed images in unprecedented

spatial detail and high signal-to-noise ratio. It is becoming increasingly possible to obtain both physiochemical and structural

insights of the environment using state-of-art light detection and ranging (LiDAR) sensors integrated onto UAVs. Monitoring

of sensitive environments, such as swamp vegetation in longwall mining areas is important, yet challenging due to their inherent

complexities. Current practices for monitoring these remote and difficult environments are primarily ground-based. This is

partly due to an absent framework and challenges of using UAV-based sensor systems in monitoring such sensitive environments.

This research addresses the related challenges in the development of a LiDAR system including a workflow for mapping and

potentially monitoring highly heterogeneous and complex environments. This involves the amalgamation of several design

components, which include hardware integration, calibration of sensors, mission planning, and designing of a processing chain

to generate usable datasets. It also includes the creation of new methodologies and processing routines to establish a pipeline

for efficient data retrieval and generation of usable products. The designed systems and methods were applied on a peat swamp

environment to obtain accurate geo-spatialised LiDAR point cloud. Performance of the LiDAR data was tested against ground-

based measurements on various aspects including visual assessment for generation LiDAR metrices maps, canopy height model,

and fine-scale mapping.
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Abstract 

Near earth sensing from unmanned aerial vehicles or UAVs has emerged as a potential approach for fine-scale 

environmental monitoring. These systems provide a cost-effective and repeatable means to acquire remotely 

sensed images in unprecedented spatial detail and high signal-to-noise ratio. It is becoming increasingly possible 

to obtain both physiochemical and structural insights of the environment using state-of-art light detection and 

ranging (LiDAR) sensors integrated onto UAVs. Monitoring of sensitive environments, such as swamp vegetation 

in longwall mining areas is important, yet challenging due to their inherent complexities. Current practices for 

monitoring these remote and difficult environments are primarily ground-based. This is partly due to an absent 

framework and challenges of using UAV-based sensor systems in monitoring such sensitive environments. This 

research addresses the related challenges in the development of a LiDAR system including a workflow for 

mapping and potentially monitoring highly heterogeneous and complex environments. This involves the 

amalgamation of several design components, which include hardware integration, calibration of sensors, mission 

planning, and designing of a processing chain to generate usable datasets. It also includes the creation of new 

methodologies and processing routines to establish a pipeline for efficient data retrieval and generation of usable 

products. The designed systems and methods were applied on a peat swamp environment to obtain accurate geo-

spatialised LiDAR point cloud. Performance of the LiDAR data was tested against ground-based measurements 

on various aspects including visual assessment for generation LiDAR metrices maps, canopy height model, and 

fine-scale mapping. 

Keywords: Upland swamps, mine surveying, monitoring, environment sustainability, drones and laser scanning. 

1 Introduction 

Extraction and use of minerals is a critical component 

in the development of current and future societies. In 

contrast to its benefits there have been concerns about 

the negative impacts of mining on the economy, society 

and the environment (Chang et al., 2018). Mining is a 

temporary use of the land, but its socio-environmental 

impacts could be long term. Continuous monitoring of 

the mine environment provides an opportunity for early 

remediation leading to the long-term sustainability of 

the environment and mining operations. 

1.1 Coal Mining under upland peat swamp 

environments 

Mining under economically significant and 

ecologically sensitive environments such as upland 

peat swamps pose a unique challenge to the mining 

industry and government regulators. Upland peat 

swamps in the Sydney basin bioregion, New South 

Wales, Australia mostly occur on coastal highland or 

upland plains of Triassic Sandstone formation 

(Department of Sustainability, Environment, Water, 

Population and Communities, 2018) and are 

technically termed temperate highland peat swamps on 

sandstone (THPSS). THPSS consists of uniquely 

diverse ecosystems comprising treeless heaths and 

sedgelands. These environments play an essential role 

in filtering and slowly releasing water to downstream 

watercourses. Additionally, providing habitats for a 

wide range of animals, including birds, reptiles and 

frogs. A few of the threatened species with habitat 

requirements specific to THPSS conditions include the 

Giant burrowing frog (Heleioporus australiacus), Blue 

Mountains water skink (Eulamprus leuraensis) and 

Giant dragonfly (Petalura gigantean) (CoA, 2014). 

THPSS environments are listed as an endangered 

ecological community because of their limited 

distribution and vulnerability to ongoing threats such 

as underground longwall mining and agriculture (CoA, 

2014). These ecological communities may be 

influenced by underground longwall coal mining 
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activities, which have the potential to disrupt the local 

geology, topography, water regimes and water quality 

of the THPSS (NSWDP, 2008; CoA, 2014; Vervoort, 

2021). Potential impacts include the disruption of water 

availability and quality, leading to the degradation of 

the host ecosystem.  

Accidental discharge of mine wastewater into drainage 

lines uphill from the swamps is also recognized as a 

potential risk (CoA, 2014). Improperly treated mine 

water discharges include saline discharges (Opitz and 

Timms, 2016; Greene et al., 2016) and acid mine 

drainage (Akcil and Koldas, 2006), all of which can 

degrade freshwater resources and potentially impact 

sensitive environments and ecosystems (Younger and 

Wolkersdorfer, 2004). Poor water quality may involve 

one or more of the following parameters: salinity, 

turbidity, acidity, metals, organics, and other 

contaminants of concern, such as toxic algae or 

radiological elements. However, it is difficult to be 

definitive about water quality and identify potential 

short and long-term impacts on swamps with limited 

monitoring. 

1.2 Existing monitoring technologies 

Several traditional methods are used for monitoring the 

potential impact of mining on peat swamps. Methods 

suitable for early identification of impacts include field 

based geotechnical methods (borehole testing and joint 

monitoring), geophysical methods (downhole logging, 

electromagnetic conductivity and ground penetrating 

radar) and hydrological methods (shallow groundwater 

monitoring, deep groundwater level or pressure 

monitoring) (CoA, 2014). However, peat swamps are 

often located in steep and elevated terrain, and many of 

these field-based methods are constrained by difficult 

site access and coverage area, particularly if heavy 

equipment is necessary. The status of swamps can also 

be assessed using baseline ecological conditions, 

which includes vegetation survey (flora census, 

vegetation community patterns and vegetation 

condition), fauna (wetland frog, reptile, bird and 

invertebrate) monitoring, and invasive species 

monitoring methods (CoA, 2014). These ecological 

field surveys are limited to monitoring specific 

locations and rely on data extrapolation. These 

methods are also subjective to the approach being used 

to infer the ecological baselines, and usually a set of 

different ecological surveying methods are needed to 

establish the condition of swamps.  

Remote sensing based methods are alternative 

approaches to monitor the ecological response of 

swamp vegetation. These methods involve both 

passive (multispectral, hyperspectral and thermal) and 

active (light detection and ranging, i.e. LiDAR and 

radar) sensing approaches from airborne and satellite 

systems. Multispectral indices, such as the normalized 

difference vegetation index (NDVI), indicate 

vegetation vigour, or greenness, on the assumption that 

high chlorophyll absorption in plants conveys 

information on plant health (Gandaseca et al., 2009; 

Setiawan et al., 2017). The enhanced vegetation index 

(EVI) has advantages over the NDVI to more 

accurately interpret vegetation coverage by 

incorporating corrections for atmospheric and soil 

influences (Weier and Herring, 2000). Time series EVI 

data is available in high frequency and has been used 

for monitoring dynamics of peat swamps (Setiawan et 

al., 2016). Changes in vegetation distribution within 

peat swamps can be monitored using high-resolution 

remote sensing (Jenkins and Frazier, 2010; Zhang et 

al., 2018). Light detection and ranging (LiDAR) is an 

active-sensing system which can differentiate between 

bare earth and ‘non-ground’ points such as vegetation 

to monitor biomass (Englhart et al., 2013). Insufficient 

spatial resolution of aerial and satellite based methods 

also restricts fine level assessment of vegetation 

condition in THPSS, and consequently existing studies 

(Jenkins and Frazier, 2010) have been limited to 

delineation of swamp boundaries and vegetation 

baseline estimations. 

1.3 Environmental monitoring using UAVs 

Plant species physiologically adapted to survive in 

periodically inundated conditions have a competitive 

advantage in wetlands and swamps. Any alteration in 

swamp hydrology that causes drying of the peat will 

reduce this competitive advantage of wetland species 

and allow species assemblages to shift towards more 

terrestrial vegetation types (CoA, 2014). Increases in 

the proportion of terrestrial species in a swamp may 

indicate changing swamp hydrology. No change in the 

proportion of terrestrial species (or change within 

equilibrium limits) indicates the stability of hydrology 

and peat moisture levels. This baseline composition of 

species within the equilibrium limit is regarded as the 

characteristic vegetation composition, which is unique 

for each environment, including THPSS. Identification 

of individual vegetation species or assemblages in 

THPSS is critical to characterize their vegetation 

composition, and is the first step towards monitoring 

the changing health of the micro-ecosystem under 

natural or anthropogenic stresses (Banerjee et al., 2017; 

Banerjee et al., 2020).  



 

Fig. 1 A comparison of satellite, airborne and unmanned aerial vehicle (UAV) remote sensing systems for 

environmental monitoring applications. 

1.4 UAV-LiDAR scanning in environmental 

monitoring 

Recent developments in the miniaturization of aerial 

robotic platforms and electro-optical sensors have 

established a new era of aerial remote sensing using 

unmanned aerial vehicles (UAVs). The unprecedented 

resolution, high signal-to-noise ratio, operational 

flexibility, ability to access remote locations, ease of 

use and low-cost have attracted interest from both the 

scientific and commercial communities (Colomina and 

Molina, 2014; Ren et al., 2019). Such features make 

them suitable for fine-scale environmental monitoring 

compared to satellite or airborne systems (Fig. 1). 

UAVs with optical and infrared cameras have been 

used in THPSS, however to date the approach has been 

limited to the detection of a single species (Gleichenia 

dicarpa) (Strecha et al., 2012) and the mapping of 

vegetation community boundaries (Lechner et al., 

2012). Studies were undertaken to test the potential of 

a UAV-hyperspectral system to map five swamp 

species (Allocasuarina littoralis, Empodisma minus, 

Lepidosperma limicola, Lepidosperma neesii and 

Pteridium aquilinum) in THPSS environments 

(Banerjee et al., 2020; Banerjee and Raval, 2021). 

These studies demonstrate the advantage of both high 

spatial and spectral resolutions for effectively assessing 

vegetation in spectrally complex swamp environments.  

UAV-LiDAR system is a cutting-edge technology that 

is and finding increased use in different applications. 

Jaakkola et al. (2010) developed and demonstrated the 

potential of a UAV-LiDAR system in a forestry 

application. Integration of lightweight LiDAR sensors 

with rotary type UAVs provided the benefit of using 

them more effectively in restricted environments to 

obtain high-resolution 3D datasets at unprecedented 

detail. The high density of the LiDAR datasets directly 

translates to the accuracy of the derived secondary 

products such as topographic (Lin et al., 2011) and 

vegetation (Wallace et al., 2014) metrices. Banerjee et 

al. (2018) used optical imaging data and structural 

metrices from UAV-LiDAR for mapping complex 

vegetation communities in upland peat swamps. 

Therefore, accurate estimation of these structural 

metrices is crucial to environmental applications such 

as generation of topographic and canopy models, 

identification of vegetation types and attributes such as 

leaf area index. Finally, UAV-LiDAR systems are 

accurate, easy to use and have lower operational costs 

than traditional airborne laser scanning surveys, 

making them suitable for recurrent use in 

environmentally sensitive areas for condition 

assessment and reporting. 

To this end, this study focuses on using a UAV-LiDAR 

system in mapping sensitive vegetation communities in 

a coal mining area. The work involved detailed protcols 

of (1) collecting UAV-LiDAR data, including 

procedures for filtering and generating a coherent point 

cloud, (2) processing to generate structural metrices, 

(3) generating the canopy height model, and (4) 

classification of sensitive vegetation communities 

using different algorithms.  

 



2 Materials and Methods 

2.1 Study area and identification of vegetation of 

interest 

Temperate highland swamps on sandstone (THPSS) 

are critically endangered ecosystems (CoA, 2014)  

distributed in the Blue Mountains, Lithgow, Southern 

Highlands and Bombala regions in New South Wales, 

Australia. This study focused on two swamps in a 

THPSS site in the Southern Highlands, located near 

Wollongong, southwest of the city of Sydney, 

Australia. 

The two swamps have a complex distribution of several 

species and vegetation communities, which exist as 

shrub-type vegetation thickets (Banksia and Tea-tree), 

and Sedgeland-Heath complexes (Cyperoid, Restioid 

and Sedgelands) (NPWS, 2003; Jenkins and Frazier, 

2010). Selection of species for a vegetation monitoring 

and classification study, needs to consider the ability to 

both map the vegetation components (or classes) and 

their ecological significance. A total of eight vegetation 

classes were selected with five swamp vegetation 

classes and three non-swamp vegetation classes. A set 

of five swamp vegetation classes were identified based 

on their abundance and sensitivity to anthropogenic 

impacts: Dagger hakea (Hakea teretifolia), Grass tree 

(Xanthorrhoea resinosa), Pouched coral fern 

(Gleichenia dicarpa), Heath-leaved banksia (Banksia 

ericifolia), and Sedgeland complex (Empodisma 

minus, Gymnoschoenus sphaerocephalus, 

Lepidosperma limicola, Lepidosperma neesii, 

Leptocarpus tenax and Schoenus brevifolius). Presence 

of certain non-swamp or terrestrial vegetation species 

can indicate potential alteration of swamp hydrology. 

Therefore, a set of three non-swamp vegetation classes 

were also identified: Black sheoak (Allocasuarina 

littoralis), Bracken fern (Pteridium aquilinum), and 

Eucalyptus trees. The total list of classes and 

corresponding species was identified through several 

field campaigns and consultation with expert advice 

from field ecologists. 

 

 

Fig. 2 (a) The integrated UAV-LiDAR system used in the study environment, (b) map view of the study area with 

detailed view of the swamp site survey boundaries (site-1 and site-2), ground truth sample locations (green 

triangles) and THPSS boundaries, and (c) 3D subsampled point cloud view with the calibration loop and flight 

lines for data acquisition.  



2.2 Sampling design and field measurement 

Ground truth data includes a set of labels on the images 

intended for defining a model for classification or 

parameter retrieval. A proper ground truth sampling 

strategy is essential to eliminate significant biases from 

the leaking into the process (Congalton, 1991). 

Furthermore, to ensure that the ground data is 

representative of the spatial population, a suitable 

sample design must be chosen. Stratified random 

sampling is a method of selecting in which the elements 

of the population are allocated into sub-populations 

(e.g. strata) before the sample is taken, and then each 

stratum is randomly sampled (Brogaard and 

Ólafsdóttir, 1997). This sampling approach is used 

when specific information about certain sub-

populations and increasing precision of the estimates 

for the entire population is desired (Cochran, 1977; 

Clark and Hosking, 1986). In this study, a similar 

stratified sampling approach has been used. A total of 

80 locations for ground truth sample collection were 

identified using this sampling approach within the 

shrub-type swamp vegetation classes only (i.e. Grass 

tree, Pouched coral fern and Sedgeland complex) for 

the field survey, i.e. a total of 32 locations for swamp 

site-1 and 48 locations for swamp site-2 (shown as 

green triangles in Fig. 2 (b)). Coordinates of each 

location were measured using the ground-based real-

time kinetic – differential global positioning system 

RTK-DGPS unit (Leica Viva GS15 GPS system) 

within 3 mm of absolute accuracy. A set of four 

discrete ground truth points were identified around 

each location at 1 m distances in the North, East, South 

and West directions using a compass as reference. This 

produced a total of 80 × 4 = 320 ground truth points for 

the shrub-type swamp vegetation. For each ground 

truth point, the species composition and canopy height 

of the vegetation were recorded. 

Canopy Height Measurement – The canopy height 

was measured using the vertical graduated scale with a 

pointed bottom end. Due to the varying degree of 

density, in areas of high compaction of the shrub-type 

swamp vegetation it was difficult to ensure that the 

bottom end of the graduated scale reached the true soil 

surface. Therefore, several sets of measurements were 

taken within (50 cm) the vicinity of the sampling point 

to correctly identify the correct canopy height. In areas 

of highly fragile canopies several measurements (5 to 

10) were collected within (50 cm) the vicinity of the 

point and the median value was used as the 

representative measurement.  

2.3 UAV-LiDAR Scanning 

This section describes the method of developing of a 

UAV-LiDAR system and workflow including 

description of the LiDAR sensor used, procedures for 

system integration and aerial data acquisition, 

conversion of raw data to point cloud, and pre-

processing of the generated point cloud. 

2.3.1 LiDAR sensor  

In this study, a mobile integrated LiDAR system 

(Phoenix Aerial Scout) was used. The primary sensor 

on-board the UAV is a Velodyne PUCK LiDAR 

scanning system. The internal laser sensor has a 

maximum range of 120 m and a range of 80 m at 60% 

target reflectivity, which produces a typical range 

accuracy of ± 3 cm with a range resolution of 2 mm. 

The laser sensor records ranges and intensities for up 

to two echoes per pulse. It has a rectangular aperture 

beam width of 9.5 mm (vertical) × 12.7 mm 

(horizontal) and a beam divergence of 0.07° (vertical) 

× 0.18° (horizontal). The scanner uses a rotating sensor 

scanning mechanism with 16 lasers oriented on a 

vertical axis. In this configuration the sensor has an 

angular FOV (vertical) of ± 15.0° (30°) and angular 

resolution (vertical) of 2°. The laser sensors spin on a 

horizontal axis with a rotation rate of 5 Hz–20 Hz to 

produce an angular FOV (horizontal) of 360° and 

angular resolution (horizontal) of 0.1°–0.4°. The 

scanner has characteristic beam divergence more 

suitable for an automotive application and less ideal for 

a mapping sensor. Nevertheless, this enables low 

power consumption and light weight (830 g) to allow 

its use on UAV platforms. 

The remaining sensors within the integrated LiDAR 

sensing payload consist of a dual frequency RTK-

GPS/GLONASS with a lightweight antenna and 

inertial measurement unit (IMU). The measurements 

from the GPS and the IMU are synchronized with a 

precision internal clock, and are logged at a rate of 50 

Hz onto an embedded computer with data storage unit, 

to achieve the highest possible accuracy. All these core 

components and wirings (except the GPS antenna) are 

housed inside a protective harness and fastened to the 

LiDAR sensor using screws. The sensor records 0.3 

million laser points per second on the on-board 

computer and downlinks a subsampled point cloud data 

to the ground station in real-time, through a 5.8 GHz 

long-range Wi-Fi wireless system to avoid acquisition 

errors. The total payload weight of the integrated 

LiDAR system is 1.6 kg and the dimensions are 

16 cm × 11.6 cm × 11.6 cm. 

2.3.2 System integration and aerial data 

acquisition 

The integrated LiDAR sensing system was mounted 

onto a UAV with the vertical axis of the LiDAR sensor 

aligned to the along track and horizontal rotating plane 

aligned in the across track direction of the flight 

trajectory. A customized coaxial rotor quadcopter 



UAV system was used to mount the integrated LiDAR 

sensing payload. Platform instability and vibration of 

the UAV platform is a critical issue for LiDAR data 

acquisition. High frequency vibrations produced from 

the rotor movements of modern UAV platforms can 

induce rapid movement, which is difficult for the IMU 

to compensate for. The quadcopter assembly provided 

necessary stability and the coaxial rotor configuration 

reduced vibration due to aerodynamic compensations, 

which further increased the total lift weight capacity of 

the UAV. Vibration from rotors was further isolated by 

mounting the LiDAR payload system through the use 

of four silicon rubber mounts. This provided sufficient 

physical support and compensation for the system to 

acquire precise point cloud data. The total system 

weighed under 9 kg and offered a flight time of around 

15 minutes. The integrated UAV-LiDAR system is 

shown in Fig. 2 (a). 

The customized coaxial quadcopter has a standalone 

control system based on 3DR Pixhawk2 mini flight 

controller. A pre-survey initialization procedure was 

performed, which required the UAV-LiDAR system to 

be powered on and then flown three times in a pattern 

of “8” to calibrate all the time-base mismatches 

between IMU, GPS and laser scanner. The procedure 

is highlighted with a blue-dashed-bounding-box in Fig. 

2 (c). The UAV-LiDAR system was operated over the 

two test sites according to a pre-designed flight plan 

with a flying height of 50 m and speed of 5 m/s, with a 

transect spacing of 20 m. In this flying configuration 

each test site was covered with a set of four parallel 

flight transects, and the entire mission was completed 

in two separate flights which took approximately 25 

minutes in total.  

2.3.3 Raw data to point cloud 

All the raw ranging information from the laser scanner, 

along with the time-tagged roll, pitch, yaw and position 

information from the IMU and RTK-GPS/GLONASS 

units, was downloaded from the on-board data storage. 

The raw laser scanner data consists of a ‘.ldr’ format 

file of the range records. The orientation and 

positioning data was logged on a separate file. The raw 

datasets were fused using a standard range 

transformation model (in Phoenix Aerial Spatial Fuser 

v3.0.5) to produce the georeferenced point cloud (in 

log ASCII or ‘.las’ format). The process included 

correction for the centre of the IMU, RTK-

GPS/GLONASS unit to the laser sensor geometric 

translation. All 16 channels of the LiDAR were used 

for the generation of the point cloud. The laser footprint 

at nadir was 0.12 m along track and 0.31 m across track 

with a flying height of 50 m. To limit laser beam 

divergence, laser returns with ranging values > 60 m 

were masked out in the process of point cloud 

generation. With the spacing between transects at 20 m 

the resultant point had a swath width of 66.3 m and 

lateral scan overlap of approximately 70%. This 

resulted in a significant overlap of laser footprints in 

both along and across track directions and provided 

sufficient angularity to the measurements to scan 

further inside the tall tree canopies. 

Accurate sensor localization and orientation 

measurements are crucial for direct georeferencing, as 

these parameters are not consistent throughout the 

UAV-LiDAR survey. To avoid error propagation into 

the final point cloud model due to positional or 

orientational uncertainties, a set of time dynamic 

quality threshold parameters was used. According to 

this criterion, for the small durations when the quality 

parameters were poor such as uncertainty in 

altitude > 10 cm, position error > 10 cm, number of 

available satellites < 9, and differential lag > 20 ms, 

the raw data to point cloud transformation was avoided.  

2.3.4 Pre-processing – point cloud sampling, 

segmentation and height filtering 

A LiDAR scan often contains tightly placed points that 

are redundant in nature. These points could be left 

behind due to oversampling caused by the high 

sampling rate of the scanner or by overlap of the point 

cloud from multiple transects. Such redundant points 

from the UAV-LiDAR point cloud were removed by 

sampling the data with a minimum threshold 

(> 0.01 m) separation criterion. Minor errors 

introduced by the IMU or RTK-GPS system can cause 

some erroneous points to be produced in a LiDAR scan 

which is outside the general body of the scanned 

surface. A point cloud segmentation approach using 

connected component labelling (in CloudCompare v2) 

was applied with an 8th level octree and 

10,000 connected points, to identify the primary 

segment of the scanned surface and remove non-

surface erroneous points. Further processing was 

performed to filter the point cloud into ground and non-

ground (vegetation) classes and to calculate the heights 

of the vegetation points above the ground using the 

BCAL (BCAL LiDAR Tools for ENVI) height 

filtering tool (Streutker and Glenn, 2006). The 

parameters for canopy spacing were set at 5 m with a 

maximum vegetation height of 30 m in the processing 

step, which represented the vegetation canopy structure 

of Eucalyptus trees around the swamp environment. 

The pre-processing steps also helped filter out 

erroneous artefacts which would otherwise propagate 

to the results. 

A surface point density map was produced after 

essential pre-processing (point cloud sampling, 

segmentation and height filtering) to test the quality of 

the resulting point cloud, i.e. to identify if the number 



of scanned points were sufficient and if a moreover 

uniform point distribution exists throughout the study 

area, which is important for generation of useful 

metrices from the point cloud. The surface point 

density map was produced by counting the number of 

points scanned over a regularly spaced grid of 1 m 

throughout the study area. Additionally, a histogram 

distribution of the surface point density was produced 

to identify the point density of the scan.  

2.3.5 Retrieval of LiDAR metrices 

The relative position or local relationships between a 

set of neighbourhood points in a LiDAR point cloud 

can be mathematically analyzed to derive a spatially 

representative surface map which is easier to use with 

traditional remote sensing tools. These mathematical 

derivatives are known as LiDAR metrices. A total of 

35 LiDAR metrics related to topography, vegetation, 

and intensity were derived using BCAL LiDAR Tools 

(Table 1).  

Table 1 Derived LiDAR metrices from the point cloud scan of the swamp environment. 

LiDAR metrices 

Topographic 

Absolute roughness – The roughness (standard deviation) of all elevation points within each pixel. 

Local roughness – The roughness (standard deviation) of all elevation points within each pixel after the 

local slope has been removed (de-trended). 

Slope – The average slope of all points within each pixel in degrees. 

Aspect – The aspect of the average slope of all points within each pixel in degrees from North. 

Topographic solar radiation index (TRASP) – Transformation of aspect (TRASP), used by (Roberts and 

Cooper, 1989), is defined as [1 – cos ((𝜋/180)(𝑎𝑠𝑝𝑒𝑐𝑡 −  30))]/2. TRASP assigns the low value to north-

northeastern aspect, and the high values to, dryer south-southwesterly slopes. 

Slope cosine aspect (Slpcosasp) – Slpcosasp is calculated as 𝑠𝑙𝑜𝑝𝑒 ×  𝑐𝑜𝑠𝑖𝑛𝑒(𝑎𝑠𝑝𝑒𝑐𝑡) (Stage, 1976).  

Slope Sine Aspect (Slpsinasp) – Slpsinasp is calculated as 𝑠𝑙𝑜𝑝𝑒 ×  𝑠𝑖𝑛𝑒 (𝑎𝑠𝑝𝑒𝑐𝑡) (Stage, 1976). 

Point Density – The density of all points within each pixel. 

Vegetation Products 

Minimum Height – The minimum of all height points within each pixel. 

Maximum Height – The maximum of all height points within each pixel. 

Height Range – The difference of maximum and minimum of all height points within each pixel. 

Mean Height – The average of all height points within each pixel. 

Median Absolute Deviation (MAD) from Median Height – The MAD value of all height points within 

each pixel. 𝑀𝐴𝐷 =  1.4826 ×  𝑚𝑒𝑑𝑖𝑎𝑛(|ℎ𝑒𝑖𝑔ℎ𝑡 −  𝑚𝑒𝑑𝑖𝑎𝑛 ℎ𝑒𝑖𝑔ℎ𝑡|). 

Mean Absolute Deviation (AAD) from Mean Height – The AAD value of all height points within each 

pixel. 𝐴𝐴𝐷 =  𝑚𝑒𝑎𝑛(|ℎ𝑒𝑖𝑔ℎ𝑡 −  𝑚𝑒𝑎𝑛 ℎ𝑒𝑖𝑔ℎ𝑡|) 

Height Variance – The variance of all height points within each pixel. 

Height Standard Deviation – The standard deviation of all height points within each pixel. This is also 

called ‘absolute vegetation roughness’. 

Height Skewness – The skewness of all height points within each pixel. 

Height Kurtosis – The kurtosis of all height points within each pixel. 

Interquartile Range (IQR) of height – The IQR of all height points within each pixel. 𝐼𝑄𝑅 =  𝑄75 −
𝑄25, where Qx is xth percentile. 

Height Coefficient of Variation – The coefficient of variation of all height points within each pixel. 

Height Percentiles – The 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles of all height points within 

each pixel. 



 

Generation of LiDAR metrices from highly dense point 

cloud acquired from UAV-LiDAR is a computationally 

intense and time-consuming process, particularly in the 

absence of a graphics processing unit (GPU) based 

multi-core parallel processing capabilities with BCAL. 

Therefore, LiDAR metrices (Table 1) generation was 

processed at a grid size or pixel resolution of 10 cm to 

limit excessive processing time. The metrices were 

derived with a ground threshold of 10 cm and a crown 

threshold of 20 cm. A bin height of 1 cm was used for 

the computation of foliage height density (FHD) 

parameters.  

2.3.6 Extracting Canopy height model from 

LiDAR data 

A bare earth digital elevation model (DEM) at 10 cm 

resolution was produced using the LiDAR point cloud 

by only considering the last returns in BCAL. The 

process assigns the minimum altitude value of the last 

return points within each grid or pixel size of 10 cm. 

The model approximates a DEM surface by 

interpolation in dense areas with the absence of correct 

ground level measurements due to dense canopies. A 

digital surface model (DSM) was also computed by 

using the first returns of LiDAR point cloud, and 

assigning the maximum altitude value of any point 

within the 10 cm grid to the corresponding pixel value 

of the DSM. The canopies of shrub-type swamp 

vegetation are often fragile or tilted (due to wind), 

which often does not produce sufficient first return 

measurements for correct canopy height 

measurements. A 5 × 5 local maximum filter was 

applied on the DSM to assign the maximum height 

within an area of 50 cm by 50 cm to the central pixel. 

A canopy height model (CHM) was then measured by 

subtracting the DEM from the filtered DSM. The 

accuracy of the canopy height model was validated 

against the field based measurements of canopy height 

of shrub-type vegetation using coefficient of 

determination (R2) statistics (Cameron and 

Windmeijer, 1997).  

2.3.7 Classification of LiDAR data for mapping 

The stacked LiDAR metrices was used to differentiate 

the different types of swamp vegetation classes. A set 

of seven supervised classifiers such as parallelepiped 

(PP), maximum likelihood (ML), minimum distance 

(MD), Mahalanobis distance (MHD), spectral angle 

Number of LiDAR Returns – The total number of all points within each pixel. 

Number of LiDAR Vegetation Returns (nV) – The total number of all the points within each pixel that are 

above the specified crown threshold value (CT). 

Number of LiDAR Ground Returns (nG) – The total number of all the points within each pixel that are 

below the specified ground threshold value (GT). 

Total Vegetation Density – The percent ratio of vegetation returns and ground returns within each pixel. 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  𝑛𝑉/𝑛𝐺 ∗ 100. 

Vegetation Cover – The percent ratio of vegetation returns (nV) and total returns within each pixel. 

Percent of Vegetation in Height Range – Percent of vegetation in height ranges 0–1 m, 1–2.5 m, 2.5–

10 m, 10–20 m, 20–30 m, and >30 m within each pixel. 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒/𝑇𝑜𝑡𝑎𝑙 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 

Canopy Relief Ratio – Canopy relief ratio of points within each pixel. 𝐶𝑎𝑛𝑜𝑝𝑦 𝑟𝑒𝑙𝑖𝑒𝑓 𝑟𝑎𝑡𝑖𝑜 =
 ((𝐻𝑚𝑒𝑎𝑛  −  𝐻𝑚𝑖𝑛))/((𝐻𝑚𝑎𝑥 −  𝐻𝑚𝑖𝑛)). 

Texture of Heights – Texture of height of points within each pixel, i.e. standard deviation of height above 

ground threshold and height below crown threshold.  

Foliage Height Diversity (FHD) – is denoted by 𝐹𝐻𝐷 = − ∑ 𝑝𝑖  𝑙𝑛 (𝑝𝑖) where pi is the proportion of the 

number of LiDAR returns in the ith layer to the sum of LiDAR points of all the layers (using all points). 

Foliage Height Diversity above ground threshold (FHDGT) – Points above ground-FHD calculated only 

using points above GT. 

Intensity 

Minimum Intensity – The point with the minimum intensity value within each pixel. 

Maximum Intensity – The point with the maximum intensity value within each pixel. 

Mean Intensity – The mean intensity of all points within each pixel. 

Standard Deviation Intensity – The standard deviation of intensity value of all points within each pixel. 



mapper (SAM), spectral information divergence (SID), 

and support vector machine (SVM) were used from 

ENVI (Exelis Inc., Harris Corporation, Boulder, 

Colorado, United States) to demonstrate the ability of 

the different datasets in the classification process and 

cross-validation. To mutually evaluate the classifiers a 

standard ‘null’ parameter setting was used for each 

classifier i.e., no standard deviation threshold from 

mean was used for PP, MD and MHD, no probability 

threshold was used for ML, no maximum threshold 

angle for the SAM, and no maximum divergence angle 

was used for SID. The SVM classifier out of the set of 

seven classifiers is based on machine learning, and as 

such, was computationally intensive. However, the 

objective here was not to identify an efficient and 

robust classification workflow but to evaluate the 

potential of LiDAR data in mapping sensitive 

vegetation communities with well-established 

classification methodologies. A standard parameter 

setting using a radial basis function with a kernel 

gamma function of 0.167, penalty parameter of 100 and 

pyramid level of 5 was used. 

The 35 LiDAR metrices (Table 1) were first stacked to 

produce a composite multi-dimensional dataset. 

However, all the derived LiDAR metrices do not 

necessarily contain useful information for 

classification. Therefore, two data dimensionality 

reduction techniques – principal component analysis 

(PCA) (Richards and Richards, 1999) and independent 

component analysis (ICA) (Hyvärinen and Oja, 2000) 

were used to condense the information content of 35 

LiDAR metrics. This step essentially condensed the 

useful information from all the 35 metrices to the initial 

layers of the stacked dataset. The first 15 LiDAR 

metrices with high information content were then 

selected from the stacked dataset, where the 

eigenvalues > 0.2. A 3 × 3 enhanced frost filter (Lopes 

et al., 1990) was used to adaptively average pixel 

values in homogenous clusters with a coefficient of 

variation, Cu=0.523, and an impulse response 

convolution kernel for heterogeneous clusters with a 

maximum coefficient of variation, Cmax=1.732. At this 

stage, the dimensionally reduced and filtered 15 

metrices composite data can undergo a classification 

operation similar to the multispectral and hyperspectral 

datasets. 

A total of 320 ground truth measurements were 

collected for shrub-type swamp vegetation through a 

rigorous field survey, the vegetation class for each 

point was geospatialised as a field attribute. A buffer 

with a radius of 5 cm was created around each of the 

320 measurements to produce an equivalent ground 

truth polygon for each measurement. An additional 128 

ground truth polygons were also created through visual 

interpretation of high-resolution optical data maps. 

Ground truth samples for bush or tree-type vegetation 

classes such as Dagger hakea, Heath-leaved banksia, 

Black sheoak, and Eucalyptus trees were primarily 

acquired using this approach. The sampled ground-

based (320) and image-based (128) polygons were 

randomly divided into 1:1 mutually exclusive sets of 

training and test samples, i.e. 160 ground and 64 

image-based polygons for each training and test group. 

The ground truth training set was used to train the 

classifiers, and the test samples were used to compute 

the overall accuracy (OA), kappa (κ) and confusion 

matrix to evaluate the classification accuracies. All the 

seven classifiers were applied to the datasets at 10 cm 

resolution, and the overall accuracy (OA) and kappa (κ) 

values were tabulated. Classification maps based on the 

best classifier performance and the corresponding 

confusion matrix were produced. 

3 Results 

3.1 Geometric quality assessment for UAV-

LiDAR 

The UAV-LiDAR system and the raw data to point 

cloud processing segment produced a well 

georeferenced point cloud. The accuracy of the UAV-

LiDAR metrices obtained through the processing chain 

was tested against referenced optical maps. The point 

cloud achieved an average error of 10.4 cm, which was 

deemed sufficient for further environmental 

monitoring applications. For the study area, a UAV-

LiDAR point cloud with a surface height profile for a 

portion of the study area is shown in Fig. 3.  

 

Fig. 3 Point cloud obtained through UAV-LiDAR 

survey of the study area with a cross-section view of 

the surface height profile for a portion the swamp. 



3.2 Surface point density and effect of pre-

processing 

An uniform surface density map is essential for 

accurate processing and generating higher order 

products from the LiDAR point cloud, such as 

LiDAR metrices. The programmed flight plan of the 

LiDAR scan produced a more uniform distribution 

of points. The point cloud was further processed to 

filter out redundant points which improved the 

uniformity of the point cloud. This facilitates a 

moreover uniform distribution of surface point 

density, which is useful for avoiding density induced 

bias in the computation of LiDAR metrices. The 

calculated surface point density map for the study 

area is shown in Fig. 4 (a). A high density of point 

cloud is also essential for accurate fine-scale 

mapping applications. A histogram of the surface 

point density plot is shown in Fig. 4(b).  

 

Fig. 4 (a) Surface point density map obtained 

through UAV-LiDAR survey of the study area and 

(b) histogram distribution of the surface point 

density - also showing the colour scale. 

The scanned and pre-processed point cloud achieved 

a very high surface point density, with a distribution 

of 345 pts/m2. This distribution of point cloud 

density is significantly higher than what was 

traditionally achieved through airborne surveys 

(~20–40 pts/m2). This means UAV-LiDAR metrices 

can be produced with a significant level of accuracy 

and detail, which is beneficial to identify and 

distinguish the complex distribution of vegetation 

communities in a diverse ecosystem area such as 

swamps. Furthermore, high point density increases 

the likelihood of more points being recovered from 

under the canopies, which is essential to produce an 

accurate topographical surface model to identify any 

deformation induced from underground longwall 

mining. This indicates the potential benefit of using 

a UAV-LiDAR system in environmental 

applications requiring fine-scale mapping. 

The pre-processing steps to filter the point cloud are 

also essential to avoid propagation to errors in the 

LiDAR metrices. A synoptic overview of the pre-

processed point cloud is shown in Fig. 5. A false 

coloured composite of the processed LiDAR 

metrices (kurtosis, maximum vegetation height and 

coefficient of variation) for a spatially subset region 

is shown in Fig. 5 (a) without any pre-processing 

and in Fig. 5 (b) with proper pre-processing. The 

comparison demonstrated the efficacy of the pre-

processing phase to avoid erroneous artefacts in the 

processed false coloured composite of the LiDAR 

metrics, marked in white ovals; such artefacts are 

removed with pre-processing. 

 

Fig. 5 (a) Pre-processed point cloud (colourized as 

per elevation), and false colour composite (kurtosis, 

maximum vegetation height and coefficient of 

variation) of LiDAR matrices for a subset area: (b) 

without pre-processing and (c) with pre-processing. 



3.3 LiDAR metrices 

The point cloud from the UAV-LiDAR survey was 

processed to produce a total of 35 LiDAR metrices 

related to topography, vegetation structure and 

intensity. The computed metrices are equivalent to 

raster products, which can differentiate different 

vegetation species and classes using a classical 

classification workflows and provide information 

related to swamp vegetation conditions. A few of the 

selected maps of LiDAR metrices such as local 

roughness, slope cosine aspect (Slpcosasp), height 

range, vegetation cover, foliage height density (FHD) 

and mean intensity are shown in Fig. 6. The swamp 

area can be visually distinguished from the surrounding 

terrestrial type Eucalyptus trees without further 

processing as well. This shows the potential of a high-

density of point cloud obtained through the UAV-

LiDAR survey. 

 

Fig. 6 LiDAR metrices maps of (a) local roughness, (b) slope cosine aspect (Slpcosasp), (c) height range, 

(d) vegetation cover, (e) foliage height density (FHD) and (f) mean intensity. 

3.4 Canopy height model 

The UAV-LiDAR point cloud was processed to 

produce a canopy height model (CHM) of the swamp 

environment. A CHM is useful for characterization of 

the extent of an upland swamp environment by 

differentiating the low-lying peat swamp vegetation 

from the surrounding terrestrial vegetation such as 

Eucalyptus trees (Jenkins and Frazier, 2010). A colour 

scaled synoptic view of the CHM for the two swamp 



sites in the study area is shown in Fig. 7 (a) and a 

textured three-dimensional view is shown in Fig. 7 (b). 

The accuracy of the CHM was analyzed with the 

ground truth values of canopy height measurements for 

shrub-type swamp vegetation cover. The overall R2 

accuracy was found to be approximately 0.76, which 

was deemed sufficient for the type of vegetation cover. 

The computation of accurate CHM for shrub-type 

vegetation is relatively difficult compared to tree-type 

vegetation cover. This depends on two factors: the 

small and fragile nature of shrub-type vegetation 

canopies, and the footprint size of the laser. Under 

these scenarios the accuracy of models could be 

improved by improving the beam width of the internal 

laser sensor in the UAV-LiDAR system or by 

incorporating machine learning methods to perform 

parametric transformation of the coarse CHM product 

using reference tie point measurements. 

 

Fig. 7 Canopy height model of the study area: (a) synoptic view and (b) textured three-dimensional view. 

3.5 Classification of vegetation communities 

Data collected using UAV-LiDAR system was 

evaluated using a classification based approach. The 

respective datasets were collected for both swamp site-

1 and site-2. A total of eight vegetation classes as 

described in Section 2.1 were present in swamp site-1 

and site-2, these eight vegetation classes were used to 

operate the classification based evaluation, i.e. Dagger 

hakea, Grass tree, Heath-leaved banksia, Black sheoak, 

Bracken fern Eucalyptus tree, Pouched coral fern and 

Sedgeland complex. Additionally, some portion of the 

acquired image area comprised of no-vegetation cover 

and was treated as a separate ‘Bare earth’ class, i.e., a 

total of nine classification classes. The UAV-LiDAR 

metrices were dimensionally reduced using PCA and 



ICA, both of which were used for comparative 

analysis. The overall accuracy and kappa coefficient of 

the methods are listed in Table 2. The ICA(LiDAR) 

marginally outperformed the PCA(LiDAR) with most 

classifiers, with the exception of PP and SID. The best 

classification result was produced by combining the 

ICA(LiDAR) data with SVM classifier, which 

produced an overall accuracy of 73.42% and a kappa 

coefficient of 0.64. 

 

Table 2 Accuracy assessment for the classification of UAV-LiDAR data. 

Classifier 

PCA(LiDAR) ICA(LiDAR) 

Overall 

accuracy 

(%) 

Kappa 

Overall 

accuracy 

(%) 

Kappa 

Parallelepiped (PP) 18.49 0.13 5.91 0.04 

Maximum Likelihood (ML) 58.77 0.49 60.00 0.51 

Minimum Distance (MD) 43.16 0.33 45.49 0.35 

Mahalanobis Distance (MHD) 48.02 0.37 48.31 0.38 

Spectral Angle Mapper (SAM) 43.73 0.33 45.49 0.35 

Spectral Information Divergence (SID) 46.84 0.37 32.08 0.23 

Support Vector Machine (SVM) 73.37 0.64 73.42* 0.64* 

* best result 

The producer’s and user’s accuracy for each class 

with the best classification method is shown in 

Table 3. The classification accuracy was high for 

bare earth, Dagger hakea, Black sheoak, Eucalyptus 

trees and Sedgeland complex. However, the 

accuracy for Grass tree, Heath-leaved banksia, 

Bracken fern and Pouched coral fern was 

exceptionally low. The low accuracy with these 

classes for LiDAR is not surprising since the 

structural characteristics of these species are 

indistinguishable through LiDAR point cloud. The 

accuracy was high for tall terrestrial trees such as 

Black sheoak and Eucalyptus, which most 

importantly improved classification accuracy of the 

Sedgeland complex class. The classification maps 

for and ICA(LiDAR) based approach using SVM 

classifier is shown in Fig. 8.  

 

Table 3 Class wise accuracy of best classification method – ICA(LiDAR) with support vector machine. 

Class Producer’s accuracy (%) User’s accuracy (%) 

Bare earth 78.12 82.88 

Dagger hakea 99.17 92.07 

Grass tree 16.95 32.51 

Heath-leaved banksia 11.02 62.22 

Black sheoak 87.35 73.18 

Bracken fern 40.23 50.75 

Eucalyptus tree 80.67 91.25 

Pouched coral fern 58.68 52.45 

Sedgeland complex 94.85 64.06 

 



 

Fig. 8 Classification map of swamp site-1 and site-2 vegetation classes and species produced with (a) UAV-

hyperspectral and (b) UAV-LiDAR data, using support vector machine classifier. 

4 Discussion 

4.1 Integration of UAV-LiDAR system  

The UAV-LiDAR system were developed through 

sensor and platform integration, including aspects of 

sensor calibration, sensor operation, orientation, 

mission planning and data acquisition. The installation 

of a LiDAR sensor on the UAV required thorough 

consideration of several aspects of sensor parameters 

such as laser range, GPS and IMU accuracy, beam 

width, scanning mechanism, field-of-view and angle of 

scanning. The mission planning focused on these 

sensor parameters to obtain an accurate point cloud 

with high surface point density, which required a 

design of a suitable calibration loop, and flight paths 

with significant overlap of laser footprints in both 

along and across track directions. Attention and 

diligence to these aspects of system integration and 

operation were essential to seamlessly retrieving 

accurate and effective data products. Overall, these 

considerations and innovative tuning towards various 

design and integration phases were essential in mine 

environmental monitoring, and other applications 

requiring accurate thematic mapping with UAVs such 

as agriculture, forestry. 

4.2 High-resolution point cloud from UAV-

LiDAR 

Acquisition of high-density point cloud is essential for 

detailed 3D imaging of the environment. Several 

factors such as speed of UAV-LiDAR system during 

scanning, distance from the target or flying height, 

spacing between transects and across track scan width 

influences the density of points collected during a scan. 

Furthermore, quality influencing factors such as 

uncertainty in altitude, position error, number of 

available satellites, and differential lag need to be 

controlled to obtain well-registered point cloud data. A 

workflow was devised through the combination of a set 

of different software and processing solutions to 

effectively convert raw LiDAR return, position, 

orientation and quality information to a point cloud 

with high surface density, to pre-process the point 

cloud to remove redundant points and IMU induced 

errors, and to prepare the point cloud for further 

processing. The geometric accuracy of the integrated 

UAV-LiDAR system is crucial for fine-scale 

monitoring and mapping applications. A dedicated 

geometric quality assessment exercise confirmed the 

high accuracy of the system. The system produced a 

very high-density point cloud in the complex swamp 



environment, which was useful for the differentiation 

of several vegetation types.  

4.3 Derived LiDAR metrices 

The complex assemblage of swamp vegetation species 

and communities was studied using a UAV-based 

LiDAR system.  A total of 35 LiDAR metrices related 

to topography, vegetation structure and intensity were 

produced. The computed metrices are raster products 

similar to hyperspectral indices, which can be used to 

differentiate different vegetation species and 

communities using a classical classification workflow 

and also provide useful information on swamp 

vegetation condition. The vegetation indices and 

selected LiDAR metrices produced through UAV 

survey were validated and cross-validated against 

biophysical parameters such as leaf area index (LAI) 

and canopy height model (CHM).  

Deriving LiDAR metrices from high-density point 

cloud is a computationally-intensive process. To 

provide an estimate, a spatial subset of the point cloud 

of approximately one tenth the size of the total point 

cloud at a point density of 345 pts/m2 took over a week 

of processing to produce LiDAR metrices at 2 cm of 

resolution. This order of computational inefficiency is 

limiting for routine environmental monitoring 

operations. Nevertheless, LiDAR metices could be 

generated at lower spatial resolutions (> 10 cm) 

relatively easily. However, reconstruction of a multi-

core parallel computation pipeline for the generation of 

LiDAR metrices, could be a future scope for fine-scale 

mapping applications using UAV-LiDAR. 

4.4 Monitoring vegetation communities using 

UAV-LiDAR 

Satellite based spectral monitoring has been used to 

differentiate bog from surrounding surface cover, such 

as sedge lands or grasslands, and identify any gain or 

loss in woody vegetation (Lechner et al., 2012). Such 

methods are effective in monitoring swamps, if the 

phenology of the vegetation is documented, and 

especially, if changes in phenology due to presence or 

absence of water is known (CoA, 2014). Natural 

fluctuations in variability over time are indicative of 

growth rates and phenology which could be analyzed 

using remote sensing images of wet and dry seasons. 

Existing phenology products such as Australian 

Phenology Product available from Terrestrial 

Ecosystem Research Network (TERN) is coarse 

(5.6 km) in resolution and limited to regional level 

ecosystem modelling. THPSS sites represent small 

patches of the diverse ecosystem, which limits the 

applicability of readily available regional phenology 

products. Ground-based phenological survey products 

could not be found for the study area. Through the 

development of appropriate UAV-based sensing 

systems, this study acts as a foundation to generate 

fine-scale vegetation maps through UAV-based remote 

sensing surveys in future. 

Within the Sedgeland-complex class the composition 

of species varies from one region in the swamps to 

another, and these subtle variations result in 

homogenous to heterogeneous conglomerations of 

target species as different sub-categories. Banerjee et 

al. (2017) identified the challenges in classifying these 

sub-categories of Sedgeland complex as distinct 

classes, due to the scale at which these species are 

mixed together, resulting in complex spectral and 

structural intermixing. However, it was essential to 

treat these sub-categories distinctly for biophysical 

parameter retrieval. Hence, the species composition 

mapping through further investigations has been 

performed using UAV-hyperspectral, however, only 

spectral information was insufficient in accurately 

mapping complex assemblages of species in swamp 

environments (Banerjee et al., 2020). Therefore, this 

study investigated the potential of LiDAR as a 

structural modality in mapping vegetation 

communities in diverse ecosystems. Additionally, the 

classification maps produced with the UAV-LiDAR 

system are less prone to shadow effects than optical and 

hyperspectral datasets. In future, a fusion based 

approaches between UAV based hyperspectral and 

LiDAR datasets could be valuable in accurately 

mapping complex vegetation communities. 

5 Conclusion 

Traditional satellite and airbone remote sensing has 

been a widely used tool in scientific research and 

environmental monitoring at global and regional 

levels. Its adoption in fine-scale monitoring and 

mapping related applications has been challenging due 

to limited spatial resolution, atmospheric noise and 

cloud cover. The advent of near earth imaging systems 

such as UAV-LiDAR has offered the potential in detail 

mapping and monitoring of landcover units. Although 

these systems are popular in allied disciplines such as 

agriculture and forestry, their application for 

monitoring complex ecosystems and environments 

such as swamps has been limited. This is partly due to 

the absence of an existing methodological framework 

and challenges in using UAV-based sensor systems in 

these sensitive and complex environments.  The 

primary objective of this research was to develop a 

functional UAV-based LiDAR sensing system, 

including a workflow to generate accurate datasets and 

products for environmental monitoring applications. A 

critical review was undertaken to identify the current 

state and limitations of UAV-based LiDAR 

technologies for mine environmental monitoring 



research. Several issues that make effective use of these 

technologies challenging for seamless data generation 

and processing were identified and resolved, leading to 

the classification of complex vegetation communities 

in sensitive ecosystems. The technology and 

methodology demonstrated herein would be potentially 

valuable in identifying changing conditions or the 

health of ecosystems. 
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