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Abstract

This paper considers several aspects of the relationship between size, structure, speed of propagation and the number of

autonomous cognitive agents in a neural network. Whereas, memory and function generation capacities of neural networks with

scale invariant structure have been investigated extensively, the number of autonomous agents has not received prior attention.

We propose the emergence of the dichotomy of causal and noncausal regions that is related to speed of propagation, in which

the autonomous cognitive agents are not bound in a causal relationship with other agents. Arguments are presented for why

the count of autonomous agents is best estimated with respect to the dimensionality of the underlying space. The number of

autonomous agents obtained for the human brain equals twenty-five, and it is significant that the number in the sub-system

modules also turns out to be close to the same value. It is possible that this near equality across layers provides a special

uniqueness to the human brain. We argue that the findings of this study will be useful in the design of neural-network based

AI systems that are designed to emulate human cognitive capacity.
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Abstract. This paper considers several aspects of the relationship between size, 
structure, speed of propagation and the number of autonomous cognitive agents in 
a neural network. Whereas, memory and function generation capacities of neural 
networks with scale invariant structure have been investigated extensively, the 
number of autonomous agents has not received prior attention. We propose the 
emergence of the dichotomy of causal and noncausal regions that is related to speed 
of propagation, in which the autonomous cognitive agents are not bound in a causal 
relationship with other agents. Arguments are presented for why the count of 
autonomous agents is best estimated with respect to the dimensionality of the 
underlying space. The number of autonomous agents obtained for the human brain 
equals twenty-five, and it is significant that the number in the sub-system modules 
also turns out to be close to the same value. It is possible that this near equality 
across layers provides a special uniqueness to the human brain. We argue that the 
findings of this study will be useful in the design of neural-network based AI 
systems that are designed to emulate human cognitive capacity.    

Keywords: autonomous agents, propagation speed, noninteger dimensional 
spaces, information theory 

1. Introduction  
The optimal capacity of a neural network is estimated in different ways for engineered 
systems. For example, the capacity of a feedforward neural network has been defined 
as the number of functions it can compute [1][2]. On the other hand, the memory 
capacity of a feedback neural network consisting of n neurons with full connectivity 
of 𝑛𝑛2 weights is approximately equal to n if delta learning is used and considerably 
more in networks with non-binary neurons [3][4]. In such studies, it is assumed that 
the control of the network is done by an agent who inputs and takes out the data after 
the computation is complete, and so this is a model with a single autonomous agent 
who normally resides outside the network.  
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In the “global neuronal workspace” hypothesis, associative perceptual, motor, 
attention, memory, and other areas interconnect to form a higher-level unified space 
where information is broadly shared and broadcast back to lower-level processors [5], 
and there is much experimental evidence in support of this view [6]. It is plausible 
that the reason behind the limitations of machines in emulating many aspects of 
biological information processing (e.g. [7][8]) lies in the relatively smaller number of 
autonomous agents associated with AI systems.  

In the hierarchical models of cognition, consciousness has not been located in any 
specific center of the brain, therefore it must be seen to belong to an abstract space 
beyond the physical neural structures [9][10], with the autonomous agents mapped to 
different parts of the architecture [11][12]. This may be done either by considering a 
brain-inspired architecture with different modules for various agents and sub-agents 
[13], or a more abstract architecture [14][15]. In the latter case, one must estimate the 
capacity of the network to support autonomous agents that are able to perform 
different cognitive tasks.  

The number of agents in a complex cognitive network and optimal performance has 
two contradictory aspects: (i) process information efficiently and as rapidly as 
possible by increased propagation speeds, and (ii) have as many cognitive agents as 
possible to be able to operate with agents and sub-agents as required in the execution 
of complex behavior. They are contradictory because high speeds imply that the 
influences will spill beyond local regions and interfere with information associated 
with other agents. Therefore, events in a decentralized cognitive network may be put 
in causal (with clear past and future distinction) and noncausal (which corresponds to 
an ambiguous observer-dependent “present” that guarantees autonomy) domains that 
are generated by the propagation rate of information. Optimality will depend on the 
appropriateness of the given propagation velocity for the architecture of the network.  
 
The performance of a cognitive network is also of relevance in evolutionary 
neuroscience for the study of structures of nervous systems [16][17][18]. Neural 
structures that are able to perform complex behavior must be recursive [19][20] and 
therefore evolve beyond two dimensions for two-dimensional structures cannot 
support distant signaling [21].  
 
It has recently been shown that representation of information requires noninteger 
dimensional structure with an optimal dimensionality of e (2.71828…) [22][23][24]. 
Indeed, this is quite close to the observed value for brain structures with estimated 
best fit that ranges from 2.6 to 2.8 (see [25][26]). Fractal structures are normally seen 
through the lens of symmetric transformations in physical systems [27], but in view 
of the fundamental asymmetry associated with form and function in biological 
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systems, we must consider asymmetric generators and it is interesting that such 
structures in a three-dimensional system can have a columnar form. 
 
Viewed from the perspective of brain size, the connections increase in proportion to 
the square of the number of neurons [28][29].  This is addressed by making brains 
more modular which reduces the lengths of many connections and helps isolate agents 
and sub-agents. 
 
This paper presents broad information-theoretic analysis to find the optimal number 
of cognitive agents that a neural network can support. This analysis is based on recent 
new results related to optimal representation of data. We show that columnar fractal 
structures are an efficient way to represent asymmetric development and this is 
consistent with the structures found in cerebral neocortex. 

 
2. Propagation velocity and causal and non-causal subparts 

Nerve conduction velocity (CV) is the speed at which electrochemical impulses 
propagate down a neural pathway and it is central to the ability of individual agents 
to form largely segregated subparts within the neural network. Conduction velocities 
are affected by a wide array of factors and demyelinating disease conditions may 
result in reduced or non-existent conduction velocities. Myelinated neurons conduct 
at speeds up to 120 m/s, and the conduction velocity varies from 3-30 m/s in parts of 
the brain, and in brain-wide data, a propagation velocity of 1.0–1.5 m/s has been 
estimated [30]. 
 
In cognitive architectures, the repeated cycle of perception, understanding and action 
selection, which constitutes the cognitive cycle, is basic to discrete cognitions. 
Empirical and simulation data [31] indicates that an initial phase of perception 
(stimulus recognition) occurs 80–100 ms from stimulus onset under optimal 
conditions. It is followed by a conscious episode (broadcast) 200–280 ms after 
stimulus onset, and an action selection phase 60–110 ms from the start of the 
conscious phase. One cognitive cycle would therefore take 260–390 ms. At 
conduction velocity of about 1 m/s in the brain, and roughly 1/3 of a second for the 
cognitive cycle, this means that the influence will have time to spread to 1/3 of a 
meter.  
 
Considering the activity in the neuron with respect to time, the agents are located 
physically at some separation from each other to make independent processing 
possible. Although e-dimensionality is optimal, and the processing does not occur at 
physical locations, one may view the agents to be located in the overarching 3-
dimensional space together with the time dimension.  
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Noninteger dimensionality may be seen from the perspective of a power law related 
to connectivity [32]. One may take this connectivity to separation x as being given by  
 

𝑝𝑝(𝑥𝑥)~𝑥𝑥−𝛾𝛾          (1) 
 
where 𝛾𝛾 is a parameter whose value is greater than 1. The main characteristic of this 
distribution is its heavy-tailed nature and there is a variety of examples of this in 
Nature [33]. 
 
The activity lines in the e-dimensional space may be seen as in the simplified diagram 
of Figure 1 which shows the variation of activity for a single “distance” coordinate 
axis x with respect to time.  

 
Figure 1. Activity lines in the neurons create a sectoral past-future divide leaving other activities to 

belong to the isolated present where other agents can be located 
 
This activity flow divides up the activity lines for all neurons. If the speed was too 
high the excitation would resonate in the entire brain quickly and swamp independent 
processes, and if it were too low, it will not be able to reach across the brain and there 
is no divide of past and present and the system is not integrated into one overarching 
unity. Therefore, an intermediate value of conduction velocity is needed. 
 
For the subnetworks associated with sub-agents to remain largely separate, a reduction 
in the connectivity between them will be helpful. From an evolutionary perspective, 
an enlargement of a two-dimensional network into the third dimension, as in the 
columnar architecture of the neocortex [18], seems to be particularly suited to this 
purpose..  
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Figure 2. Three different agents within the physical network 

 
For other issues related to optimal connectivity, consider length L connecting n units 
distributed over volume V, with each unit occupying average volume V/n. A tree that 
optimizes wiring will tend to connect points to their nearest neighbors, which are on 
average located at distances proportional to (𝑉𝑉

𝑛𝑛
)𝑑𝑑/3. We need at least n such dendritic 

sections to make up the tree. The total length L of these sections sums up to 
 

𝐿𝐿 = 𝑐𝑐 𝑛𝑛 (𝑉𝑉
𝑛𝑛

)𝑑𝑑/3 = 𝑐𝑐 𝑉𝑉𝑑𝑑/3𝑛𝑛2/3   (2) 
 

 
Figure 3. A 5 × 5 × 5 fractal with columnar structure (one iteration shown). The next iteration will 

have the same structure telescoped into each cube, and the appearance of minicolumns 
 

Knowing that the brain structures are fractal, the search for optimal generators that 
map the organization of the brain in some approximate sense remains a significant 
research problem. Here we describe some ad hoc generators that provide a 
dimensionality between 2 and 3, as is true for the brain {25][26].  
 
Figure 3 presents a fractal in which a cube gets transformed into a 5 × 5 square surface 
together with columns. In the next iteration each cube of the diagram will in turn be 
transformed at a scale that is 1/25th of what is shown above. Since the 5 × 5 × 5 
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transformed solid has only 61 sub-cubes (25 + 3× 12) the dimensionality associated 
with such a recursive function will be obtained easily (as in [33] where a similar 
computation is done for many examples): 
 

𝑑𝑑 = ln 61
ln5

≅ 2.554   (3) 
 
For a different example in the same style as above, see Figure 4. 

 
Figure 4. A 8 × 8 × 5 fractal with columnar structure (one iteration shown) (left), and the columns 

shown clearly (right); further iterations lead to mini- and micro-columns 
 
The number of sub-cubes on the 8 × 8 base is 64+ 4× 9+16× 3 = 148. Hence, the 
dimensionality of the mapping of Figure 4 will be: 

𝑑𝑑 = ln (148)
ln (8)

≅ 2.403    (4) 

Another example of this is the recursive structure of Figure 5 below: 

 

 
Figure 5. Columns and minicolumns 
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Its dimensionality will depend on the relative diameters of the various columns. 

3. Columnar structure in the neocortex 
Optimal fractal mappings for the brain depend on many local constraints defined 
within the framework of the overall architecture. Thus the mammalian cerebral cortex 
is a cellular sheet composed of pyramidal and local circuit neurons (or interneurons) 
deployed in horizontal layers, intersected by vertical (or radial) columns that are 
stereotypically interconnected in the vertical dimension and share extrinsic 
connectivity [18]. It is remarkable that the neurons migrate to the cortex after they 
have been generated. They emerge in ventricular (VZ) and subventricular zones 
(SVZ)), acquiring positions through long-distance radial and tangential migration 
across the intermediate zone [34].  
 
The broad layered structure of the neocortex (layers I through VI) is segregated 
principally by cell type and neuronal connections [34][35]. Layer IV is the main 
recipient of incoming sensory information and the information is distributed from here 
to the other layers that indicates both the local and global elements of the connections. 
The neurons in the upper layers II and III project their axons to other areas of 
neocortex, whereas those in the deeper layers V and VI often project out of the cortex. 
Neurons in layer IV receive the majority of the connections from outside the cortex, 
and themselves make short-range, local connections to other cortical layers. Layer IV 
is small or missing in the primary motor cortex,  

 
Figure 6. Schematic representation of the columnar cytoarchitecture of the developing 
neocortex. There are four major zones at mid-neurogenesis, which are the ventricular zone 
(VZ), the subventricular zone (SVZ), the intermediate zone (IZ), and the cortical plate (CP). 
(from Pinson et al (2019) [37] 
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Because of recursive structure, the architecture is associated with mini- and micro- 
columns at deeper level. Neurons within the microcolumn receive common inputs, 
have common outputs, are interconnected, and may “well constitute a fundamental 
computational unit of the cerebral cortex” [37].  Minicolumns typically have 80–120 
neurons, and there are about 2×108 minicolumns in the human brain. The diameter of 
a minicolumn is about 28–40 μm, with about 100 neurons per minicolumn, yielding 
an estimate of 2×108 minicolumns. From a mathematical point of view, these many 
minicolumns will be generated by a function that goes through about six or seven 
recursive steps. 

To put these numbers in perspective, it has been estimated that the total length of the 
average neuron’s axonal tree is between 10 and 40 mm, and that the average dendritic 
tree is 4 mm. As for connectivity, the brain of a three-year-old child has about 1015 
synapses, and this number declines with age, stabilizing by adulthood to number 
varying from from 1014 to 5 × 1014 synapses. 

A biologically plausible scale-invariant neural network is associated with the power 
law. If f(x) represents the structure or dynamics of a scale-invariant system as a 
function of the (spatial or temporal) variable x, then 

𝑓𝑓(𝜆𝜆𝑥𝑥) = 𝐶𝐶(𝜆𝜆)𝑓𝑓(𝑥𝑥)   (5) 

Thus if a scale differs from the original one by a factor λ, replacing f(x) for f(λx), the 
property described by f remains essentially unchanged; it is only multiplied by a 
scaling factor C(λ) that does not depend on x. Although, in principle, C(λ) can be any 
function, in practice, it is a power law for most natural systems. Therefore, we can 
write 

𝑓𝑓(𝜆𝜆𝑥𝑥) = 𝜆𝜆𝛿𝛿𝑓𝑓(𝑥𝑥)   (6) 

Scale-invariant structures can characterize systems in which physical space does not 
play an important role. Thus, scale-invariance can be given by topological distance 
rather than physical distance, and it may then be related to the number of steps 
required to connect different parts of the system via interaction links [36].  
 
Let the cost of connectivity of a neuron to another in layer k be 𝐶𝐶(𝑘𝑘). Then 
 

𝐶𝐶(𝑘𝑘 + 1) = 𝐶𝐶(𝑘𝑘) (𝑘𝑘+1)
𝑘𝑘

+ 𝑟𝑟(𝑘𝑘+1) 
𝑟𝑟(𝑘𝑘)

 (7) 
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In other words, the cost of layer (k + 1) must be at least (𝑘𝑘+1)
𝑘𝑘

  times the cost of 

connectivity to layer k, and  𝑟𝑟(𝑘𝑘+1) 
𝑟𝑟(𝑘𝑘)

 is the additional cost ratio in the next layer related 

to additional processing associated with signal delays. Both these taken together may 
be taken to be the origin of the power law expression of equation (1).  
 
The neocortex is divided, into regions demarcated by the cranial sutures into frontal, 
parietal, occipital, and temporal lobes that perform different cognitive functions with 
further subdivisions for more specific cognitive processes.  
 
 
4. Number of independent centers 
Although it is conventional to represent computer information in terms of bits, this is 
strictly correct only for two-dimensional surfaces. The number of independent centers 
for a two dimensional surface with N points is log2 𝑁𝑁. This is clear from the example 
that 16 points on a two-dimensional surface can be labeled 0000, 0001, ….1111. So 
whereas for memory this offers 16 possibilities, as far as agency within the network 
is concerned, each of the four places can autonomously fill in the binary data at that 
point. The logarithm is to base 2 because we have implicitly chosen a two-dimensional 
surface. 
 
In general for a 𝑑𝑑-dimensional space, the number of independent centers with N points 
is 

r = log𝑑𝑑 𝑁𝑁   (8) 
 
We have already mentioned that the optimal representation of data is in an e-
dimensional space [23], with some recently published applications [38][39].   But we 
cannot be sure that the brain neural structures correspond to this dimensionality 
because there are additional factors such as the underlying quantum processes that are 
ignored [40]. Nevertheless, the abstract space in which genetic information is 
expressed also appears to satisfy e-dimensionality [41][42]. 
  
The human brain consists of about 86 billion neurons [43] that are estimated to be 
connected by 850,000 km of axons and dendrites. Of this total, roughly 80% is short-
range, local connections (averaging 680 microns in length), and approximately 20% 
is long-range, global connections in the form of myelinated fibers several cms in 
length. If we were to consider the fractal dimensionality of the brain to be 
approximated by the optimal value of e, which is not very different from the estimated 
best fit of 2.811 [44][45], the number of independent cognitive agents in the brain will 
be approximately 
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log𝑒𝑒 86 × 109 ≈ 25     (9) 
 
One can assume that each agent is associated with a separate cognitive category 
associated with a unique abstraction. Intuitive sense may have led ancient 
philosophers to pick this as the number of categories associated with the mind, as in 
Sāṅkhya [46]. One could argue that this number was arrived at introspectively by 
means of consciousness enumerating its several projections. 
 
Since the neocortex has about 19 percent of the total number of neurons, number of 
cognitive agents associated with the neocortex will be: 
 

log𝑒𝑒 0.19 ×  86 × 109 ≈ 23.6  (10) 
 
A similar count will be associated with number of agents in other modules with billion 
neuron structures.  
 
That the number of agents saturates very rapidly as the billion neuron range is reached 
may very well be an explanation for the size of the human brain. 

 

 
 
One may speculate that this characteristic of comparable number of autonomous 
agents at different levels is of particular significance in information processing and 
cognition made by the brain. 
 
5. Conclusions 
This paper analyzed the relationship between size, structure, speed of propagation and 
the number of cognitive agents sharing the resources in brains. The idea of time-
related and space-related events was defined and related to the speed of propagation, 
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in which the autonomous cognitive agents are space-related. We considered the 
number of autonomous agents a neural network with scale invariant structure can 
support. It was shown that the number of agents and sub-agents is about 25, which is 
quite consistent with analysis using linguistic and philosophical categories. Ad hoc 
fractal generators that lead to columns and minicolumns were proposed and these and 
other generators could be further investigated for their mathematical properties. 
 
It was shown that the number of autonomous agents flattens out in the billion neuron 
range which creates the possibility that the number of autonomous agents is more or 
less the same across different modules. This fact could very well be a factor in the 
evolution of the brain. 
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