
P
os
te
d
on

10
N
ov

20
20

—
C
C
-B

Y
-N

C
-S
A

4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
69
3
91
92
.v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Practices and Infrastructures for ML Systems – An Interview Study

Dennis Muiruri 1, Lucy Ellen Lwakatare 2, Jukka K. Nurminen 2, and Tommi Mikkonen 2

1University of Helsinki
2Affiliation not available

October 30, 2023

Abstract

The best practices and infrastructures for developing and maintaining machine learning (ML) enabled software systems are

often reported by large and experienced data-driven organizations. However, little is known about the state of practice across

other organizations. Using interviews, we investigated practices and tool-chains for ML-enabled systems from 16 organizations

in various domains. Our study makes three broad observations related to data management practices, monitoring practices and

automation practices in ML model training, and serving workflows. These have limited number of generic practices and tools

applicable across organizations in different domains.

1



Practices and Infrastructures
for ML Systems – An Interview
Study

Dennis Muiruri, Lucy Ellen Lwakatare, Jukka K. Nurminen and Tommi Mikkonen
Department of Computer Science, University of Helsinki
Email: dennis.muiruri, lucy.lwakatare, jukka.k.nurminen, tommi.mikkonen @helsinki.fi,

Abstract—The best practices and infrastructures for developing and maintaining machine
learning (ML) enabled software systems are often reported by large and experienced data-driven
organizations. However, little is known about the state of practice across other organizations.
Using interviews, we investigated practices and toolchains for ML-enabled systems from sixteen
organisations in various domains. Our study makes three broad observations related to data
management practices, monitoring practices and automation practices in ML model training, and
serving workflows. These have limited number of generic practices and tools applicable across
organizations in different domains.

1. Introduction
Today, artificial intelligence (AI) techniques

are incorporated in many real-world software
systems and services. However, research on the
development, deployment and maintenance of AI-
enabled systems in industrial settings report this
to be a challenging task [1, 2]. Large companies,
like Google [3] and Facebook [4], often report
their development and infrastructure practices for
AI solutions that are useful for learning. However,
many organizations are yet to adopt and tailor the
suggested development practices and infrastruc-
tures to narrow the gap from mere prototyping to
deploying to production AI solutions [5].

Machine learning (ML) is a subset of AI and
its techniques involve the use of high-quality data.
In ML logic is not explicitly programmed but
is rather learned from data. The development of
industrial ML-enabled software systems involves
ML pipelines that consist of several interlocking
steps. To support the different steps, end-to-end
in one environment, ML platforms like Tensor-
Flow Extended (TFX) [3], have been proposed to

ensure increased automation across the steps.
Since industrial ML pipelines can be com-

plex, it is important to gain an understanding
of their characteristics. In a large data-intensive
organization, like Google, all 3000 ML pipelines
comprising of over 450,000 trained ML models
continuously update the models at least seven
times a day [6]. The need to support regular
model training and updates in production is a
common requirement in most industrial ML-
enabled systems because, often, data is constantly
being generated and the performance of models
can deteriorate overtime [1].

Most empirical literature presents develop-
ment and maintenance practices of ML-enabled
systems from the perspective of a single, often
large and experienced online organization. In
contrast, we aim to provide empirical evidence
of the practices and infrastructure setups across
a diverse set of companies in various domains.
Through interviews, this study investigated ML
workflow practices and toolchains used in the de-
velopment, deployment, and maintenance of ML-

1



enabled systems in selected multiple organiza-
tions in Finland. Our main contributions include:

• Empirical evidence of common practices in
ML workflows (Section 4)

• Tool adoption in ML pipelines (Section 5) and
areas to address in future research (Section 6)

2. Background and related work
2.1. Software engineering for machine learning

Consideration and adaptation of well-
established software engineering (SE) methods
and approaches in ML systems have been
reported to be crucial [7]. This perspective
shifts the focus from just ML algorithms to also
include other important aspects of ML model
development and operations in production, such
as data management and serving infrastructures
[1]. Evidence of the integration between SE
approaches and ML workflow is in MLOps
(machine learning operations), a term used to
show the extension of DevOps philosophy of
increased agility and automation to the ML
workflows [8]. In support of the latter, different
tools are used to provide automation in ML
workflows.

Best SE practices in ML are identified and
their adoption in the industry is surveyed in [5].
The identified 29 SE practices in ML are classi-
fied into six categories: (1) data (e.g., employing
sanity checks for all external data sources), (2)
training (e.g., use versioning for data, model,
configurations and training scripts), (3) coding
(e.g., using continuous integration), (4) deploy-
ment (e.g., enabling shadow deployment), (5)
team (e.g., collaborating with multidisciplinary
team members), and (6) governance (enforcing
fairness and privacy) [5]. According to the authors
[5], the least adopted practices – related to feature
management, writing tests, shadow deployment
and automated hyper-parameter optimization –
require effort, knowledge and tool support. This
interview study provides some validation and in-
depth interpretation to the survey findings related
to the adoption of practices [5].

2.2. ML workflow and pipeline
ML workflows describe different tasks that are

performed in order to develop, deploy and oper-
ate ML models in production [7]. ML pipelines

are used to express the complex input/output
relationship between the different tasks/operators
of an automated ML workflow [6]. Generally,
ML pipelines plug together several tools when
automating the ML workflow [9].

Typical lifecycle phases of ML workflow in-
clude model requirements, data collection, data
cleaning, data labelling, feature engineering,
model training, model evaluation, model deploy-
ment and model monitoring [7]. Studies show that
end-to-end automation of ML workflow improves
both the development time and rate of deploy-
ing ML models [9, 6]. Furthermore, it allows
organizations to (1) automate the orchestration
of workflows steps, (2) track and reproduce the
different outputs of ML workflow, and (3) reuse
common steps of ML workflow across multiple
ML-enabled systems [3, 9].

Few studies report in detail the characteristics
of ML pipelines, in terms of their components and
architectures [9, 6]. Different from our qualitative
analysis, Xin et al [6] quantitatively analysed
over 3000 ML pipelines at Google and presented
their high-level characteristic in terms of pipeline
lifespan, complexity and resource consumption.
For the complexity of ML pipelines, the authors
analyzed typical input data shape, feature trans-
formation and model diversity. Model diversity
showed that a large portion used neural networks
(NN) (64%). The latter is informs the characteris-
tic of ML pipeline since the choice of model type
and architecture has an influence on ML pipeline
steps. From the analysis, the authors [6] identified
areas for optimizing the ML pipelines, that were
mostly related to data management.

3. Research Method
We conducted an exploratory multiple-case

study [10] between March and August 2021. The
main research questions (RQ) of our study were:

• RQ1. What practices are applied in the de-
velopment, deployment and maintenance of
industrial ML-enabled software systems?

• RQ2. What tools are used to support the
development, deployment and maintenance of
industrial ML-enabled software systems?

3.1. Research design and case selection
The main goal of our study is to understand

the state-of-practice of ML-enabled systems’ de-

2



velopment and toolchain within the Finnish con-
text. In this study, a case (Table 1) is an organi-
zation in Finland with experience in developing,
deploying and maintaining ML-enabled software
systems. The main criterion for case selection is
that the ML-enabled software system needs to be
operational in a production environment.

We first identified relevant practitioners from
different organizations to take part in the study
and adapted an interview guide used in an earlier
study [2]. The identified practitioners (or their or-
ganizations) were primarily known to be working
on ML solutions by the researchers and others
were gathered from LinkedIn.

We reached out to 37 organizations via e-
mail out of which 16 agreed to participate in
the study. Generally, practitioners were free to
choose whether (and who) to participate in the
study, but researchers purposefully ensured that
the organizations were varied in terms of sector
and size.

Interviewed practitioners had varying roles:
Chief Machine Learning Engineer (2), Chief Sci-
entific Officer, Head of Natural Language Under-
standing, Machine Learning Engineer (Founder),
Solution Architect(2), Director, Data Science
Manager, Chief Architect, Data Scientist (5),
AI Specialist, Director of Consulting, Machine
Learning Engineer, Computational Biologist, AI
Engineer, Chief Data Architect, Principle Data
Scientist. Academically, ten (43%) practitioners
hold a PhD degree, ten (43%) hold a Master’s
degree and two (9%) hold a Bachelor’s degree.
Ten cases are large organizations and five con-
stitute small or medium-sized organizations with
revenues below C50 million based on 2020 finan-
cial reports (https://bit.ly/3BtbFgN).

3.2. Data collection
Research data was primarily collected through

semi-structured interviews conducted by two re-
searchers. A total of 23 practitioners from the
16 organizations were interviewed between 24th

March and 27th April 2021. All interviews were
conducted virtually due to COVID-19. Each in-
terview session took on average 80 minutes.

During the interview session, the researchers
presented details of the study and requested con-
sent to record the interview. One researcher asked
the question outlined in the interview guide that

contained five broad categories: data manage-
ment, model training, model deployment, model
monitoring and general challenges. The inter-
view guide was not strictly followed to allow
probing questions depending on the interviewees’
responses and their experience with the topic.
All recorded interviews were automatically tran-
scribed using Otter.ai and errors in the transcrip-
tions were manually corrected by the researchers.

3.3. Data analysis
Analysis of the interview transcripts mainly

consisted of two coding steps and a session to
discuss and harmonize the codes [10]. A de-
ductive approach formed the first stage of our
coding process in which main themes informed
by the structure of our interviews were outlined.
The themes were constituted high-level codes
organized into six groups: role and responsibility,
organisation, ML usecase, Practices, Challenges
and Tools. The actual coding of data was done
in an iterative manner using both deductive and
inductive [10] approaches within each group and
applied broadly at a paragraph or statement level.
The sub-groups were further refined during re-
searcher meetings.

4. Practices in ML workflow (RQ1)
4.1. Data management

Data collection and storage typically begins
either by batch loading data from internal sys-
tems, streaming from devices/sensors, extracting
from other third-party vendors through APIs or
from open-source repositories. The training data
is then commonly stored in cloud platforms, as
shown from data sources in Table 1.

Organizations often use cloud storage
providers with data centres either in Finland,
close proximity to Finland or within the
European Union geographic area following
customer preferences or regulatory constraints.
In very strict circumstances, data is stored in
private infrastructure.

Additionally, low-level metrics, such as IOPS
(I/O Operations Per Second), are considered when
choosing a storage architecture as data fetching
can constitute a sizeable amount of the overall
model training time. Case E uses mounted discs
solution instead of a network drive accessed via
a web interface.

3



Table 1. Summary of ML usecase, frameworks, data sources and storage platforms across cases. (*of the ML usecase)

Case ML usecase (Type) Domain* Data Source Storage ML-Framework

A Object Detection (NN) IoT Camera Google Cloud Tensorflow
B Form data extraction (NN) Finance Internal Systems AWS Tensorflow
C Form data extraction (NN) Public Services Internal Systems On-premise Tensorflow, PyTorch
D Transcription (NN) Healthcare Internal Systems Google Cloud Kaldi ASR framework
E Speech based UI (NN) E-Commerce Open-source, End-users Google Cloud PyTorch
F MLOps (NN, Non-NN) IT Services Camera - Multiple frameworks
G MLOps (NN, Non-NN) Energy Internal systems AWS Tensorflow, Scikit-

Learn
H Risk management (Non-NN) Finance Internal systems AWS Scikit-Learn, Heuristics
I Predictive maintenance (Non-

NN)
Engineering Sensor and Technicians AWS Spark Analytics,

Heuristics/Rules
J Predictive maintenance (Non-

NN)
Biochemicals Sensor Azure Cloud -

K Anomaly detection (Non-NN) Real Estate Meters Azure Cloud Scikit-learn, XGBoost
L Data analysis (Non-NN) Pharmaceutical Device, Genome Azure Cloud R
M Report/Document classifica-

tion (Non-NN)
Healthcare Internal systems Azure Cloud PyTorch, Scikit-learn

(Classification)
N Chatbots, Profiling (NN) Finance Internal systems AWS Watson(IBM), Tensor-

flow
O ML pipeline automation

(Non-NN)
IT services Internal Systems Azure Cloud -

P Marketing/campaign manage-
ment (NN)

Media Internal systems AWS Scikit-learn,
Tensorflow, fastText

Data storage formats are also important ar-
chitectural decisions when considering scala-
bility of data processing pipelines, portability
of data between computing environments, sup-
port of different ML frameworks and program-
ming languages. In this regard, two data stor-
age formats are presented: the Apache Par-
quet (https://bit.ly/3kGFaVI) and the NetCDF
(https://bit.ly/3zy287R) file formats.

Case H uses Apache Parquet in favour of
CSV (Comma Separated Values) or TSV (Tab
Separated Values) file formats commonly used to
store structured data for analytics purposes. Case
G uses NetCDF as a solution to implement a
generic data interface to abstract data across ML
frameworks and computing platforms. Data sci-
entists then ensure models can process NetCDF
input and produce NetCDF output.

Data discoverability and accessibility affects
the rate of experimentation and development of
ML features. Discoverability tends to be a con-
cern in setups that feature a data lake or where
different types of data are collected. Case O
describes a solution to this problem based on
maintaining a data catalogue where data and its
value are described.

Data access is a concern whenever an orga-
nization handles personal data or requires col-
laboration with third parties e.g. in consultancy

settings. The process to grant data access can be
lengthy and can result in data governance anti-
patterns.

Data validation techniques are commonly ap-
plied as a means of controlling data quality. How-
ever, data types influence the type of validation
approaches applied. Image/video, speech and text
tend to require human actors supported by custom
tools to validate and ensure data meets aspired
quality thresholds. E.g, in an object detection
setting, a human validator ensures that objects
fall within the annotated bounding boxes. With
speech, validation ensures that recorded utter-
ances are coherent and consistent with corre-
sponding text. Case D uses additional heuristics
for detecting anomalies between generated texts
and submitted utterances. Numerical data types
normally easier to automatically validate.

Data validation in Case O is done at a schema
and data level. The schema is maintained by
dedicated data stewards team that ensures the
schema reflects the required data. Delegating
quality control ensures a team managing the data
lake ingests data indiscriminately. When data is
sourced from third-party vendors, the vendor is
expected to maintain quality controls (Case P).

Data integrity controls ensure data is not
changed unexpectedly. Case D and F apply hash-
ing as part of data processing pipelines this en-

4



sures training data is verifiable and traceable with
respect to a model’s lineage. Additionally, this
practice ensures that attempts to overwrite data
are flagged appropriately.

Generally, when hashing is not a suitable
approach for example when dealing with image
files, other custom tooling and heuristics are used
to perform anomaly detection, Cases B and I
make use of this approach.

Data labelling and annotation tends to be un-
dertaken manually using custom tools developed
to standardize the process. Inconsistent labels are
time to time encountered due to subjective inter-
pretations therefore resulting in poor data quality.
To overcome such issues Case B implements
a standardized way of normalizing and giving
common meaning to concepts.

Data understanding requires domain knowl-
edge for teams to generate valuable insights from
data in specialised domains. Domain knowledge
is cited as a necessity in the entire life cycle of
the data. E.g when handling data from chemical
processes or mechanical parts of large systems
represented in cases I, J and L.

In general, challenges in data management
practices are mainly attributed to data quality
aspects. E.g. sensor problems, inconsistent la-
belling, programming errors in data handling soft-
ware etc.

4.2. Model training
ML algorithm selection and transfer learning

are commonly occurring practices. Selection of
ML algorithms is largely influenced by training
data type and formulation of the learning problem
during requirement elicitation. Heuristics are
used in cases H and I to complement ML
algorithms, in both cases, an explicable decision
based on heuristic algorithms is highly regarded
compared to an ML solution with high accuracy
but largely inexplicable. The trade-offs arise
either due to regulatory constraints or where
a heuristic based approach provides a much
simpler solution compared to a complex ML
with a closely similar result.

Transfer learning is indicated as the main
approach to train NN efficiently since model
parameters can take a long time to converge and
require significant computing resources. Transfer
learning is based either on publicly available

models or proprietary models.

Computer vision systems in cases A and F
make use of transfer learning by applying state
of the art models available on a wide range
of CNN architectures. Case M’s NLP solution
was also trained using transfer learning mainly
to overcome data insufficiency challenges. Case
B applies transfer learning based on proprietary
models as a cost management strategy.

Training NN without using transfer learning
can also be motivated by several factors we
observe in case D and E. (1) The amount of data
is considered sufficient for training a model to
convergence. (2) Availability of required comput-
ing resources. (3) Limited availability of relevant
open-source models in a domain.

ML frameworks used across the cases can
be broadly categorized as either Neural Net-
work (NN) or classical (non-NN) ML solutions.
Tensorflow (https://bit.ly/38sgWc4) and PyTorch
(https://bit.ly/3gMHnxG) are the two commonly
used frameworks for developing DL models as
summarised in Table 1. Practitioners who used
TensorFlow tended to make use of the Keras
(https://keras.io/) framework which abstracts the
low-level syntax found in the native TensorFlow
framework.

Although NN frameworks provide similar
core features, a few factors can affect the choice
of framework. (1) a framework’s usability, (2)
a framework’s underlying efficiency in utilizing
computing resources, (3) a framework’s flexibil-
ity. A case in point, cases D and E develop
an ASR solutions but make use of Kaldi and
PyTorch frameworks respectively. Frameworks
can mature into certain domains much later
and therefore teams might seemingly use differ-
ent frameworks out of such historical reasons.
Specialised analytics frameworks such as Spark
(https://bit.ly/3gLVtQ7) also feature in case I. We
generally note that team members freely adopt
frameworks suitable for accomplishing tasks effi-
ciently.

Overall, challenges in model training relate to
infrastructure costs, complexities of tuning and
identifying explainable factors about a model’s
performance.

5



4.3. Model evaluation and experiment
management

Model training is considerably an iterative
process involving (1) determining suitability of
data and algorithms, (2) parameter and hyper-
parameter optimization and (3) model evalua-
tion. Managing metadata from these experiments
makes the training process traceable and repro-
ducible.

We note three unique approaches used to
evaluate models: (1) Data is stored such that it
can be stratified by quality allowing composition
of training and validation data to include different
quality (Cases D and E), (2) Use of ensemble of
models each trained on a unique subset of the data
(Case B) and (3) Use of a configurable inference
algorithm where each configuration makes use of
a unique adaptation of the model (Case E).

To manage model evaluation results from
these kinds of setups, case organizations either
use dedicated experiment tracking tools case (G,
I, N, O and P), logging process metadata (case
B, E, F) or generating hashes (case D). These
approaches are summarised in Table 2.

Case D uses hashing such that a hash is
computed from a given version of the data com-
bined with a model’s parameters. The resulting
hash is stored for later reference. Obtaining a
previously stored hash implies that a model if
similar characteristics already exists.

Case E and F utilize the generation and
collection of metadata which includes metadata
collected from tools such as git hashes. Case E
stores metadata in a data warehouse which can
be queried to produce spreadsheets reports. Case
F’s platform generates metadata at each step of
the pipeline and resulting data is visualized on a
web tool. Systematic management of experiments
facilitates workflow automation.

4.4. Model monitoring
Training data drift. Data level monitoring is

instrumented to check for drift within the data.
Identifying drift in numeric data types is be
achieved by using visual tools such as graphs
or descriptive statistics (cases G, H, I), image-
based data makes use of histograms (case F).
Speech and text based data is also susceptible to
drift but can be more challenging to monitor. For
example, case D mentioned the emergence of the

word Covid-19 in the medical sphere recently but
the word is not available in any historical corpus.
Typically, heuristics are used to monitor drift in
these speech or NLP settings.

Model drift Model monitoring involves en-
suring a model’s accuracy and error metrics are
maintained at a certain threshold. Observing key
metrics such as accuracy and error rates were
observed as the common ways production models
are monitored. For example, in a transcription
setting, measuring the character and word edits
required after inference were used (Case D) as
error metrics used to monitor already deployed
models and to characterise any drift in the model.

Infrastructure utilization Infrastructure moni-
toring is commonly applied to ensure resources
(GPU/CPU, memory, disk, network, etc.) are uti-
lized reasonably or to flag unnoticed technical
problems such as scaling designs, IO bottlenecks
and how inference endpoints utilize backend re-
sources. Inference endpoints often require further
low-level monitoring to characterize the latency
of the solution. Cases D, E and G were par-
ticularly keen to monitor endpoint latency as
this formed an important requirement of the ML
solution.

5. Tools in ML pipelines (RQ2)
5.1. Version management

ML training code, often written in notebooks,
as well as other project artifacts are version con-
trolled using tools like Git, Gitlab and Bitbucket.
Data versioning is done by generating and ver-
sioning metadata or using specialized tools such
as DVC. For many cases, training of ML models
generally happens in a public cloud or on-premise
servers. To quickly and consistently provision the
execution environment for the training workflows,
’infrastructure-as-code’ practices, using tools like
Terraform (https://bit.ly/2WIt724), are adopted in
Cases A and E. Serving of inferences based on
the trained models is either done in a batch format
or online.

5.2. ML training workflow
We observe that cases either containerize indi-

vidual workflow steps or encapsulate all workflow
steps to run in a single container where the
former is the preferred setup. Docker is the main
applied container technology. Containerization is

6



Case Version Man-
agement

Container
Platform

ML Training
Workflow

ML Experiment
Tracking

Model Reposi-
tory

ML Deployment,
Serving

Monitoring

A Github, Gitlab,
Bitbucket

Kubernetes Apache Airflow Tensorboard GC Container
Registry

Embedded with over
the air updates

Logging, Grafana

B Git Kubernetes Custom Metadata - API endpoint using
Bamboo

-

C Github OpenShift Custom None Nexus, S3 ob-
ject storage

REST API endpoint
on OpenShift,

(Prometheus,
Grafana)*

D Git Kubernetes Argo Hashing - API Prometheus,
Grafana

E GitHub Kubernetes Custom Metadata PostgreSQL - Prometheus,
Grafana

F - Kubernetes - Metadata - natively supports
REST API endpoint
on Kubernetes

Logging, Elastic
Search, tool’s
Web UI

G GitHub Kubernetes Custom,
Metaflow

MLflow, Docker registry gRPC API endpoint
on Kubernetes, Kafka

-

H Git AWS Elastic
Container

Apache Airflow - S3 storage - AWS
CloudWatch,
Splunk

I GitLab - AWS SageMaker AWS SageMaker -
J - Kubernetes AzureML - Azure container

registry
Edge Server Azure Monitor

K Git - Azure ML - Streamlit -
L - - Azure ML - - R-Shiny apps -
M - - - - Nexus

repository
Batch prediction -

N Git AWS lamda AWS SageMaker AWS SageMaker S3 storage,
Databricks
model registry*

Batch prediction, Java
apps

AWS
CloudWatch

O Git, DVC Kubernetes Apache Airflow,
Kubeflow

MLflow,
kubeflow

MLFlow model
registry

REST API on Kuber-
netes

Logging, Grafana

P - - Databricks MLflow S3, MLFlow
model registry

API, batch, embedded -

Table 2. Tools (*planned, - tool information not provided)

appealing because (1) it allows decoupling from
the execution environment, (2) different work-
flow tasks/steps can be isolated and (3) it makes
the workflow traceable and reproducible. Data
transfers across workflow steps during training is
done using standard persistent volumes. However,
large datasets may require using network mounts
(Case F). We further note that containers are
commonly orchestrated using Kubernetes which
allows model training to be executed in any
environment that supports Kubernetes whether
on-premise or in a public cloud environment.

Model building steps are managed using
a configuration tool (e.g YAML based) or a
workflow toolkit to depict various workflow
tasks/steps. A workflow may include steps spec-
ifying feature extraction, model training and val-
idation. The complexity involved in these steps
can vary depending on the ML domain. For com-
plex ML models, low-level ML training workflow
frameworks such as Argo (Case D) and Metaflow
(Case G) are preferred mainly because of the
tool’s flexibility. We note that although high-
level ML workflow platforms such as AWS Sage-
Maker are available in some organizations, such
platforms were not preferred when developing

complex models (Cases B, G).
Proponents of dedicated ML training work-

flow tools prefer the end-to-end integration pro-
vided by such tools while those in support of
custom tooling prefer the ability to add different
tools to the workflow. Typically, when a single
task contains multiple containers, custom solu-
tions involve implementing components or agents
that provide an interface to a container for access-
ing data and compute resources during training
(Cases C, G). In addition, components such as
explainer dashboard (https://bit.ly/3Byj1js) (Case
A) used to facilitate a model’s explainability can
be added as part of the workflow.

After adding model training workflow tools,
data scientists can orchestrate event based train-
ing queues e.g., based on continuous arrival of
training data. Tools like Apache airflow provide
the functionality to schedule model training based
on certain triggers.

To track model experiments, custom tools
such as web-based UI tools in Cases B and F are
developed to facilitate evaluation of results and
compare model predictions with ground truth. To
their advantage, custom platforms can include any
data the team deems important (Case F). In other

7



cases, plugins can be developed to integrate with
existing open-source solutions like MLflow (Case
G). Low-level training metrics are observed with
Tensorboard (Case A).

5.3. Continuous integration and testing
Continuous integration or build tools, such as

Jenkins, are used to run tests and build docker
images based on model artifacts from the training
workflow (Cases A, D, G). Static code analysis
and other tests to check whether a container
works are performed when building the container
images (Case A, G). In addition, other domain-
specific tests are executed to make certain that the
inputs and outputs of the model are still correct,
thus extending the tests to the whole pipeline
by performing tests on small amounts of input
data (Case D, F, G). Docker images created from
the CI system are (automatically) deployed to
another (test/staging) environment for additional
tests prior to deployment. For Case C, the latter
environment contains a copy of production data
which due to restrictions was not accessible in
other environments. Prior to deployment, the tests
are performed to verify the type of data that
the model API accepts (Case A, D), the models
make predictions (Case E) and ensure that the
deployment procedure loads a serialized model
into the relevant API.

Trained models are stored in different ways,
including general data storage and container im-
age registries. For the trained models, Case E
stores the model and metadata about the model,
including name and version number in a Post-
greSQL data warehouse. Built container images
of trained models from the build system or test
environment are uploaded to Nexus in Case C,
and to the docker registry in Case G prior to
production deployment.

5.4. ML deployment and serving
In many cases, trained models are deployed as

REST (Representational State Transfer) APIs on
public cloud or on-premise servers. Other deploy-
ment targets include embedding the model on the
actual application such as a mobile application
(Case P) or deploying to IoT devices through
over-the-air deployments.

For applications with strict inference latency
requirements, a gRPC (Google Remote Procedure

Call) based API is used in Case C because it
supports streaming interfaces. For ML solutions
that need to serve inference in (or near) real-
time, different strategies are continuously evalu-
ated both at models level and services level (Case
E, G).

Most cases implement custom serving infras-
tructure although emerging model serving sys-
tems like KFServing (https://bit.ly/3DBF1eZ) and
Seldon (https://bit.ly/2Ybwuix) are being tested in
Cases C and O respectively.

Finally we note that deployment is often not
performed by data scientists but by other dedi-
cated team members or platform teams (Case G)
because it requires considerably low-level knowl-
edge of Kubernetes.

5.5. Monitoring
After model deployment, monitoring is per-

formed at different levels of granularity. Most
common monitoring is done for infrastructure
where logging, monitoring and alerting services
and tools like Prometheuse and Kubernetes log-
ging (stackdriver) are used to collect a clus-
ter’s performance metrics which are visualised on
dashboards using tools like Grafana, Tableau or
any other business analytics tools. For models
deployed as API, model logging (e.g., model
predictions) integration with services like Elas-
ticsearch and BigQuery can be used to perform
model health and quality checks in production
e.g., average accuracy on sampled log (Cases A,
F and O).

Maintaining the collective set tools used
across a pipeline can develop into a complex task
especially when dealing with NN architectures.

Generally, we observe that practices vary
across organizations based on factors such as the
type of data being used for training, availability of
computing resources and type of ML solution be-
ing developed. We also note there are two primary
ways case organizations develop their pipelines,
(1) compose a variety of tools to orchestrate
the pipeline or (2) apply a more encompassing
framework such as Sagemaker which contains
inbuilt tools for different parts of a pipeline.
We note that most teams prefer flexibility and
the ability to extract low level information pro-
vided by independent tools, i.e. the first approach.
While the few teams that use the second approach

8



Table 3. Summary of practices and challenges
Practices Challenges

ML workflow

Data management • Batch or stream data loads largely from internal systems, third party vendors
or devices and sensors

• Training data stored often in cloud platform or in close proximity to
computing units (CPUs or GPUs)

• Selecting data storage formats (e.g., Apache Parquet) with great considera-
tion of scalability, portability, ML frameworks

• Data documentation (e.g., data catalogue) for fast data identification
• Employing data validation approaches (e.g., descriptive statistics and

schema) that are tailored to the types of data
• Maintaining data quality by a dedicated team or third party vendor
• Determining data quality metrics from domain knowledge especially in

highly specialized settings

• Determining ownership of data quality aspects especially in large
organizations or when data collection is outsourced

• IoT related factors such as sensor outage, network latency or low
traffic priority, sensor quality etc.

• Programming defaults in data collection components can lead to
poor data quality through subtle hard to notice errors.

• Lack of standardized annotation formats across DL networks espe-
cially in computer vision reduces interoperability across network
architectures.

Model training
& evaluation • Selecting ML algorithm based on available data and learning problem

formulation during requirement elicitation and exploratory experiments
• Using heuristics to compliment or over ML algorithm when constrained by

regulations or the complexity of models
• Employing transfer learning to effectively and accurately train DL models.
• Flexibility to choose standard ML frameworks e.g. Tensorflow and PyTorch

as popular in DL, and Scikit-Learn and XGBoost in non-DL
• Using ML frameworks that offer great flexibility, efficiency and usability
• Employing multiple approaches to evaluate quality of ML models e.g., using

validation dataset stratified by quality
• Managing and tracking model evaluation results using experiment tracking

tools, or metadata and hash-based approaches.

• The cost of training deep learning models from a clean start can
be prohibitively high

• Determining model explainability
• Feature extraction and hyper parameter tuning can be a time

consuming activity especially in organization with different types
of data.

• Model benchmarking was highlighted as an inherently difficult task
given that it is challenging to replicate publicly available state of
the art models and related results.

Model
Deployment &
Monitoring

• Inference serving through REST based API endpoints deployed in public
cloud environments

• Inference serving with strict latency requirements through gRPC endpoints
as opposed to REST endpoints.

• Model deployment for either batch inference or online inference purposes
• Monitoring at different parts of the pipeline, to ensure data quality, model

quality and performance and infrastructure utilization

• Deploying models within organizations that do not use the cloud
environment can be a lengthy process due to relevant data gover-
nance protocols.

• Monitoring model or data drift in deployed systems can be a
challenge due to lack of visibility especially in scenarios where
input data cannot be saved due to GDPR related constraints.

ML Pipeline • Version control code and all pipeline related artifacts e.g. in git, and
provision execution environment using infrastructure-as-code frameworks
e.g. Terraform

• Encapsulating ML training workflows in docker containers to increase
portability

• Using common container orchestration platforms e.g., Kubernetes to build
scalable containerised pipelines

• Using ML workflow automation tools e.g. Argo and kubeflow to execute
schedule ML training pipelines and queues

• Tracking ML training experiments largely in custom ways e.g. hashing and
custom web tools but also with ML workflow automation tools.

• Employing continuous integration tools e.g., Jenkins to test and build docker
images prior to deployment

• Maintaining an up to date stack of tools frameworks requires
rigorous testing to avoid regression errors and dependency breaks
across tool chains.

• Pipelines can become quite complex especially when dealing with
complex DL architectures where multiple models are maintained.

• Skills required to run end-to-end automated ML pipelines are not
easily available.

prefer the instant integration of tools provided by
their cloud provider. We summarize all general
practices in Table 3.

6. Discussion and conclusion
In relation to existing literature, our findings

provide explanations to the low adoption rates
of the important best practices in ML [5]. In
addition, compared to experienced online data-
intensive organizations, our study show that ma-
jority of organizations have not achieved the
capability required to enable continuous deploy-
ment and operations of ML models in produc-

tion. However, there is great awareness of these
amongst the practitioners as evidenced by their
continued efforts to improve their practices and
tools. We make the following observations con-
cerning the current state of practice in many
organizations. These areas would greatly benefit
from future research contributions.

First, streamlining data handling practices in
order to get good quality data is an arduous
task given increasing amounts of data, challeng-
ing data types and widening regulatory oversight
around personal data. As a result, data handling

9



workflows tend to induce long ML production
cycles. Establishing efficient data handling pro-
cedures would shorten ML production cycles and
increase experimentation for R&D purposes.

Second, maintaining a ML system involves
monitoring and evaluating procedures to ensure
high availability and to control for model stale-
ness respectively. Data distributions may change
over time meaning that models may have an
implicit viability lifespan. Due to the availabil-
ity of tools, teams tend to focus on monitoring
infrastructure while model evaluation tends to be
conducted on a case by case basis. Issues such as
model explainability, control for bias, feature at-
tribution continues to be an open challenges from
a tooling perspective and developing practice.

Third, we observe that a significant number
of organizations use a wide collection of tools
to support their ML development as opposed
to using an integrated MLOps platform. This is
mainly due to desired flexibility and access to
low-level features when necessary. Some topical
areas with defacto tooling include version man-
agement, containerization and monitoring. Other
areas continue to have multiple tooling options.
We further note that there are industry wide
efforts to standardize model serving through open
development of a serving API which is realized
by products such as NVIDIA’s Triton Inference
Server (https://bit.ly/3Brm3Wv).

A main threat to the validity of our study
relates to external validity and generalization of
the findings. These were mitigate by the inclusion
of diverse set of organizations from multiple
domains and sizes. Most of the participating
companies were global organizations While we
cannot generalize the findings across the entire
population, they do provide insight into the state-
of-practice of ML especially in contexts having
similar organisational profiles.

7. Biographies
Dennis Muiruri is a member of the empirical

software engineering research group at the Uni-
versity of Helsinki. His current research interests
include deployment and operations of machine
learning systems.

Lucy Ellen Lwakatare is a postdoc at the
University of Helsinki. She received her PhD
from University of Oulu in 2013. Her research

interests include: Agile, DevOps and ML engi-
neering.

Jukka K. Nurminen is a professor at the Uni-
versity of Helsinki. He has worked extensively on
software research in industry at Nokia Research
Center, in academia at Aalto University, and in
applied research at VTT. He received PhD from
Helsinki University of Technology (now Aalto
University). His main interests are on tools and
techniques for developing data-intensive software
systems including testing of AI solutions, com-
putational moral and software development for
quantum computers.

Tommi Mikkonen received his Ph.D. from
Tampere University of Technology year 1999.
He is a full professor in University of Helsinki
of the empirical software engineering research
group. His research interests include IoT, software
architectures, and software engineering for AI.

REFERENCES
1. D. Sculley et al, “Hidden technical debt in machine

learning systems,” in Advances in neural information
processing systems. Curran Associates Inc., 2015, pp.
2503–2511.

2. L. E. Lwakatare et al, “A taxonomy of software engineer-
ing challenges for machine learning systems: An empiri-
cal investigation,” in Extreme Programming Conference.
Springer, 2019, pp. 227–243.

3. D. Baylor et al, “Tfx: A tensorflow-based production-
scale machine learning platform,” in International Con-
ference on Knowledge Discovery and Data Mining.
ACM, 2017, pp. 1387–1395.

4. K. Hazelwood et al, “Applied machine learning at face-
book: A datacenter infrastructure perspective,” in In-
ternational Symposium on High Performance Computer
Architecture. IEEE, 2018, pp. 620–629.

5. A. Serban et al, “Adoption and effects of software
engineering best practices in machine learning,” in Inter-
national Symposium on Empirical Software Engineering
and Measurement. ACM, 2020.

6. D. Xin et al, “Production machine learning pipelines:
Empirical analysis and optimization opportunities,” in In-
ternational Conference on Management of Data. ACM,
2021, p. 2639–2652.

7. S. Amershi et al, “Software engineering for machine
learning: A case study,” in International Conference on
Software Engineering: Software Engineering in Practice.
IEEE, 2019, pp. 291–300.

8. Y. Zhou, Y. Yu, and B. Ding, “Towards mlops: A
case study of ml pipeline platform,” in International
Conference on Artificial Intelligence and Computer En-
gineering, 2020, pp. 494–500.

9. W. Hummer et al, “Modelops: Cloud-based lifecycle
management for reliable and trusted ai,” in International
Conference on Cloud Engineering, 2019, pp. 113–120.

10. P. Runeson and M. Höst, “Guidelines for conducting and
reporting case study research in software engineering,”
Empirical Software Engineering, vol. 14, no. 2, 2008.

10


	Introduction
	Background and related work
	Software engineering for machine learning
	ML workflow and pipeline

	Research Method
	Research design and case selection
	Data collection
	Data analysis

	Practices in ML workflow (RQ1)
	Data management
	Model training
	Model evaluation and experiment management
	Model monitoring

	Tools in ML pipelines (RQ2)
	Version management
	ML training workflow
	Continuous integration and testing
	ML deployment and serving
	Monitoring

	Discussion and conclusion
	Biographies

