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Abstract

In this paper, we introduce a novel algorithm that unifies manifold embedding and clustering (UEC) which efficiently predicts

clustering assignments of the high dimensional data points in a new embedding space. The algorithm is based on a bi-objective

optimisation problem combining embedding and clustering loss functions. Such original formulation will allow to simultaneously

preserve the original structure of the data in the embedding space and produce better clustering assignments. The experimental

results using a number of real-world datasets show that UEC is competitive with the state-of-art clustering methods.
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Abstract—In this paper, we introduce a novel algorithm
that unifies manifold embedding and clustering (UEC) which
efficiently predicts clustering assignments of the high di-
mensional data points in a new embedding space. The
algorithm is based on a bi-objective optimisation problem
combining embedding and clustering loss functions. Such
original formulation will allow to simultaneously preserve
the original structure of the data in the embedding space
and produce better clustering assignments. The experimental
results using a number of real-world datasets show that UEC
is competitive with the state-of-art clustering methods.

Index Terms—Clustering, manifold embedding, joint opti-
misation, deep representation learning.

I. Introduction

CLUSTERING is a fundamental pillar of unsuper-
vised machine learning and it has received increas-

ing popularity among various research communities.
There are two ways for applying clustering algorithms,
either by operating on data in the original space or
projecting data into a new space. Such a projection which
can be either linear or non-linear transformation, is often
done through dimensionality reduction techniques such
as Isomap [1], local linear embedding (LLE) [2], and
Laplacian eigen-maps [3]. These techniques embed data
in a new space based on the manifold local geometric
structure. Once embedding is done, clustering can be
applied in a straightforward way on the transformed
data [4], [5], [6].

With the advent of deep learning, work on clustering
has seen a new direction which is based on deep rep-
resentation learning leading to a number of algorithms
such as Deep Embedding Clustering (DEC) [7], Joint Un-
supervised LEarning (JULE) [8], DEeP Embedded Regu-
larIzed ClusTering (DEPICT) [9], Deep Adaptive Image
Clustering (DAC) [10], Information Maximising Self-
Augmented Training (IMSAT) [11], Spectral-Net [12],
and Deep Clustering by Gaussian Mixture Variational
Autoencoders with Graph Embedding (DGG) [13]. Based
on nonlinear embedding, these algorithms showed excel-
lent clustering results.
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Despite the ability of these techniques to learn the
intrinsic structure of data, they suffer the problem of
inherent defects that exist in the embedding space. In
addition, they do not focus on learning from the sim-
ilarities between the data points, therefore, the global
and local structure of the data set are not preserved
in the low dimensional spaces of these techniques. In
contrast, the manifold learning techniques, including
algorithms such as Isomap [1], t-SNE [14] and UMAP
[15], tend to preserve similarities and project similar data
points to a nearby representation, while dissimilar ones
are projected far apart preserving the local and global
structure of data.

In this paper, we propose an algorithm that can learn
to simultaneously produce a low-dimensional embed-
ding space and assign data to clusters. It is motivated
by the fact that manifold learning-based techniques
[16], [17] improve the quality of clustering when jointly
learned [18]. The proposed algorithm, called Unified
Embedding and Clustering (UEC). It seeks to learn the
embedding space in a way similar to UMAP [15]. Firstly,
UEC takes the extracted features using deep autoencoder
[19], [20]. Then it initialises both the low dimensional
space and the cluster assignments. In order to improve
the embedding and the quality of the assignment of the
data, UEC optimises a two-term objective function that
controls both embedding and clustering.

Our contributions in this paper are:
• The proposal of a novel manifold-based learning

algorithm that simultaneously learns the embedding
space of the data and the clustering assignments.
The joint optimisation of both the embedding and
clustering objective functions leads to better preser-
vation of the similarities in the original space and
clusterability of the embedding space.

• The theoretical derivations of the optimisation pro-
cess associated with the proposed UEC.

• Extensive evaluation against state-of-the-art cluster-
ing methods to show the superiority of UEC.

The rest of this paper is organised as follows: Section II
reviews related work. Section III describes the proposed
algorithm. Section VI discusses the experimental results
before concluding the paper in Section Sec VII.

II. Related work

Clustering has been extensively studied in the lit-
erature resulting in a plethora of algorithms such as
the well-known algorithms K-means [21], [22], GMM
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[23], the agglomerative clustering [24], DBSCAN [25],
[26], and Spectral Clustering [27], [28]. They can
be categorised into distance-based, density-based or
connectivity-based algorithms, depending on their con-
ceptual idea [29]. Despite the popularity of these tech-
niques, they are not efficient in all cases and suffer from
high computational complexity when dealing with large-
scale data sets.

To solve the aforementioned issues, dimensionality
reduction techniques have been used to map data in
low dimensional space. The dimensionality reduction
methods can be categorised to deep or manifold learning
methods. Manifold embedding methods can focus on
local or global structure. The well-known algorithm Prin-
cipal Component Analysis (PCA) [30] seeks to produce
a linear transformation of data into a new feature space.
However, due to its linearity, PCA does not perform well
in cases where relationships are non-linear. Thankfully,
alternative manifold learning methods exist to over-
come the shortcoming of linearity. The most popular
ones are Isomap [1] and its precursor Multidimensional
Scaling (MDS), Locally Linear Embedding (LLE) [2].
t-distributed Stochastic Neighbour Embedding (t-SNE)
[14] and the most recent algorithm UMAP [15]. These
methods seek to utilise the distances between the origi-
nal data points to learn the underlying structure better
and preserve the similarity among data points in the low
dimensional space. A number of techniques [17], [18],
[16], proved powerful to support clustering.

In dimensionality reduction methods, various autoen-
coders [31], [20] and CNNs [32], [33] have been proposed
showing significant improvements on many computer
vision tasks [34], [35], [36], [37], [38]. Recent research on
clustering has explored the application of deep learning
for both dimensionality reduction and clustering, named
deep clustering [39], [40]. We divide those techniques
into two classes according to how they do their optimisa-
tion: The first class includes the techniques, that use one
loss function. The second class contains the techniques
that use two loss functions (embedding and clustering
loss functions). We find in the sequential techniques
DEC [7], N2D [17], JULE [8], IMSAT [11], AND DAC
[10]. DEC trains an autoencoder to learn features and
imposes a soft assignment constraint on them. However,
how to effectively pre-train deep networks is an open
problem. N2D [17] passes the extracted features using
deep autoencoder to UMAP followed by GMM [23]
applied on the embedding space to cluster the data.
However, its simplicity makes it a trivial method and
not suitable for complected data sets.

JULE [8] uses a convolutional neural network with
agglomerative clustering loss without the need for any
reconstruction loss. In every iteration, hierarchical clus-
tering is performed on the forward pass using an
affinity measure and representations are optimised on
the backward pass. However, the limitation of JULE
is the computational and memory complexity issues,

due to the undirected affinity matrix constructed by the
agglomerative clustering loss function. IMSAT [11] is
based on data augmentation, where the net is trained
to maximise the mutual information between data and
predicted clusters, while regularising the net so that the
cluster assignment of the original data will be consistent
with the assignment of augmented data. DAC [10] uses
a convolutional neural network with a binary pairwise
classification as clustering loss. It is based on the as-
sumption that the relationship between pairwise images
is binary. It also adds a regularisation constraint that
helps learn label features as one hot encoded features,
and the similarity is computed as the dot product of
these label features. Spectral-Net [12] is a method based
on spectral clustering. It attempts to learn a network that
maps the training data into the eigen-space of the graph
Laplacian matrix. Then a Siamese network is applied
to learn the weights of the connections between the
graph’s nodes before k-means is used to perform the
final clustering.

On the other hand, we find a set of techniques be-
longing to the interlaced family such as DEPICT [9]
and DERC [18]. DEPICT [9] consists of a convolutional
autoencoder and a single layer classifier, which learns
the latent features and the distribution of the cluster
assignments. DEPICT is optimised by minimising the
reconstruction error and the relative entropy between the
distributions of the cluster assignments and their prior.
Deep Embedded Dimensionality Reduction Clustering
(DERC) [18] is a combination of deep autoencoder and
t-SNE to represent the data. Then, centres of the clusters
are initialised using GMM and incorporate a probability-
based triplet loss measure to retrain their model and
improve the clustering performance of the model.

All the models mentioned above are based on
deep learning, which requires tuning of many hyper-
parameters. In contrast, our model does not need any
supervisory signals for hyper-parameter tuning. The
models which use autoencoder to produce the low-
dimensional space have the issue of the inherent defects
that exist in the embedding space. In addition, their
way of optimising the embedding space does not focus
on preserving the data’s global and local structure. In
contrast, our model can maintain the data’s global and
local structure by learning from the similarities, which
leads to a better clustering assignment.

III. Unification of Manifold Embedding and

Clustering

Before discussing the details of the proposed method,
the list of symbols to be used in the rest of this paper is
introduced as follows (Tab I):
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TABLE I
Description of all used symbols

Symbols Description
Y input data points: Y = {y}n

i=1, yi ∈ R f

Z The representation of the data in the embedding space:
Z = {z}n

i=1, zi ∈ Rd

M the set of cluster centres: M = {µ}C
k=1, where C is the

number of clusters
pi|j Probability distribution between the input data points

yi and their jth nearest neighbour. These form the
matrix: P = {pij} to be defined later

qij the probability distribution between the embedded
data point zi and its jth nearest neighbour: Q = {qij}

Sik the Soft assignment distribution that indicates the
probability between the points zi and the cluster centre
µk : S = {sik}

Tik Auxiliary target distribution: T = {Tik}
CE Binary cross entropy representing the adopted embed-

ding loss function
KL Kullback–Leibler divergence representing the adopted

clustering objective function
F total loss as a Weighted sum function of both CE and

KL

The proposed algorithm, UEC, aims to preserve the
closeness in the input space when mapping the data into
the output space. Thus, data points with similar char-
acteristics are projected nearby, and dissimilar ones are
mapped apart. Like with general manifold embedding,
UEC considers the original data as a high-dimensional
graph to be transformed into a lower-dimensional one.

UEC is about mapping high dimensional input data
into a lower-dimensional embedded space while consid-
ering clustering constraints. To achieve that, UEC tries
to optimise the following objective function:

F = α CE⊕ β KL (1)

The first term (CE) is the cross-entropy that assesses the
quality of the embedding in the low-dimensional space.
It is referred to as the embedding loss function. The
second term (KL) is the Kullback-Leibler divergence and
is used to assess the clustering quality. It is referred to
as the clustering loss function. The quantities α and β
define the relative weights of the two-loss component
of the overall function and serve to control the trade-off
between embedding and clustering.

We can optimise this function in two different ways.
Each of them follows an interpretation of the ⊕:

1) ⊕ = ’,’ (comma) that indicates sequential opera-
tions: evaluate the embedding using CE, then assess
the clustering using KL to update first the embed-
ded data points and then the cluster centres. This
scenario is referred to as sequential update.

2) ⊕ = ’+’ (plus) that indicates that the evaluation of
Eq. 1 is done in one combined step (multi-objective
function) to update the sought quantities simultane-
ously. This scenario is referred to as joint update.

Equation 1 actually depends on a number of quantities
(matrices), namely P, Q, T and S described in Table I. The
matrix P forms the affinity scores between the individual
data points and their nearest neighbours in the input
space. The matrix, Q, represents the similarities between

the data points in the embedding space. The matrix S is
a soft assignment of embedded data to clusters, while T
represents the probabilistic point-to-cluster assignments
using the obtained soft assignment S (The formal defi-
nition of these matrices will follow below). Equation 1

can be rewritten as follows:

F(P, Q, T, S) = α CE(P, Q)⊕ β KL(T||S) (2)

Clearly, CE computes the total entropy between P and
Q, while KL measures the relative entropy (divergence)
between S and T.

This objective function will be used to analytically
compute the coordinates of the set Z and the centres
M. Before delving more into the details, it is worthwhile
to portray the structure of the UEC algorithm.

Algorithm 1 UEC
Input: Dataset Y = {yi}n

i=1, number of cluster C
Output: Embedded dataset Z = {zi}n

i=1, set of centres
M = {µk}C

k=1.

1: Compute the affinity matrix for the input data Y
Eq. 3 and 4.

2: Initialise the embedding space of dimension d.
3: Initialise the cluster centres.
4: while The convergence criterion is not met do
5: Compute the affinity matrix for the embedded

data Z, Eq. 5.
6: Compute the soft assignment of the embedded

data to the clusters S(Z, M), Eq. 6.
7: Compute the probabilistic point-to-cluster as-

signments using the obtained soft assignment
T (Z, M), Eq. 7.

8: Update the coordinates of the embedded data Z,
as in Eq. 13.

9: Update the centres, as in Eq. 11.
10: end while

IV. Formulation of the algorithm ingredients

A. Computation of the affinity matrix P
The affinity matrix P represents the similarity scores

between pairs of data points using the exponential prob-
ability:

pi|j = exp(−
d(yi, yj)− ρi

σi
) (3)

where d(yi, yj) is the distance between the ith data
point and its jth nearest neighbour, ρi is the distance
between ith data point and its first nearest neighbour.
The quantities ρi and σi ensure the local connectivity
of the manifold. We use a symmetrization of the high-
dimensional probability, since the weight of the edge
between the ith and jth nodes is not equal to the weight
between jth and ith nodes. The final formulation of P is
given as follows:

pij = pi|j + pj|i − pi|j pj|i (4)
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B. Initialisation

To initialise the embedding space and the centres of
the clusters, we use respectively spectral embedding [41]
and a centroid-based algorithm (e.g., k-means, GMM,
etc.).

C. Computation of Q

The affinity matrix Q represents the similarity scores
between each embedded data point and its neighbours.
It is computed using a smooth approximation of the
membership strength:

qij = (1 + a
∥∥∥zi − zj

∥∥∥2b

2
)−1 (5)

The parameters a and b are defined using the piece-wise
non-linear least-square fitting method.

D. Computation of the soft assignments S

The matrix S is computed using a smooth approxima-
tion of the membership strength between the embedded
points zi and the cluster centres µk as follows:

Sik = (1 + a
∥∥zi − µk

∥∥2b
2 )−1 (6)

We could also consider the following form like in DEC
[7] (which is inspired from t-SNE [14]):

Sik =
(1 + a

∥∥zi − µk
∥∥2b

2 )−1

∑k(1 + a
∥∥zi − µk

∥∥2b
2 )−1

However, it has been shown in UMAP [15] that the
normalisation increases processing time without bring-
ing any improvements in the accuracy. It can be exper-
imentally shown that avoiding normalisation does not
affect the quality of clustering.

E. Computation of the auxiliary target distribution T

The matrix T should satisfy three constraints: (1) im-
proving the cluster purity; (2) ensuring high-confidence
assignments get more emphasis; and (3) preventing large
clusters from distorting the embedding space by normal-
ising the loss contribution of each centre. A formulation
that addresses these constraints is given as follows:

Tik =
Sik/∑l Slk

∑m(Slm/∑l Slm)
(7)

F. Formulation of the optimisation problem

The coordinates of the data points and the centres
of the clusters are updated in light of the minimisa-
tion of two objective functions: the embedding and the
clustering loss functions. These functions are coupled in
Eq. 2. Before discussing the two optimisation options
presented earlier, we first formulate the first term, which

is the embedding objective loss represented as binary
cross-entropy (CE). CE is given as follows:

CE(P, Q) = ∑
i

∑
j
[pij log(

pij

qij
) + (1− pij) log(

1− pij

1− qij
)]

(8)
where P and Q are the probabilistic similarity scores
of the input data Y and that of the embedded data Z
respectively. The second term is the clustering objective
function which is defined as the Kullback–Leibler (KL)
divergence function between the soft assignments S and
the auxiliary distribution T. KL divergence function
refines the clusters by learning from the high-confidence
assignments with the help of auxiliary target distribu-
tion:

KL(T||S) = ∑
i

∑
k

Tik log
Tik
Sik

(9)

Now that the objective function, its individual terms
and all quantities used have been defined, we discuss
the optimisation problem to update the coordinates of Z
and the clusters’ centres.

V. Optimisation of the objective function

The coordinates of the data point zi and cluster centres
µj are updated at each time step t until the criterion
convergence parameter is met. We use Stochastic Gradi-
ent Descent (SGD) and negative sampling algorithms as
optimisation algorithms due to their rapid convergence
and their low memory consumption. The optimisation
steps, as illustrated in Alg. 1, are repeated until the
change in the cluster assignment of the points is less
than a threshold 1e− 5.

As indicated earlier, the update of zi and µj can take
place according to two variants.

A. Sequential (Comma) variant
Here the terms of the objective function are sequen-

tially evaluated.
1) Update of the embedding: The coordinates of the

data in the embedded space will be updated twice in
a sequential manner. The first update stems from the
embedding loss is given as follows:

zi(t + 1) = zi(t)− η
δCE
δzi

where η is a learning rate. The quantity δCE
δzi

is ex-
pressed as follows:

∂CE
∂zi

= ∑
j

 2bpij

1/(a
∥∥∥zi − zj

∥∥∥2(b−1)

2
) +
∥∥∥zi − zj

∥∥∥2

2

−
2b(1− pij)∥∥∥zi − zj

∥∥∥2

2
(1 + a

∥∥∥zi − zj

∥∥∥2b

2
)

∥∥∥zi − zj

∥∥∥ (10)
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For more details, please see Appendix A. While the
second update of the coordinates of zi comes from the
clustering loss.

zi(t + 1) = zi(t)− η
δKL
δzi

The partial derivative of the clustering loss function
(KL) given by Eq. 9 w.r.t. zi reads as follows:

∂KL
∂zi

= ∑
k

2ab
∥∥zi − µk

∥∥2b−1
2 Tik

1 + a
∥∥zi − µk

∥∥2b
2

2) Update of the cluster centres: The centres µk do not
depend on the embedding loss function. Hence, the
centres of the clusters are updated using the derivative
of the clustering loss function, the KL-divergence (Eq. 9),
as follows:

µk(t + 1) = µk(t)− η
δKL
δµk

(11)

where η is a learning rate, and δKL
δµk

is as follow:

δKL
δµk

= ∑
i
−

2ab
∥∥zi − µk

∥∥2b−1
2 Tik

1 + a
∥∥zi − µk

∥∥2b
2

(12)

B. Combined (plus) variant
The main difference between the combined and the

sequential variants is that in the former, the clustering
influences both the computation of zi and µj.

1) Update of the embedding: According to this second
variant, the coordinates of the data points zi are updated
using the embedding and the clustering loss functions
simultaneously.

From Eq. 1, the update is executed as follows:

zi(t + 1) = zi(t)− η
∂F
∂zi

(13)

= zi(t)− η

(
α

δCE
δzi

+ β
δKL
δzi

)
(14)

Where δCE
δzi

is given by Eq. 10 and δKL
δzi

is given as follows:

∂KL
∂zi

= ∑
k

[
∂Tik
∂zi

(1 + log
Tik
Sik

)

+
2bTik

1/
∥∥zi − µk

∥∥2b−1
2 +

∥∥zi − µk
∥∥2

2


+ ∑

i′ 6=i
∑
k

[
∂Ti′k
∂zi

(1 + log
Ti′k
Si′k

)

]
(15)

The derivative of KL is the sum of 2 terms since the
derivation of Tik with respect to zi is computed according
to two cases: 1). when i′ = i and 2). when i′ 6= i (please
see Appendix B for more details).

The final formulation of the update is obtained by
combining Eq. 10 and Eq. 15:

∂F
∂zi

= α
∂CE
∂zi

+ β
∂KL
∂zi

(16)

2) Update of the cluster centres: Since CE doesn’t de-
pend on µk, only the clustering loss function, KL is
relevant:

∂KL
∂µk

= ∑
i

∂Tik
∂µk

(1 + log
Tik
Sik

)−
2ab
∥∥zi − µk

∥∥2b−1
2 Tik

1 + a
∥∥zi − µk

∥∥2b
2


+ ∑

i
∑

k′ 6=k

[
∂Tik′

∂µk
(1 + log

Tik′

Sik′
)

]
The derivative of the KL divergence is the sum of

two parts requiring the consideration of two cases: when
k′ = k and when k′ 6= k. For more detail, please, see
Appendix B.

C. Light combined variant
In the combined variant, we consider that the update of

zi and µk depends on the auxiliary target distribution,
T. While this variant improves the performance of the
proposed UEC significantly, it is not highly efficient in
terms of computational time due to the heavy compu-
tation involved in the gradient descent update, hence
this light version of the combined variant. The underlying
assumption of this third variant is to consider Tik not
dependent on zi and µk.
1) Update of the embedding: KL divergence is derived

with respect to zi:

∂KL
∂zi

= ∑
k

2ab
∥∥zi − µk

∥∥2b−1
2 Tik

1 + a
∥∥zi − µk

∥∥2b
2

(17)

By substituting the derivative of CE (Eq. 10) and the
derivative of KL divergence (Eq. 17) in the total loss
function (Eq. 16), we then obtain the final update of
zi(t + 1) as shown in Eq. 14.
2) Update of the cluster centres: Now for the derivative

of total loss F (Eq. 1) with respect to µk is computed only
for KL-divergence function which depend on the cluster
centroids. The formulation obtained in the sequential
variant derivations will be applied here for updating the
centres (See Eqs. 11 and Eq. 12).

VI. Experiments and discussion

In this section we will show the performance of the
proposed 3 variants of UEC on a set of benchmarks.
Specifically, we will discuss the following experiments:
• In the first experiment we evaluate the three variants

and compare their performance, see Sec. VI-A.
• In the second experiment we study the sensitivity

of UEC variants with respect to the initialisation of
the clusters’ centres, see Sec. VI-B.

• In the third experiment, we discuss the weight α and
β in Eq. 1 and their effect, see Sec. VI-C.

• In the fourth experiment, we compare the perfor-
mance of UEC variants against the state-of-the-art
clustering methods, see Sec. VI-D.

• The final experiment discusses the performance of
the UEC variants in term of the internal validation
clustering, see Sec. VI-E.
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Datasets
We conduct experiments on four benchmark datasets

given as follows:
1) USPS: consists of 9298 images belonging to 10 dif-

ferent classes. Each image is 16x16 gray image [42].
2) MNIST: consists of 10 handwritten digits with a

total of 70,000 images. Each image is a 28x28 gray
image [43].

3) CIFAR10: is a dataset of 60000 samples with 10

classes, where each sample is a 32x32 RGB image
[44].

4) Reuters 10K: is English news data set [45] consisting
of 10700 documents. Similar to [7], we use four (4)
categories/classes and discard all documents that
are labelled by multiple root categories. We removed
stop words and used tf-idf representation of 2000

most frequent words.

Evaluation Metrics
Accuracy: We evaluate all clustering methods with

clustering ACCuracy (ACC) which is defined as the best
match between the ground truth and predicted labels:

ACC = maxm
∑n

i=1 1{GTi = m(PLi)}
n

where GTi and PLi are the ground truth and predicted
label of example zi respectively, and m is a one to one
mapping from predicted label to ground truth label.

1) Normalised Mutual Information (NMI): is a nor-
malisation of the mutual information score to scale the
results between 0 which means no mutual information
and 1 represent the perfect correlation. NMI formula is
given by:

NMI =
2I(y, c)

[H(y) + H(c)]

Implementation Details
In the optimisation step of UEC, the minimisation of

our weighted sum function is conducted using Stochastic
Gradient Descent and Negative Sampling algorithm. We
set the learning rate to 1.0 and then decreased it by a
factor of 10 every 10 epochs. The number of epochs is
set to 200 for big data sets and 500 for small ones. For
the image data sets, we use a deep autoencoder to extract
the features. Our UEC source code is publicly available
on:

A. Comparison of the variants
In this experiment, We evaluate the performance of

each variant of the UEC (comma variant, plus variant,
light plus variant) in term of accuracy and run-time
execution. Table II represents the results of the three
UEC variants evaluated by the accuracy measure, where
The experiments are conducted on the original data

Fig. 1. Execution time (in seconds) using the original data sets.

sets. We can see that the clustering performance of Plus
variant is better than the other two versions. However,
Table III shows that Comma variant and Light plus variant
are better than Plus variant in the execution time, due
to that Plus variant has a huge amount of calculation
operations, as in Appendix B which shows the big num-
ber of equations. Comma variant and Light plus variant
are approximately near to each other in the execution
time. However, Light plus variant is better than Comma
variant in the clustering performance. Therefore, these
results support our claim that the joint optimisation of
embedding and the clustering loss functions improves
the clustering performance of our algorithm. In contrast,
we reduced the execution time.

TABLE II
Accuracy (ACC) performance using the original data sets.

Models Dataset
USPS MNIST CIFAR-10 Reuters

Comma variant 0.969 0.962 0.478 0.950

Plus variant 0.980 0.988 0.525 0.976

Light plus variant 0.977 0.985 0.513 0.974

TABLE III
Execution time (in seconds) using the original data sets.

Models Dataset
USPS MNIST CIFAR-10 Reuters

Comma variant 110 150 215 84

Plus variant 760 2526 2853 1380

Light plus variant 87 115 179 60

UMAP 105 140 210 80

Notice: Based on the results achieved by the three versions
of UEC in the upcoming experiments, in Sec. VI-B and
Sec. VI-C, we use only the Light plus variant since it is
the fastest one among the three versions and its clustering
performance is near to Plus variant.

B. Centre Initialisation
In this experiment, we analyse the sensitivity of our

algorithm toward the initialisation of the clusters’ cen-
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TABLE IV
Effect of centre initialisation on the performance.

Algorithm initialisation Dataset
USPS MNIST CIFAR-10 Reuters

random 0.972 0.980 0.482 0.970

K-means 0.977 0.985 0.513 0.974

GMM 0.975 0.983 0.510 0.974

TABLE V
Effect of α and β on the performance.

β
α 0 0.2 0.8 1

0 0.615 0.951 0.955 0.958

0.2 0.957 0.959 0.962 0.965

0.8 0.965 0.968 0.971 0.974

1 0.971 0.973 0.975 0.977

tres. We perform three types of initialisation using k-
means, Gaussian mixture models (GMM) and randomly
chosen medoids. The experiments are conducted using
Light plus variant on the original data sets (see Section
VI-A). Table IV shows the performance of our algorithm
using the three initialisation evaluated by the accuracy
measure. We can see that our algorithm is not sensitive to
the type of initialisation adopted (even with the random
initialisation, it achieves good results).

Notice: based on the achieved results, in the upcoming
experiments we use k-means to initialise the centres.

C. Effect of α and β

In order to study the effect of the parameter α and
β on the loss function. Recall that α is related to the
embedding loss, while β is related to clustering. The
goal here is to vary them in the unit interval [0, 1] and
observe their effect on the algorithm performance and
the execution time. The experiments are conducted using
Light plus variant following the note in Sec. VI-A.

To analyse the effect of the parameters, two experi-
ments are designed as follows:
1) Experiment 1: we study the effect of the parameters

on the gradient magnitude order of both embedding
and clustering loss functions with respect to zi by
varying α and β between the interval [0, 1]. Using
the USPS dataset, the accuracy results obtained are
presented in Tab. V (for more visibility see Fig. 2).
Clearly, the algorithm achieves better results when α
and β both go to 1 and worst results when they go
to 0 (since only the centroids move). If we allow data
points to move, the model makes a quantum leap in
its performance. As we see in the Tab. V comparing
the outcome when the parameters are set to 0 and
0.2 respectively, the accuracy increases from 0.61 to
0.95. As β increases, the performance improves, but
as α increases, the performance remains relatively
constant. We can also observe that the execution time
increases when α decreases (because the algorithm
needs more epochs to converge).

Fig. 2. Effect of α and β on the performance.

TABLE VI
Effect of different values of α and β on the accuracy.

β
α 0 0.2 0.8 1

0 0.594 0.942 0.948 0.954

0.2 0.949 0.952 0.956 0.960

0.8 0.964 0.966 0.969 0.971

1 0.970 0.971 0.973 0.974

2) Experiment 2: we Study the effect of varying α and
β on a modified gradient magnitude order of both
embedding and clustering loss functions. The gradi-
ent values of the embedding loss are found to be in
] − 20, 20[, while those of the clustering loss are in
]0, 20[. However, the majority of the values for the
gradient of embedding and clustering loss functions
are in [−4, 4] and [0, 1], respectively. We, therefore,
clip the values of embedding loss gradient to [−4, 4]
and we divide the values by 4 to bring it to the
interval [−1, 1]. The values of clustering loss gradient
are clipped to [0, 1]. Table VI (see also Fig. 3 for
more visibility) shows the accuracy of the algorithm
after the clipping transformation. We can observe that
there is a slight positive change in the performance
results.

D. Comparative Study

1) Baseline Methods: The proposed UEC is compared
with a set of clustering methods including state-of-the-
art deep clustering methods: k-means [21], deep em-
bedded clustering (DEC) [7], Joint Unsupervised Learn-
ing (JULE) [8], Deep Embedded Regularised Clustering
(DEPICT) [9], Deep Adaptive Clustering (DAC) [10],
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Fig. 3. Effect of α and β on the accuracy.

Information Maximising Self-Augmented Training IM-
SAT [11]. Spectral Net [12], and Deep clustering via
a Gaussian mixture variations autoencoder (VAE) with
Graph embedding (DGG) [13]. For these methods, the
performance results are taken from the original publica-
tions.

2) Experiment results: Tables VII and VIII outline the
performance in terms of accuracy and NMI, respectively.
The top three accuracy scores are highlighted, while
those marked by (?) and (??) are reported in [9] and [10]
respectively. The dash mark (-) means that the result was
not reported in the referenced paper. Table VII shows
that UEC outperforms the other algorithms across all
benchmarks. It outperforms most of the deep clustering
methods by a significant margin. It is worthwhile to
mention that deep autoencoders improved the perfor-
mance of the UEC algorithm. This later did not need any
fine-tuning, in contrast to other deep clustering models,
which require tweaking several hyper-parameters and
fine-tuning to achieve their better results. This advan-
tage makes UEC significantly a better embedding-and-
clustering choice compared to the other alternative clus-
tering models.

Tables VII and VIII outline the performance in terms of
accuracy and NMI, respectively. The results achieved by
UEC or even by other methods prove that representation
learning plays an important role in the clustering pro-
cess. The fact that UEC is a manifold-based embedding
method helps in the clustering process and improves its
performance.

TABLE VII
UEC vs. other baselines: accuracy scores.

Models Dataset
USPS MNIST CIFAR-10 Reuters

k-means [21] 0.668 0.572 0.228 0.524

DEC (2016) [7] 0.619? 0.843 0.301?? 0.722

JULE (2016) [8] 0.950? 0.964? 0.271?? -
IMSAT (2017) [11] - 0.984 0.456 0.719

DEPICT (2017) [9] 0.964 0.965 - -
DAC (2017) [10] - 0.978 0.522 -
Spectral Net (2018) [12] - 0.971 - 0.803

DGG (2019) [13] - 0.976 - 0.823
DERC (2020) [18] 0.977 0.975 - -
UEC (Plus variant) 0.980 0.988 0.525 0.976
UEC (Light plus variant) 0.977 0.985 0.513 0.974

TABLE VIII
UEC vs. other baselines: NMI scores.

Models Dataset
USPS MNIST CIFAR-10

k-means [21] 0.450 0.499 0.087

DEC (2016) [7] 0.586? 0.816? 0.256??
JULE (2016) [8] 0.913 0.913 0.192??
DEPICT (2017) [9] 0.927 0.917 -
DAC (2017) [10] - 0.935 0.395
Spectral Net (2018) [12] - 0.924 -
DERC (2020) [18] 0.942 0.927 -
UEC (Plus variant) 0.948 0952 0.407
UEC (Light plus variant) 0.933 0.948 0.394

E. Internal validation

The goal of clustering is to assign similar data objects
to the same cluster and dissimilar ones to different clus-
ters. Internal validation intends to quantify the quality
of clustering usually using two criteria: Compactness and
Separation. The first criterion measures how similar the
data objects are in the individual clusters. The second
criterion measures how distinct or well-separated clus-
ters are from each other. Often these two criteria are
embedded in various clustering quality indices. In these
experiments we use three well-known internal validation
indices which are Davis-Bouldin (DB) [46], Silhouette
coefficient (S) [47] and Calinski-Harabaz (CH) [48]. The
values of the DB index are in [0,+∞], and lower values
imply better clustering. The values for the S index are
in [−1, 1] where values close to 1 and −1 indicate better
and worse results, respectively. The values of the CH
index are in [0,+∞], where higher values indicate better
clustering.

Tables IX, X and XI show the clustering quality scores
of the UEC variants. They indicate that the Plus variant is
the best among the three variants across comparing the
three indices. In fact, the UEC variants obtain approxi-

TABLE IX
Clustering quality using the Davies-Bouldin index.

Models Dataset
USPS MNIST CIFAR-10 Reuters

Comma variant 1.676 1.593 5.148 0.701

Plus variant 1.581 1.494 4.264 0.559

Light plus variant 1.634 1.555 4.721 0.623
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TABLE X
Clustering quality using the Silhouette index.

Models Dataset
USPS MNIST CIFAR-10 Reuters

Comma variant 0.201 0.219 -0.001 0.315

Plus variant 0.278 0.282 0.009 0.495

Light plus variant 0.222 0.231 0.006 0.417

TABLE XI
Clustering quality using the Calinski-Harabaz index.

Models Dataset
USPS MNIST CIFAR-10 Reuters

Comma variant 1123.754 9682.256 997.84 16481.130

Plus variant 1398.425 10189.580 1289.475 20142.254

Light plus variant 1211.068 9819.213 1179.962 18248.961

mately the same DB and S results on MNIST and USPS,
presumably because of the similar nature of these two
datasets. The results on CIFAR-10 are quite weak, maybe
because of the poor quality of the images leading to
cluster overlapping. On the other hand, the three variants
perform well on the Reuters dataset using each of the
three indices. In general, the UEC variants are capable
of preserving the between and within-cluster distances
because they are designed with the goal of preserving
the global and local structures of the data.

VII. Conclusion

We have proposed a new algorithm, UEC, that jointly
optimise the representation and clustering of data. UEC
is a manifold-based clustering algorithm that has the
capability to preserve the local and the global structure
of data and that seeks to learn the manifold within
the embedding space. It comes with three variants that
resulted from the optimisation process: Comma variant,
Plus variant, and Light plus variant.

The empirical results obtained through performance
and sensitivity analysis have shown the high effective-
ness of UEC across a number of large-scale benchmarks
and against a number of baseline algorithms.

Future work investigates the different optimisation
techniques and the objective functions to improve the
performance of the algorithm in terms of the evaluation
measures and run-time.

Appendix A
The derivation of the embedding objective function

(Cross Entropy)

The Cross-Entropy function depends only on zi, so in
this part, we derive the CE with respect to zi. For The
partial derivative of the CE with respect to zi we used
the same derivative of UMAP.

Let us first compute the derivative of qij and 1− qij
we have:

qij = (1 + a
∥∥∥zi − zj

∥∥∥2b

2
)−1 (18)

∂qij

∂zi
=
−2ab

∥∥∥zi − zj

∥∥∥2b−1

2

(1 + a
∥∥∥zi − zj

∥∥∥2b

2
)2

(19)

Now we can derive the CE objective function as fol-
lows:

CE(P, Q) = ∑
i

∑
j

[
pij log(

pij

qij
) + (1− pij) log(

1− pij

1− qij
)

]

= ∑
i

∑
j

[
pij log(pij)− pij log(qij)

+(1− pij) log(1− pij)− (1− pij) log(1− qij)
]

Since pij doesn’t depend on zi, the derivatives of
pij log(pij) and (1− pij) log(1− pij) are zero so we can
derived the CE as follow:

∂CE
∂zi

= ∑
j

[
−

∂qij

∂zi

pij

qij
−

∂(1− qij)

∂zi

1− pij

1− qij

]
(20)

We have 1− qij =
a
∥∥∥zi−zj

∥∥∥2b

2

1+a
∥∥∥zi−zj

∥∥∥2b

2

, now we will substitute

the last one, Eq. 18 and Eq. 19 in the Eq. 20 so we can
rewrite it as follow:

∂CE
∂zi

= ∑
j

−−2ab
∥∥∥zi − zj

∥∥∥2b−1

2

(1 + a
∥∥∥zi − zj

∥∥∥2b

2
)2

pij

(1 + a
∥∥∥zi − zj

∥∥∥2b

2
)−1

−
2ab
∥∥∥zi − zj

∥∥∥2b−1

2

(1 + a
∥∥∥zi − zj

∥∥∥2b

2
)2

1− pij

a
∥∥∥zi−zj

∥∥∥2b

2

1+a
∥∥∥zi−zj

∥∥∥2b

2



∂CE
∂zi

= ∑
j

2ab
∥∥∥zi − zj

∥∥∥2(b−1)

2
pij

1 + a
∥∥∥zi − zj

∥∥∥2b

2

−
2b(1− pij)∥∥∥zi − zj

∥∥∥2

2
(1 + a

∥∥∥zi − zj

∥∥∥2b

2
)

∥∥∥zi − zj

∥∥∥
Since the exponential power is taking long calculation

time, so we can reduce this term
2ab
∥∥∥zi−zj

∥∥∥2(b−1)

2

1+a
∥∥∥zi−zj

∥∥∥2(b)

2

as shown

below:

2ab
∥∥∥zi − zj

∥∥∥2(b−1)

2

1 + a
∥∥∥zi − zj

∥∥∥2(b)

2

=
2b

1/a
∥∥∥zi − zj

∥∥∥2(b−1)

2
+
∥∥∥zi − zj

∥∥∥2

2
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Now we can write the derivative of the embedding
loss function as follows:

∂CE
∂zi

= ∑
j

 2bpij

1/a
∥∥∥zi − zj

∥∥∥2(b−1)

2
+
∥∥∥zi − zj

∥∥∥2

2

−
2b(1− pij)∥∥∥zi − zj

∥∥∥2

2
(1 + a

∥∥∥zi − zj

∥∥∥2b

2
)

∥∥∥zi − zj

∥∥∥ (21)

Appendix B
Plus variant derivations

We describe how the clustering loss function is derived
considering the auxiliary target distribution Tik which
depends on zi and µk. First let us recall that Sik and Tik
are expressed as follows:

Sik = (1 + a
∥∥zi − µk

∥∥2b
2 )−1 (22)

Tik =
Sik/∑l Slk

∑m(Sim/∑l Slm)
(23)

The derivative of the objective function F with respect to
zi:

∂F
∂zi

= α
∂CE
∂zi

+ β
∂KL
∂zi

(24)

The derivation of the cross entropy is given in Appendix
A, while the derivation of the KL divergence with respect
to zi is given in the following.

KL(T||S) = ∑
i

∑
k

[
Tik log Tik − Tik log Sik

]
∂KL
∂zi

= ∑
k

∂Tik
∂zi

log Tik + Tik

∂Tik
∂zi

Tik
− ∂Tik

∂zi
log Sik −

∂Sik
∂zi

Tik
Sik


+ ∑

i′ 6=i
∑
k

∂Ti′k
∂zi

log Ti′k + Ti′k

∂Ti′k
∂zi

Ti′k

−∂Ti′k
∂zi

log Si′k −
∂Si′k
∂zi

Ti′k
Si′k

]
The derivative is formulated as a sum of two parts
since Tik needs to compute its derivative with respect
zi according to two cases. The first one when i′ = i and
the second case when i′ 6= i. Since i′ is different from i,
Si′k does not depend on zi (see Eq. 22), ∂Si′k

∂zi
= 0. We can

simplify the derivative as follows:

∂KL
∂zi

= ∑
k

[
∂Tik
∂zi

(1 + log
Tik
Sik

)− ∂Sik
∂zi

Tik
Sik

]
+ ∑

i′ 6=i
∑
k

[
∂Ti′k
∂zi

(1 + log
Ti′k
Si′k

)

]
(25)

The derivative of Sik with respect to zi is:

∂Sik
∂zi

= −
2ab
∥∥zi − µk

∥∥2b−1
2

(1 + a
∥∥zi − µk

∥∥2b
2 )2

We can write ∂Sik
∂zi

as follows:

∂Sik
∂zi

= − 2b

1/
∥∥zi − µk

∥∥2b−1
2 +

∥∥zi − µk
∥∥2

2

Sik (26)

To derive Tik, we need to distinguish two cases. The
first one corresponds to i′ = i (written as Tik) and the
second case corresponds to i′ 6= i (written as Ti′k). The
expression of Tik and Ti′k is the same as in Eq. 23.

Tik =
Sik/∑l Slk

∑m(Sim/∑l Slm)

Ti′k =
Si′k/∑l Slk

∑m(Si′m/∑l Slm)

Let us show the derivation of Tik with respect to
zi by considering the numerator and the denominator
separately. The numerator is given as:

Nik =
Sik

∑l Slk
(27)

and its derivative is:

∂Nik
∂zi

=

∂Sik
∂zi

∑l Slk − Sik
∂ ∑l Slk

∂zi

(∑l Slk)2

Since Slk depends on zi in the only case where l = i,
∂ ∑l Slk

∂zi
= ∑l

∂Slk
∂zi

, where ∂Slk
∂zi

= ∂Sik
∂zi

only when l = i and
∂Slk
∂zi

= 0 where l 6= i. Now we can write ∂Nik
∂zi

as follows:

∂Nik
∂zi

=

∂Sik
∂zi

∑l 6=i Slk

(∑l Slk)2 (28)

For the denominator which is expressed as:

Di = ∑
m

Sim

∑l Slm
(29)

the derivative with respect to zi is given as follows:

∂Di
∂zi

= ∑
m

∂Sim
∂zi

∑l Slm − Sim
∂ ∑l Slm

∂zi

(∑l Slm)2

In the same way and for all m, ∂ ∑l Slm
∂zi

= ∂Sim
∂zi

=

− 2ab(zi−µm)2b−1

(1+a(zi−µm)2b)2 . Consequently:

∂Di
∂zi

= ∑
m

∂Sim
∂zi

∑l 6=i Slm

(∑l Slm)2 (30)

The derivative of Tik with respect to zi is:

∂Tik
∂zi

=

∂Nik
∂zi

Di − Nik
∂Di
∂zi

D2
i

(31)

where Nik, ∂Nik
zi

, Di,
∂Di
zi

are substituted by Eqs. 27, 28, 29,
and 30 respectively in Eq.31.

Now we compute the derivative of Ti′k with respect
to zi. In Eq. 25, we use Ti′k to denote the case where
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i′ 6= i.. The numerator and the denominator are derived
separately. Like in Eq. 27, the numerator is given:

Ni′k =
Si′k

∑l Slk
(32)

Since Si′k does not depend on zi, its derivative is 0. Also
∂ ∑l Slk

∂zi
= ∑l

∂Slk
∂zi

such that ∂Slk
∂zi

= ∂Sik
∂zi

only when l = i and
∂Slk
∂zi

= 0 otherwise. The derivative of Nik with respect to
zi is:

∂Ni′k
∂zi

=
−Si′k

∂Sik
∂zi

(∑l Slk)2 (33)

where ∂Sik
∂zi

is given by Eq. 26.
Like in Eq. 28, the denominator is given as follows:

Di′ = ∑
m

Si′m

∑l Slm
(34)

Since Si′m does not depend on zi, its derivative is 0.
∂ ∑l Slm

∂zi
= ∑l

∂Slm
∂zi

where ∂Slm
∂zi

= ∂Sim
∂zi

only when l = i such

that ∂Sim
∂zi

= − 2ab‖zi−µk‖2b−1
2

(1+a‖zi−µk‖2b
2 )2

and ∂Slm
∂zi

= 0 otherwise. We

can write the derivative of D as follows:

∂Di′

∂zi
= ∑

m

−Si′m
∂Sim
∂zi

(∑l Slm)2 (35)

Now the derivative of Ti′k with respect to zi is:

∂Ti′k
∂zi

=

∂Ni′k
∂zi

Di′ − Ni′k
∂Di′
∂zi

D2
i′

(36)

where Ni′k, ∂Ni′k
zi

, Di′ ,
∂Di′

zi
are substituted by Eqs. 32, 33,

34, 35 respectively in Eq.36.

Now let’s recall the derivative of the KL-divergence,
Eq. 25:

∂KL
∂zi

= ∑
k

[
∂Tik
∂zi

(1 + log
Tik
Sik

)− ∂Sik
∂zi

Tik
Sik

]
+ ∑

i′ 6=i
∑
k

[
∂Ti′k
∂zi

(1 + log
Ti′k
Si′k

)

]

We substitute Sik and ∂Sik
∂zi

by Eqs.22 and 26 in Eq. 25. to
obtain:

∂KL
∂zi

= ∑
k

[
∂Tik
∂zi

(1 + log
Tik
Sik

)

+
2bSik

1/
∥∥zi − µk

∥∥2b−1
2 +

∥∥zi − µk
∥∥2

2

Tik

(1 + a
∥∥zi − µk

∥∥2b
2 )−1


+ ∑

i′ 6=i
∑
k

[
∂Ti′k
∂zi

(1 + log
Ti′k
Si′k

)

]

In Eq. 25, The term ∂Sik
∂zi

Tik
Sik

can be more simpler as
follow:

∂Sik
∂zi

Tik
Sik

= − 2bTik

1/
∥∥zi − µk

∥∥2b−1
2 +

∥∥zi − µk
∥∥2

2

Substituting ∂Sik
∂zi

Tik
Sik

in ∂KL
∂zi

by its expression, we obtain
the final formulation of the derivative of KL:

∂KL
∂zi

= ∑
k

∂Tik
∂zi

(1 + log
Tik
Sik

) +
2bTik

1/
∥∥zi − µk

∥∥2b−1
2 +

∥∥zi − µk
∥∥2

2


+ ∑

i′ 6=i
∑
k

[
∂Ti′k
∂zi

(1 + log
Ti′k
Si′k

)

]
(37)

A. Derivative of the total loss function with respect to zi

Now, we assemble the two parts, by substituting the
derivative of Cross Entropy (Eq. 21) and the derivative
of KL divergence (Eq. 37) in the derivative of the total
loss function to obtain:

∂F
∂µk

= α
∂CE
∂µk

+ β
∂KL
∂µk

∂F
∂zi

= α ∑
j

 2bpij

1/a
∥∥∥zi − zj

∥∥∥2(b−1)

2
+
∥∥∥zi − zj

∥∥∥2

2

−
2b(1− pij)∥∥∥zi − zj

∥∥∥2

2
(1 + a

∥∥∥zi − zj

∥∥∥2b

2
)

∥∥∥zi − zj

∥∥∥
2

+ β

(
∑
k

[
∂Tik
∂zi

(1 + log
Tik
Sik

)

+
2bTik

1/
∥∥zi − µk

∥∥2b−1
2 +

∥∥zi − µk
∥∥2

2


+ ∑

i′ 6=i
∑
k

[
∂Ti′k
∂zi

(1 + log
Ti′k
Si′k

)

] (38)

The update of zi is performed using ∂F
∂zi

where α and
β are parameters to be set.

However, Eq. 38 refers to the two fractions: log Tik
Sik

and log Ti′k
Si′k

which could involve division by 0. To solve
this problem we do some studies and analysis on the
definition domain of Sik and Tik, the sign of hyper-
parameter a, and the definition domain of log Tik

Sik
.

The sign of hyper-parameter ’a’

Define φ : Rd ×Rd → [0, 1], a smooth approximation
of the membership strength between two points in Rd:

φ(zi, zj) = qij = (1 +
∥∥∥zi − zj

∥∥∥2b

2
)−1
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where ’a’ and ’b’ are chosen by non-linear least square
fitting against the curve ψ : R×R→ [0, 1] where:

ψ(zi, zj)

=


1 i f

∥∥∥zi − zj

∥∥∥
2
≤min-dist

exp(−(
∥∥∥zi − zj

∥∥∥
2
−min-dist)) otherwise

So the sign of ’a’ is always positive since qij ∈ [0, 1]
and that is mean:

qij →


0 i f 1 + a

∥∥∥zi − zj

∥∥∥2b

2
→ +∞

1 i f a
∥∥∥zi − zj

∥∥∥2b

2
= 0

So since
∥∥∥zi − zj

∥∥∥
2

is always positive, we conclude that
’a’ is also always positive.

Definition domain of Sik and Tik

Define Sik : Rd × Rd → [0, 1], a soft assignment
between the data points and the cluster centroid in Rd:

Sik = (1 + a
∥∥zi − µk

∥∥2b
2 )−1 =

1

1 + a
∥∥zi − µk

∥∥2b
2

Sik is defined since⇔


∥∥zi − µk

∥∥2b
2 is defined

a
∥∥zi − µk

∥∥2b
2 6= −1

⇔


∥∥zi − µk

∥∥2b
2 is always defined

a 6= −1

‖zi−µk‖2b
2

is defined since a is positive

Now since Tik is based on Sik so it is also defined on
the interval [0, 1].

Definition domain of log Tik
Sik

Let us set g(zi, µk) = log Tik
Sik

g is defined if and only if⇔
{

Sik 6= 0 (1)
Tik
Sik

> 0
(39)

Where:

Tik
Sik

> 0⇔
{

Tik 6= 0 (2)
Sik and Tik has the same sign (3)

(40)

As we see in the previews Eq. 39 we have three condition
let us treat them separately. The first condition is satisfied
if and only if:

(1)⇔ 1

1 + a
∥∥∥zi − zj

∥∥∥2b

2

9 0⇔


1 + a

∥∥∥zi − zj

∥∥∥2b

2
9 ∞

1 + a
∥∥∥zi − zj

∥∥∥2b

2
6= 0

⇔


a
∥∥∥zi − zj

∥∥∥2b

2
9 ∞ (∗)

a
∥∥∥zi − zj

∥∥∥2b

2
6= −1 is always satisfied

(∗)⇔ a
∥∥∥zi − zj

∥∥∥2b

2
9 +∞ since −∞ is excluded

⇔
∥∥∥zi − zj

∥∥∥2b

2
9 +∞

The cases where
∥∥∥zi − zj

∥∥∥2b

2
→ +∞ are:

∥∥∥zi − zj

∥∥∥2b

2
→ +∞⇔


∥∥∥zi − zj

∥∥∥2b

2
→ +∞ and b ≥ 0 (A)∥∥∥zi − zj

∥∥∥2b

2
→ 0 and b < 0 (B)

Now to make condition (1) Sik 9 0 satisfied it should
make conditions (A) and (B) not satisfied.

Now we pass to condition (2): Tik 6= 0

Tik =
Sik/∑l Slk

∑m(Sim/∑l Slm)

So Tik is defined and Tik = 0 if Sik = 0.

Condition (3): Tik and Sik have the same sign and this
condition is always satisfied since Sik ∈ [0, 1] and Tik is
computed based on Sik so they have always the same
sign.

From what we mentioned above we can conclude our
solutions to solve the problem of division by zero as
follow, the first one is shown in algorithm B-A:

Algorithm 2 Solving the problem of division by zero
if b ≥ 0 then

if
∥∥zi − µk

∥∥
2 > Dist−Max then

we have two solution:
Consider zi as an outlier
Replace

∥∥zi − µk
∥∥

2 by Dist-Max
end if

else
Solve the cases where zi ≈ µk

end if
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And the second solution is as follow:

Tik
Sik

=

Sik/∑l Slk
∑m(Sim/∑l Slm)

Sik

=
1

(∑l Slk)(∑m(Sim/∑l Slm))

B. The derivative of Objective Function with respect to the
µk

Now, we will drive our objective function with respect
to µk. First let’s recall our weighted sum function:

F(P, Q, T, S) = αCE(P, Q) + βKL(T||S) (41)

Such that:

CE(P, Q) = ∑
i

∑
j

[
pij log(

pij

qij
) + (1− pij) log(

1− pij

1− qij
)

]

KL(T||S) = ∑
i

∑
k

Tik log
Tik
Sik

= ∑
i

∑
k

Tik log Tik − Tik log Sik

Also let’s recall the derivative of our weighted sum
function:

∂F
∂µk

= α
∂CE
∂µk

+ β
∂KL
∂µk

CE doesn’t depend on cluster centroids, so its deriva-
tive is zero. Therefore, we only compute the derivative
of the KL divergence with respect to µk:

∂KL
∂µk

= ∑
i

∂Tik
∂µk

log Tik + Tik

∂Tik
∂µk

Tik

−∂Tik
∂µk

log Sik −
∂Sik
∂µk

Tik
Sik

]

+∑
i

∑
k′ 6=k

∂Tik′

∂µk
log Tik′ + Tik′

∂Tik′
∂µk

Tik′

−∂Tik′

∂µk
log Sik′ −

∂Sik′

∂µk

Tik′

Sik′

]
We divided the derivative into a sum of 2 parts, since

Tik needs to compute its derivative with respect µk in
two cases. The first one when k′ = k and the second
case when k′ 6= k. Also, since Sik′ doesn’t depend on µk

so ∂Sik′
∂µk

= 0.

∂KL
∂µk

= ∑
i

[
∂Tik
∂µk

log Tik +
∂Tik
∂µk
− ∂Tik

∂µk
log Sik −

∂Sik
∂µk

Tik
Sik

]

+ ∑
i

∑
k′ 6=k

[
∂Tik′

∂µk
log Tik′ +

∂Tik′

∂µk
− ∂Tik′

∂µk
log Sik′

]

∂KL
∂µk

= ∑
i

[
∂Tik
∂µk

(1 + log
Tik
Sik

)− ∂Sik
∂µk

Tik
Sik

]

+ ∑
i

∑
k′ 6=k

[
∂Tik′

∂µk
(1 + log

Tik′

Sik′
)

]
(42)

To simplify the derivative of the KL divergence with
respect to µk we calculate the derivatives of Sik = (1 +

a
∥∥zi − µk

∥∥2b
2 )−1 and Tik w.r.t. µk in case of k

′
= k. In

addition, we compute the derivatives of Sik′ and Tik′ w.r.t.
µk in the case k′ 6= k. Now we start by ∂Sik

∂µk

∂Sik
∂µk

=
2bSik

1/
∥∥zi − µk

∥∥2b−1
2 +

∥∥zi − µk
∥∥2

2

(43)

And since Sik′ doesn’t depend on µk, so we can conclude
that

∂Sik′

∂µk
= 0 (44)

Also here we should derive Tik when k′ = k and Tik′

when k′ 6= k with respect to µk. Now we are going to
start with Tik:

Tik =
Sik/∑l Slk

∑m(Sim/∑l Slm)

let’s derive the numerator and the denominator each
separately. We have the numerator is:

Nik =
Sik

∑l Slk

So the derivative of Nik with respect to µk is:

∂Nik
∂µk

=

∂Sik
∂µk

∑l Slk − Sik ∑l
∂Slk
∂µk

(∑l Slk)2

such that ∂Sik
∂zi

is given by Eq. 43 and ∂Slk
∂zi

is deduced from
Eq. 43 as follows:

∂Slk
∂µk

=
2bSlk

1/
∥∥zl − µk

∥∥2b−1
2 +

∥∥zl − µk
∥∥2

2

We have the denominator is:

Di = ∑
m

Sim

∑l Slm

We have
∂ ∑m

Sim
∑l Slm

∂µk
= ∑m

∂
Sim

∑l Slm
∂µk

where
∂

Sim
∑l Slm
∂µk

6= 0

when m = k. And
∂

Sim
∑l Slm
∂µk

= 0 when m 6= k, since

∂Sim
∂µk

= ∂Sik
∂µk

=
2ab‖zi−µk‖2b−1

2

(1+a‖zi−µk‖2b
2 )2

when m = k, and ∂Sim
∂µk

= 0

otherwise. Also ∑l
∂Slm
∂µk

= ∑l
∂Slk
∂µk

= ∑l
2ab‖zl−µk‖2b−1

2

(1+a‖zl−µk‖2b
2 )2

when m = k, and ∑l
∂Slm
∂µk

= 0 otherwise. So we can write
∂Di
∂µk

as follow:
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∂Di
∂µk

=

∂Sik
∂µk

∑l Slk − Sik ∑l
∂Slk
∂µk

(∑l Slk)2

We can see that ∂Nik
∂µk

= ∂Di
∂µk

. So the derivative of Tik
with respect to µk is:

∂Tik
∂µk

=

∂Nik
∂µk

(Di − Nik)

D2
i

We do the same thing for the derivative of Tik′ with
respect to µk in the case here is k′ 6= k. Let us first write
Tik′ :

Tik′ =
Sik′/∑l Slk′

∑m(Sim/∑l Slm)

we are going to derived the numerator and denomi-
nator separately:

Nik′ =
Sik′

∑l Slk′

Since Sik′ doesn’t depend on µk, we can deduce that
∂Sik′
∂µk

= 0 from Eq. 22 and 43. Also for ∑l Slk′ doesn’t

depend on µk so ∑l
∂Slk′
∂µk

= 0. We can conclude that the
derivative of Nik′ with respect to µk is zero. Let us move
now to the denominator:

Di = ∑
m

Sim

∑l Slm

We already computed the derivative of Di, so let us
just recall it:

∂Di
∂µk

=

∂Sik
∂µk

∑l Slk − Sik ∑l
∂Slk
∂µk

(∑l Slk)2

And from previews equations we can conclude that
the derivative of Tik′ as follow:

∂Tik′

∂µk
=
−Nik′

∂Di
∂µk

D2
i

Now we are going to substitute the previews equations
in the derivative of the KL divergence Eq. 42 with respect
to µk:

∂KL
∂µk

= ∑
i

[
∂Tik
∂µk

(1 + log
Tik
Sik

)− ∂Sik
∂µk

Tik
Sik

]

+ ∑
i

∑
k′ 6=k

[
∂Tik′

∂µk
(1 + log

Tik′

Sik′
)

]

We substitute Sik and ∂Sik
∂µk

by Eq. 22 and Eq. 43, so let’s

recall ∂Sik
∂µk

:

∂Sik
∂µk

=
2bSik

1/
∥∥zi − µk

∥∥2b−1
2 +

∥∥zi − µk
∥∥2

2

Then we are going to multiply it by Tik
Sik

in order to get a
simpler form:

∂Sik
∂µk

Tik
Sik

=
2bTik

1/
∥∥zi − µk

∥∥2b−1
2 +

∥∥zi − µk
∥∥2

2

Substituting ∂Sik
∂µk

Tik
Sik

in ∂KL
∂µk

by the last equation, we
obtain:

∂KL
∂µk

= ∑
i

∂Tik
∂µk

(1 + log
Tik
Sik

)− 2bTik

1/
∥∥zi − µk

∥∥2b−1
2 +

∥∥zi − µk
∥∥2

2


+ ∑

i
∑

k′ 6=k

[
∂Tik′

∂µk
(1 + log

Tik′

Sik′
)

]

Appendix C
Light plus variant derivations

Our optimisation purpose is to update the data points
zi and the centroids µk, so first, we derived the function
F with respect to zi. Then, we compute the derivative of
the weighted sum function with respect to µk. However,
the CE function does not depend on the cluster centres
so we compute only the derivative of the clustering loss
function. Now for the derivative of the weighted sum
function we have:

∂F
∂zi

= α
∂CE
∂zi

+ β
∂KL
∂zi

(45)

A. Derivation of the KL divergence with respect to zi

Notice that for the data points zi we have two objective
functions that need to compute their derivations with
respect to zi. The derivation of the CE function is already
explained in Appendix A. In this part, we provide the
details of the derivative of the KL divergence with
respect to zi. Let’s recall the KL divergence:

KL(T, S) = ∑
i

∑
k

Tik log Tik − Tik log Sik (46)

When updating zi, Tik is already computed and is
considered as a constant number, Tik doesn’t depend on
zi, thus the derivative of Tik log Tik with respect to zi is
zero. We obtain:

∂KL
∂zi

= ∑
k
−∂Sik

∂zi

Tik
Sik

(47)

We can derived Sik with respect to zi as follow:

∂Sik
∂zi

= −
2ab
∥∥zi − µk

∥∥2b−1
2

(1 + a
∥∥zi − µk

∥∥2b
2 )2

(48)

Substituting Sik and its derivative ∂Sik
∂zi

(Eq. 48) in
Eq. 47. we can conclude ∂KL

∂zi
like this:
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∂KL
∂zi

= ∑
k
−∂Sik

∂zi

Tik
Sik

∂KL
∂zi

= ∑
k

2ab
∥∥zi − µk

∥∥2b−1
2 Tik

1 + a
∥∥zi − µk

∥∥2b
2

(49)

B. Derivative of the total loss function with respect to zi

Now, we assemble the two parts, by substituting the
derivative of Cross Entropy (Eq. 21), and the derivative of
KL divergence (Eq. 49) in the total loss function (Eq. 45)
to obtain:

∂F
∂zi

= α
∂CE
∂zi

+ β
∂KL
∂zi

∂F
∂zi

= α ∑
j

2ab
∥∥∥zi − zj

∥∥∥2(b−1)

2
pij

1 + a
∥∥∥zi − zj

∥∥∥2b

2

−
2b(1− pij)∥∥∥zi − zj

∥∥∥2

2
(1 + a

∥∥∥zi − zj

∥∥∥2b

2
)

∥∥∥zi − zj

∥∥∥
+β ∑

k

2ab
∥∥zi − µk

∥∥2b−1
2 Tik

1 + a
∥∥zi − µk

∥∥2b
2

(50)

Then the update of zi is performed using ∂F
∂zi

, we just
have to choose α and β.

C. The derivative of Objective Function with respect to the µi

Now, we derivate our objective function with respect
to µk. First let’s recall our weighted sum function:

F(P, Q, T, S) = αCE(P, Q) + βKL(T||S) (51)

Such that:

CE(P, Q) = ∑
i

∑
j

[
pij log(

pij

qij
) + (1− pij) log(

1− pij

1− qij
)

]
KL(T||S) = ∑

i
∑
k

Tik log Tik − Tik log Sik

Also let’s recall the derivative of our weighted sum
function:

∂F
∂µk

= α
∂CE
∂µk

+ β
∂KL
∂µk

CE doesn’t depend on cluster centroids, so its deriva-
tive is zero. Therefore, we compute only the derivative
of the KL divergence with respect to µk:

KL(T, S) = ∑
i

∑
k

Tik log Tik − Tik log Sik

Tik is considered as a constant number, since Tik
doesn’t depend on µk. Thus the derivative of Tik log Tik

with respect to µk is zero. The partial derivative of the
KL function with respect to µk is:

∂KL
∂µk

= ∑
i
−∂Sik

∂µk

Tik
Sik

(52)

To simplify the derivative of the KL divergence with
respect to µk we calculate the derivative of Sik w.r.t µk:

∂Sik
∂µk

=
2ab
∥∥zi − µk

∥∥2b−1
2

(1 + a
∥∥zi − µk

∥∥2b
2 )2

(53)

Substituting Sik and its derivative ∂Sik
∂µk

(Eq. 53) in
Eq. 52. we obtain:

∂KL
∂µk

= ∑
i
−

2ab
∥∥zi − µk

∥∥2b−1
2 Tik

1 + a
∥∥zi − µk

∥∥2b
2

(54)

Appendix D
Definition of the values domain of the CE and KL

divergence gradients with respect to zi

A. Defining the interval values of the CE gradient with
respect to zi

We have the gradient of the CE as follow:

∂CE
∂zi

= ∑
j

 2bpij

1/(a
∥∥∥zi − zj

∥∥∥2(b−1)

2
) +
∥∥∥zi − zj

∥∥∥2

2

−
2b(1− pij)∥∥∥zi − zj

∥∥∥2

2
(1 + a

∥∥∥zi − zj

∥∥∥2b

2
)

∥∥∥zi − zj

∥∥∥ (55)

We observe that the gradient of the CE has two terms
2bpij

1/(a
∥∥∥zi−zj

∥∥∥2(b−1)

2
)+
∥∥∥zi−zj

∥∥∥2

2

and
2b(1−pij)∥∥∥zi−zj

∥∥∥2

2
(1+a

∥∥∥zi−zj

∥∥∥2b

2
)
. So we

need to study their values Domain. Let us start with the
first term:

2bpij

1/(a
∥∥∥zi − zj

∥∥∥2(b−1)

2
) +
∥∥∥zi − zj

∥∥∥2

2

(56)

We have that the values domain of P and Q are [0, 1].
In addition, the hyper-parameters a and b are always

positives. Also we have
∥∥∥zi − zj

∥∥∥2(b−1)

2
and

∥∥∥zi − zj

∥∥∥2

2
are

always positives so the values domain of the first term
(Eq. 56) is [0,+∞[. Now let us move to the second term:

−
2b(1− pij)∥∥∥zi − zj

∥∥∥2

2
(1 + a

∥∥∥zi − zj

∥∥∥2b

2
)

(57)

In above term (Eq. 57), we observe that it is preceded
by the negative sign so the values domain of this term
is ]−∞, 0]. So the values domain of the CE gradient is
]−∞,+∞[.
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B. Defining the values domain of the KL divergence gradient
with respect to zi

In this part we studied the definition domain of the
KL divergence gradient w.r.t zi in the two variants.

1) The derivative of the KL divergence Plus variant: Let
us recall the derivative of the KL divergence with respect
to zi:

∂KL
∂zi

= ∑
k

[
∂Tik
∂zi

(1 + log
Tik
Sik

)

+
2bTik

1/
∥∥zi − µk

∥∥2b−1
2 +

∥∥zi − µk
∥∥2

2


+ ∑

i′ 6=i
∑
k

[
∂Ti′k
∂zi

(1 + log
Ti′k
Si′k

)

]
The same thing for KL gradient, we proved that the

values domain of Sik and Tik are in [0, 1] in division by
zero subsection ( see Appendix B). so the values domain
of KL derivative in [0,+∞[.

2) The derivative of the KL divergence Light Plus variant:
Let us recall the derivative of the KL divergence with
respect to zi:

∂KL
∂zi

= ∑
k

2ab
∥∥zi − µk

∥∥2b−1
2 Tik

1 + a
∥∥zi − µk

∥∥2b
2

We have the values domain of Tik is in [0, 1],
∥∥∥zi − zj

∥∥∥2

2
is always positive, and a is also positive so the values
domain of KL derivative in [0,+∞[.
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