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Abstract

Trust and security of microelectronic systems are a major driver for game-changing trends like autonomous driving or the internet

of things. These trends are endangered by threats like soft- and hardware attacks or IP tampering – wherein often hardware

reverse engineering (RE) is involved for efficient attack planning. The constant publication of new RE-related scenarios and

countermeasures renders a profound rating of these extremely difficult. Researchers and practitioners have no tools or framework

which aid a common, consistent classification of these scenarios. In this work, this rating framework is introduced: the common

reverse engineering scoring system (CRESS). The framework allows a general classification of published settings and renders

them comparable. We introduce three metrics: exploitability, impact, and a timestamp. For these metrics, attributes are defined

which allow a granular assessment of RE on the one hand, and attack requirements, consequences, and potential remediation

strategies on the other. The system is demonstrated in detail via five case studies and common implications are discussed. We

anticipate CRESS to evaluate possible vulnerabilities and to safeguard targets more proactively.
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Abstract—Trust and security of microelectronic systems are a
major driver for game-changing trends like autonomous driving
or the internet of things. These trends are endangered by threats
like soft- and hardware attacks or IP tampering – wherein
often hardware reverse engineering (RE) is involved for efficient
attack planning. The constant publication of new RE-related
scenarios and countermeasures renders a profound rating of these
extremely difficult. Researchers and practitioners have no tools
or framework which aid a common, consistent classification of
these scenarios. In this work, this rating framework is introduced:
the common reverse engineering scoring system (CRESS). The
framework allows a general classification of published settings
and renders them comparable. We introduce three metrics:
exploitability, impact, and a timestamp. For these metrics,
attributes are defined which allow a granular assessment of
RE on the one hand, and attack requirements, consequences,
and potential remediation strategies on the other. The system
is demonstrated in detail via five case studies and common
implications are discussed. We anticipate CRESS to evaluate
possible vulnerabilities and to safeguard targets more proactively.

Index Terms—hardware reverse engineering (RE), security
framework, vulnerability assessment, countermeasures, threat
analysis, case study, IC trust

I. INTRODUCTION

Hardware attacks and countermeasures have long been in an
arms race. Increasing numbers of methods are being published
on both ends, and there is no end in sight to this escalation.
On the one hand, the extreme cost pressure of the electronics
industry in general exacerbates the situation. Players in the
hardware supply chain are forced to take measures that serve
the profitability of their respective companies. Outsourcing at
all levels – ranging from third party intellectual property (IP)
cores, to outsourced testing – is at the top of the agenda. Due
to these economic factors, trustworthiness and security often
play only a secondary role. On the other hand, in complex
systems, especially if safety- or security-critical applications
are involved, the hardware is a favorable target. Once an attack
on hardware is achieved, it may impact every single device in

This work was partly funded by the German Ministry of Education and
Research in the project RESEC under Grant No.: 16KIS1009. © 2021 IEEE.
Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works. DOI:
10.1109/PAINE54418.2021.9707695

the field. In this case, sophisticated players will not shy away
from chosen objectives, even if the expenditure is tremendous
[1]. However, the focus is not only on high-level targets, so that
“[. . .] the database of common vulnerabilities and exposures
(CVEs) is just the tip of an iceberg” [2]. Attack scenarios
are manifold and, albeit not considered an attack, hardware
reverse engineering (RE) has proven its relevance in these
[3]. Scenarios engaged with RE are at an all-time high. This
trend is accompanied by an increasingly difficult assessment of
the published scenarios. On both the defensive and offensive
side, researchers and practitioners face difficulties to properly
rate the consequences of published measures and potential
countermeasures involving hardware RE. The hardware is the
established root-of-trust, but one issue will remain: the closer
a potential vulnerability is to the physical implementation,
the lesser the chances are that it can be updated or patched.
Covert side-channels, malicious players in the supply chain,
or deficiently implemented security features all fall into this
category. The offensive and defensive role of RE in all
mentioned scenarios has been shown in the past, yet a common
framework for an adequate assessment is still pending. It is
this very gap that the Common Reverse Engineering Scoring
System (CRESS) fills: Providing an evaluation framework
for the comprehensive assessment of RE-involved exploitation
scenarios. The contributions of this paper are:

• In Section II, state-of-the-art circuit RE methods are
structured and their link to hardware attacks are dis-
cussed.

• In Section III, the CRESS is introduced. All metrics
are discussed in detail and the multitude of attributes to
be considered are outlined. All attributes and values are
highlighted as Attr Value .

• In Section IV, the framework is thoroughly discussed via
five selected case-studies: stealthy dopant Trojans [4], RE
improved laser fault attacks [5], RISC-V cryptographic
Trojans [6], and two studies that address the issue of IP
piracy. All case-studies are rendered comparable through
the framework and commonalities and distinctions are
examined.

https://www.doi.org/10.1109/PAINE54418.2021.9707695
https://www.doi.org/10.1109/PAINE54418.2021.9707695


Sa
m

pl
e

Pr
ep

ar
at

io
n

Im
ag

in
g

St
itc

hi
ng

In
te

rc
on

ne
ct

io
n

Id
en

tifi
ca

tio
n

St
an

da
rd

C
el

l
Id

en
tifi

ca
tio

n

N
et

lis
t

A
bs

tr
ac

tio
n

H
ig

h
L

ev
el

D
es

cr
ip

tio
n

Foundry Product Chip Scans Netlist

Hardware REProduction

Physical RE Functional RE

Figure 1. Process flow for hardware reverse engineering of integrated circuits.

II. HARDWARE REVERSE ENGINEERING

A. General RE Overview

In general, hardware RE activities can be distinguished into
two categories: actions with benevolent intentions and actions
with malicious intentions. The former are, for example, studies
to understand a new technology or the prevention of patent
infringements. Malicious activity is aimed at copying IP or
in support of subsequent hardware-based attacks. Despite the
different intents behind RE, the individual methodologies are
alike. These can be classified into three main categories [7]:

• System level tear-downs: Identification of the product,
package, internal boards, and components (printed circuit
board (PCB) level)

• Technology analysis: Evaluation of the manufacturing
process. Structures, materials, and geometrical dimen-
sions can be examined (integrated circuit (IC) level)

• Layout and circuit extraction: Gradual delayering of a
device including a layout extraction and a netlist and
schematic reconstruction (IC or PCB level)

More precisely, layout and circuit extraction, or circuit RE,
can be divided into a physical analysis part and a functional
recovery part. These processes are briefly described in the fol-
lowing. The alphabetical coding of every sub-process indicates
the intermediate RE Results RR . These values are important
for the subsequent rating in the CRESS in section III-B.

B. Physical RE – Packaged IC to Netlist

The physical part of RE, as depicted in Figure 1, is a well-
studied process [8]–[10] and can be executed in a sequential
order.
Sample Preparation. The first RE step is the physical prepa-
ration of the packaged IC. This process step can be split into
two sub-processes: In the depackaging step, the die is removed
from its package and the bare silicon IC is exposed RR DC .
Usually, a cross-section of the IC is produced RR CS . Opti-
cal measurement data is acquired through optical microscopes
or scanning electron microscopes. This allows technology
measurements such as the number of metallization layers, the
process node, the type of the technology, or a material analysis
RR TM . If a database with technological features exists, a

one-to-one technology identification is possible RR TI . The
technological information aids a delayering of the die. In the
course of this, the layers of the device – ranging from the top

metal down to the active areas – are individually prepared for
imaging.
Imaging. The results after delayering are generated by imag-
ing systems. Via an optical microscope, images of individual
layers and a rudimentary determination of the IC’s floorplan
(dieshot) are possible RR DS . Larger building blocks can
be isolated within the layout. For circuit reconstruction, mi-
croscopes with far better resolution are necessary. Scanning
electron microscopes (SEMs) or specialized chip scanners are
required for this task. Unstitched raw images from every layer
form the intermediate RE result RR US after scanning.
Image Stitching. Stitching is the process to reconstruct two-
dimensional, geometrically-undistorted mosaics RR SL . By
using overlapping portions of adjacent images, an area-based
feature extraction algorithm allows aligning images and cre-
ates a SEM image mosaic [11]. These mosaics are semi-
automatically aligned to recreate a three-dimensional stack of
superimposed layers RR LA .
Interconnection Identification. The reverse engineered lay-
out is extracted from the mosaic by image processing. The
result is a vector-representation of the layout data of the
original integrated circuit, segmented into metal lines, vertical
interconnection accesses, and contacts RR GD .
Standard Cell Identification. The repeatedly placed standard
cells are classified through clustering algorithms utilizing inter-
cell similarity scores or other feature extraction techniques.
From these clusters, a standard cell library can be reverse en-
gineered, from which the transistor netlist is obtained manually
or which is merely described as boolean logic RR SI [10].
Netlist Re-Routing. To obtain a flat netlist, the wires between
standard cells are identified by connecting overlapping con-
ductive patterns (i.e. VIAs, wires, and contacts) [12]. The re-
routed flat netlist is the final step of the physical RE process
RR FN .

For a full circuit RE, all discussed steps are necessary to
successfully recover a netlist. Yet, depending on the specific
analysis target, intermediate results can be sufficient and the
full RE of the netlist may not be necessary.

C. Functional RE – Netlist Abstraction

The functional part of RE [13]–[15], as depicted in Figure
1, extracts high-level information of the gate-level netlist. In
contrast to the physical part of RE, the single steps of the
functional part are executed sequentially or simultaneously,



depending on the targeted high-level information. Also, some
steps can be performed with or without specific previous
steps. This affects the complexity to derive results or even
the possibility for a correct extraction of information. As a
consequence, the following RR values are listed without
intending a specific order.
Netlist Partitioning. A common starting point of functional
RE is netlist partitioning RR PN . In this step, the flat
netlist is split into smaller submodules or into a hierarchy
of submodules. This is a divide-and-conquer approach to
analyse all submodules separately. Various approaches for
netlist partitioning exist, like for example separation along
the data path by word identification [16], functional block
identification [17] or graph partitioning [18].
Input/Output (I/O) Signal Identification. Reconstructing in-
put and output signals RR HS in a given partial or complete
netlist can aid further analyses [16]. An identification of I/O
blocks increases abstraction and aids further analysis tasks like
a differentiation between combinatorial and sequential paths.
The aim is to obtain a “data-sheet” representation of a given
module or submodule.
Data Path Identification. In order to gain more information
about an unknown netlist, data words can be identified and
the data path can be extracted RR DI . There are differ-
ent approaches for data path identification, like for example
structural-based and similarity-based approaches [19], [20],
functional-based approaches [21], or a combination of both
[22].
Functional Block Identification. One or multiple submod-
ules of the netlist (after partitioning) can be matched to a
library of known netlists or netlist structures to identify their
high-level functionalities [16], [23]–[25]. Some approaches
require a perfect match RR PF while other approaches
enable fuzzy matching with only similar netlists but equal
functionality RR PH .
Control Logic Identification. A special part of high-level
netlist RE is the extraction of the design’s control logic or finite
state machine (FSM) RR CI . The identification of gates and
wires which belong to the control logic usually starts with the
identification of the FSM’s flip-flops [26], [27] and continues
with identification of the corresponding gates, wires and inputs
or flip-flop outputs [26], [28]. Finally, the extracted netlist part
is evaluated by all possible input combinations to reveal the
corresponding FSM, assuming a specific reset state [29].
Complete Functional Identification. All or some of the
previous steps can be combined to extract up to the complete
functionality of a design RR CF [16]. One can differentiate
between the identification of the complete overall functionality
or the identification of the concrete implementation to achieve
this complete overall functionality.

D. Attack Scenarios – A RE Perspective

The attack scenarios can be classified into direct and indirect
attack vectors as shown in Figure 2. The direct attack vector
includes all scenarios in which RE is used to recover the IP. It
covers IP confidentiality *IC related topics, like counterfeit-

Figure 2. A generic product in the center of the IP and application vectors.
Conventional attacks targeting applications can be supported by RE.

ing, IP theft and re-use, or overproduction, but also IP integrity
*II related topics, like IP manipulation or hardware Trojan

insertion. In addition, a second, indirect attack vector can be
identified. It includes all scenarios where RE has a supporting
role to attack the product or in this case more precisely the
device’s application. A well-known example is the RE-assisted
attack by Nohl et al. [3]. The specific attacks, including
logical, observing, semi-invasive, or invasive, are improved
or even made possible by prior RE results. Similar to direct
attacks, indirect attacks can be classified to affect on-device
confidentiality *OC , on-device integrity *OI and on-device
availability *OA . Both attack vectors must be considered
when assessing RE-improved attacks.

III. SCORING OF RE VULNERABILITIES

A. The Common Vulnerability Scoring System (CVSS)

For the quantitative and qualitative assessment of common
vulnerabilities and exposures (CVEs), the common vulnera-
bility scoring system (CVSS) [30] was introduced in 2006.
Originally, it was set up by the National Infrastructure Ad-
visory Council (NIAC) and is now maintained by the non-
profit organization FIRST Inc. In 2015, the third version of
the framework was published, which gradually improved. The
CVSS provides a framework wherein users can evaluate the
severity of software vulnerabilities. The goal is to provide
open and universal standard severity ratings of vulnerabilities.
The framework has emerged into an established measurement
system for the industry, organizations, and governments that
need accurate and consistent vulnerability severity scores.

The output of the system is a quantitative score and a
vector string, in which the individual criteria are listed. The
three areas of concern are: base metric, including exploit and
impact scoring, temporal metric, and environmental metric.
In summary, the CVSS provides a well-accepted mechanism
to analyze vulnerable software components. The system is
also used on hardware-specific attacks like Meltdown [31]
or Rowhammer [32]. Yet, hardware RE and hardware RE-
assisted attacks need different exploit, impact, but also tem-
poral metrics to be able to address the multi-faceted field of
RE comprehensively and to compare RE attacks reasonably.
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B. The Common RE Scoring System (CRESS)

The introduced CRESS framework adapts the original scor-
ing attributes of CVSS towards hardware RE-related specifics
which are discussed in the following section. The primary
division into base, temporal, and environmental metrics is not
adopted, because for RE-related attacks the temporal attributes
are much more related to the base attributes. The success of
an attack using RE depends, for example, on the available
remediation strategies, which again strongly improve over
time. Therefore, temporal attributes should be included into the
CRESS framework by default. On the other hand, the impact
is treated as separate metric, because several scenarios can be
distinguished, see section II-D. Summarizing, the following
three CRESS metrics are introduced: exploitability, impact,
and a timestamp. An overview of the CRESS is depicted in
Figure 3.

1) Exploitability: The exploitability metric is divided into
two categories: the exploitability of the necessary RE results
for the rated attack, and the exploitability of the attack under
the assumption that the necessary RE results are available.

a) RE Exploitability: For a rating of the RE exploitabil-
ity, three attributes for a qualitative assessment are defined:
entry point, RE result, and available device information.
The first attribute entry point EP determines the role an
actor has within the supply chain. When using CRESS, the
most intuitive way to address single features is by asking
a specific question: Who is the attacker? Different players
possess different characteristics which must be rated distinctly.
The end customer E only has access to public data and
has no rights within the supply chain other than to request
information. All other entry points are directly involved within
the supply chain and can potentially abuse their permissions
maliciously. The foundry F for example has access to the
physical layout and process design kit (PDK) information.
Further involved parties include backend designer B , the
frontend designer, either in a partial position P or in a
leading position L , and third party IP providers I . The
backend designer might have limited possibilities to change
high-level functionalities undetected, but has access to the
layout information. The frontend designers have access to the

register-transfer level (RTL) descriptions, where a supporting
role is less powerful than a leading role. Finally, the IP
provider has the full control over its offered IP, but has no
access to the remaining components of the design. In summary,
the EP set consists of following elements:

EP :=
{

E , F , B , P , I , L
}

The second attribute – RE Results RR – has been intro-
duced in section II-B. The question to be asked is: Which
RE result is necessary to arrive at the target to be exploited?
Users can choose from the predefined set of RE results. For
improved usability, this category is sub-divided into physical
RE results RRphys. and functional RE results RRfunc. . Both
sets are defined as follows:

RR := RRphys. ∪ RRfunc.

RRphys. :=
{

DC , CS , TM , TI , DS , US , SL ,

LA , GD , SI , FN
}

RRfunc. :=
{

PN , HS , PH , CI , DI , PF , CF
}

Section II already explains that the set RRphys. is sorted
hierarchically, while the set RRfunc. is not, because there is
no clear sequential order for functional RE. Consequently,
for RRphys. , the user selects the hierarchically highest value
exclusively. For RRfunc. , the user has to decide what is the
most relevant result for the subsequent attack.

Third, the available device information AI is rated. The
question to be asked is: Is the targeted design openly avail-
able? A rough differentiation can be done into fully propri-
etary and open-source designs. Proprietary or closed-source
C designs offer only publicly available information to a
potential attacker. Open-source designs can be distinguished
into partial open-source designs P and fully open-source
designs O . For instance, RISC-V designs in which the crypto
primitives remain proprietary can be ranked partly as open
source. Fully open-source products incorporate open-source IP
in all modules of a design. This may also include the standard
cell library, analog, or memory IP. Thus, the AI set consists
of the following elements:

AI :=
{

C , P , O
}

The three attributes of the RE exploitability should result in
an assessment of the RE complexity. There is a strong relation
between the entry point and the RE result, because depending
on the entry point, RE results are significantly more or less
difficult to reach.

b) Attack Exploitability: For a rating of the attack ex-
ploitability, two attributes for a qualitative assessment are
defined: attack complexity, and supply chain intrusion.

The first attribute attack complexity AC rates the com-
plexity of a RE-improved attack under the assumption that
the necessary RE results are given. The question to be asked
is: How complex is the targeted attack based on a given RE



result? To avoid an overly complex scoring, five attributes
can be chosen to assess the attack complexity: Unavailable
N , low L , medium M , high H , extreme X . The value
N is necessary to cover pure RE scenarios wherein only
the direct IP vector constitutes an attack. The low attack
complexity represents hobby projects of individuals, medium
attack complexity represents non-dedicated labs, high attack
complexity represents labs dedicated for the attack purpose,
and extreme attack complexity represents state actors with
basically infinite resources. Thus, the AC set consists of the
following elements:

AC :=
{

N , L , M , H , X
}

Furthermore, the supply chain intrusion SI for the intended
scenario is addressed, again under the assumption that the
necessary RE results are already available. Different attack
scenarios include different permissions in the design and
manufacturing process. The questions to be asked is: What
are the permissions necessary to execute the attack? If a
hypothetical attacker requires only access to the end product
N , he or she does not need any write or read capabilities.
The same value is used for attack vectors in which RE is
used directly by an adversary. Read only L access is, for
instance, the ability to read the design files during a single
design phase. Read and write access are the most extreme
form of supply chain intrusion. This feature is additionally
distinguished between single-stage M and multi-stage H
permissions. Single-stage permission implies, for instance, that
read and write access is only required on the physical layout.
In case of multi-stage permission, read and write accesses
are required at several points in the production process. For
example, a potential attacker may need read access to the
synthesized netlist in order to subsequently modify the RTL
description by writing to it. Thus, the SI set consists of the
following elements:

SI :=
{

N , L , M , H
}

c) Remediation Strategies: Finally, possible remediation
strategies RS are addressed. These are considered for the RE
as well as the attack exploitability. The question to ask here
is: What countermeasures can prevent the attack as a whole?
Again, to avoid an overly complex scoring, all remediation
strategies are abstracted to four attributes: unavailable N , pre-
silicon measures A** , detection-based postsilicon measures
*O* , and logic-based measures **L . One can choose between
the value N and an arbitrary combination of the remaining
values. Presilicon measures are active measures, like locking
techniques [33], camouflaging [34], [35], physical unclonable
functions [36], measures for hardware implementations, like
a fault attack resistant AES implementation [37], or physi-
cal obfuscation techniques [38]. Presilicon measures aim to
protect the product from the beginning of the product life
cycle. In contrast to presilicon measures, postsilicon measures
can also be applied years after products are in the field and
at least mitigate potential vulnerabilities of already existing

devices. Postsilicon measures are detection-based approaches,
like hardware Trojan detection tools [39] or RE verification
processes [40]. Summarizing, the RS set consists of the
following elements:

RS :=
{

N , A , O , L , AO , OL , AL , AOL
}

2) Impact: The second metric is the impact I of RE-related
attacks. It can either be direct or indirect, including *IC and
*II related topics for direct and *OC , *OI and *OA related

topics for indirect impacts, see more detailed explanations in
section II-D. Moreover, the CRESS tool distinguishes between
impacts which are related to the intended aim of the RE
attack I* and impacts which also possibly occur but which
are not targeted by the RE attack P* . For both of these
impact categories, all direct and indirect impacts can be rated,
resulting in the following elements:

I :=
{

IIC , III , IOC , IOI , IOA , PIC , PII , POC ,

POI , POA
}

For each of these impact attributes, a user can choose
between three generic severity values X: no N , minor L ,
and major H impact, see the elements in the following:

X :=
{

N , L , H
}

3) Timestamp: In order to address the temporal dependency
of the scoring result (e.g. available remediation strategies, etc.),
the CRESS framework includes a third metric timestamp T .
It has the form of a calendar date string in RFC3339 “full-date
format” [41]. The timestamp shall be picked to represent the
time of scoring and shall change upon possible re-scoring at
a later time.

In a similar vein to the CVSS, a concise machine-readable
exchange format for the scoring result is defined: the CRESS
Vector String. The CRESS Vector String consists of the short
identifiers of each scoring attribute and the short identifiers
of the scored values. Identifiers and values are separated by
a colon (:), the resulting pairs are concatenated in the order
as they were introduced in this section with a forward slash
as a separator (/). The resulting CRESS Vector String is
suitable for storage and exchange between researchers. An
exemplary template of the CRESS Vector String with the
chosen attribute values t1-t16 looks as follows:
EP:t1/RR:t2/AI:t3/AC:t4/SI:t5/RS:t6/IIC:t7/III:t8/IOC:t9/
IOI:t10/IOA:t11/PIC:t12/PII:t13/POC:t14/POI:t15/POA:t16/
T:yyyy-mm-dd

IV. EXAMPLARY CASE STUDIES

In the following, we will demonstrate how various attacks
on IP and / or applications can be modeled using selected ex-
amples. These should also serve as an aid for the classification
of existing and future attacks. All discussed attacks are sum-
marized in Figure 4. It is shown that the scenarios represent a
variety of attack exploitability attributes. As the attacks have
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their limited and specific impact, only individual attributes are
different from N . The discussed case-studies again highlight
the importance of adequate remediation strategies for every
single use-case.

A. Stealthy Dopant Trojans: Side-channel Hardware Trojan

The first evaluated case study are stealthy dopant Trojans by
Becker et al. [4]. They introduced a covert type of hardware
Trojan which only required modification of a doping mask.
Since no optically observable changes were made to metal,
VIA, or polysilicon masks, this type of hardware Trojan is not
detectable through visible imaging methods. For the following
assessment, we focus one of the two case studies: the side-
channel leakage of parametrically modified improved Masked
Dual Rail Logic cells. A modification of the p-doped region of
an AND-OR-Inverter (AOI) gate reduced the effective width
of individual transistors, and changed the dopant polarity
of others and enabled a power side channel. Through this
modification, the leaked key correlation is demonstrated via
Correlation Power Analysis (CPA) on the SBox of an AES
implementation.
RE The outlined attacker is a (potentially offshore) foundry
EP F . Foundries manufacture commissioned ICs based on

the provided physical design data. From the design data, a
partial identification of the placed AOI gates of the targeted
SBox implementation must be correctly located RR PF . The
foundry does not require further information AI C .
Attack Expert knowledge is necessary to configure the dopant
regions correctly without opening other side-channels or pos-
sibly manipulate the cell so that it is no longer functional
AC H . Despite the high attack complexity, the supply chain

intrusion is only medium SI M . A malicious actor requires
read and write permissions merely to physical layout informa-
tion.
Remediation strategies are also limited since the hardware
Trojan was designed to be stealthy. Yet, Sugawara et al. [42]
have shown that via destructive RE and a passive voltage
contrast, for regions with changed dopant polarity, postsilicon
detection strategies exist RS O . Viable presilicon remedia-

tion strategies RS A are for instance functionality obscuring
via logic locking. Nonetheless, this method does not render
the attack impossible for sophisticated attackers.
Impact The major on-device exploitability of the attack is the
confidentiality exploitation through the side channel leakage
IOC H and the IP integrity III H via the dopant area

tampering. Minor possible compromises are the on-device
integrity and availability POI L POA L .
CRESS Vector String EP:F/RR:PF/AI:C/AC:H/SI:M/RS:AO/
IIC:N/III:H/IOC:H/IOI:N/IOA:N/PIC:N/PII:N/POC:N/POI:L/
POA:L/T:2021-08-09.

B. RE Improved Laser Fault Injection

The second evaluated case study is RE improved laser fault
injection by the example of an AES cipher by Courbon et
al. [5]. For the attack, two devices which contain the targeted
hardware implementation of an AES circuit are required.
One of them is physically reverse engineered to obtain a
stitched SEM image which is used to detect flip-flop pattern.
The resulting coordinates are applied on the second device
to identify promising fault injection positions. Together with
additional knowledge about the AES circuit characteristics and
timing behavior, the overall performance of the laser fault
injection attack, which targets the extraction of the AES secret
key, is improved.
RE The adversary EP E who has to physically reverse en-
gineer one device to a stitched SEM image and must partially
identify standard cells, namely flip-flops. Consequently, the
required RE result is defined as the hierarchically highest
result: standard cell identification RR SI . The adversary does
not require further information AI C .
Attack The attacker needs to perform sophisticated fault in-
jection and analysis, so the attack complexity can be rated high
AC H . Additionally, no supply chain intrusion is required,

because only two end products are necessary SI N .
The remediation strategy which can be assumed to be suc-
cessful for this attack is a presilicon measure RS A . On
the one hand, presilicon measures can increase the retrieval
complexity of the necessary RE results, for example by
camouflaging flip-flop pattern [43]. As a result, the coordinates
of all potential flip-flop pattern positions have to be considered
for the subsequent fault injections. On the other hand, an
AES implementation can be used which is resistant to or
strengthened against efficient and/or successful fault injection
attacks [5], [37].
Impact The major on-device, intended impact of the attack
is the confidentiality, because it targets the extraction of
the secret AES key IOC H . Additionally, there is a minor
intended impact concerning the IP confidentiality, because the
SEM image and the flip-flop positions are revealed IIC L . The
possible impact of the attack are minor impacts concerning
the on-device integrity and availability caused accidentally by
fault injections POI L , POA L .
CRESS Vector String EP:E/RR:SI/AI:C/AC:H/SI:N/RS:A/
IIC:L/III:N/IOC:H/IOI:N/IOA:N/PIC:N/PII:N/POC:N/POI:L/
POA:L/T:2021-08-09.



C. A RISC-V Cryptographic Chip with Hardware Trojans

The third evaluated case study investigates hardware Trojan
insertion by the example of [6]. The authors taped-out an
open-source microcontroller design with post-quantum cryp-
tographic accelerators. This design was also infected by four
hardware Trojans that threaten the security principles for this
chip. In [6], the attacker is assumed to be a malicious IP
provider of the microcontroller base design. The attacker
therefore also provides the software compiler for this base
design and can use this vector in combination with the hard-
ware modification to enhance the capabilities of the hardware
Trojans. In particular, one of the hardware Trojans allows
leaking arbitrary data from the microcontroller through a
covert channel in power usage or EM emanation.
RE The attacker is given to be the IP provider EP I . To
actually perform the attack of inserting a sophisticated Trojan
as given in the paper, the attacker needs the information from a
partial functional identification, in order to identify the source
of leaked data, the trigger conditions etc. RR PF . In the
work, the design is described to be open source AI O .
Attack The attacker needs to introduce additional logic only
at the RTL level and into the compiler written in a high-
level language, so the attack complexity can be rated medium
AC M . In order to perform the attack presented in the paper,

read and write access to the supply chain is needed for
the hardware design at the IP-provider and for the software
compiler framework, which results in a high level of supply
chain intrusion SI H .
Against the hardware Trojans in this work, multiple remedi-
ation strategies are possible, such as hardware obfuscation to
prevent the insertion, or hardware Trojan detection to observe
the attack. Mere access control can not prevent the success of
the Trojan attack RS AO .
Impact The Trojan is a major modification of the design,
impacting IP integrity III H . The main purpose of the Trojan
attack is to impact confidentiality by leaking arbitrary data on-
device IOC H . The possible impact of the attack are minor
impacts concerning the on-device integrity and availability,
occurring if the Trojan overheats the chip or causes voltage
depletion due to the ring oscillator operation POI L POA L .
CRESS Vector String EP:I/RR:PF/AI:O/AC:M/SI:H/RS:AO/
IIC:N/III:H/IOC:H/IOI:N/IOA:N/PIC:N/PII:N/POC:N/POI:L/
POA:L/T:2021-08-09.

D. IC Piracy – IP Theft

The last two case studies focus on IP theft and the subse-
quent consequences. The first scenario considers the piracy of
a specific design, for example the proprietary architecture of
a multiplier. The design is reverse engineered and eventually
reused in the attackers own design. The second scenario ex-
ploits the gained understanding of a proprietary cryptographic
algorithm to detect a possible vulnerability.
RE Both operations are carried out by an end user EP E ,
who requires at least the partial functional identification
RR PF of the respective module, in both cases to gain under-

standing of the design, to then either reuse the implementation

or to attack the implementation. Both attacks are carried out
on proprietary hardware designs AI C .

1) Proprietary Multiplier Architecture:
Attack This scenario does not feature a subsequent attack,
it already is the identification of the specific submodule
AC N SI N . However, there exist remediation strategies to

prevent the identification and reuse of the design. In particular,
logic locking, logic camouflaging and watermarking are often
used to prevent the piracy of proprietary hardware RS A .
Observation-based post-silicon methods do not exist, however
reverse engineering competitors designs may allow insight into
whether a design has been pirated.
Impact The impact of the scenario is N for all categories
but the IP confidentiality. The theft of the proprietary design
results in a IIC H value.
CRESS Vector String EP:E/RR:PF/AI:C/AC:N/SI:N/RS:A/
IIC:H/III:N/IOC:N/IOI:N/IOA:N/PIC:N/PII:N/POC:N/POI:N/
POA:N/ T:2021-08-09.

2) Vulnerability Detection in a Proprietary Cryptographic
Algorithm:
Attack The functionality of the cryptographic implementation
must be understood to a point where critical design flaws
can be understood for a subsequent attack. In this example
we assume the easiest case: a weakness in the implemented
cryptographic algorithm, for example using a SHA-1 hash
function (broken in 2017). The attack may then be carried
out by an individual with relatively inexpensive equipment
AC L . However, depending on the type of vulnerability, the

attack complexity can range from low to high. For this IP-theft
related scenario, no supply-chain intrusion is needed SI N .
The same remediation strategies apply to this scenario as to the
previous scenario, plus, if applicable, the usage of a secured
cryptographic implementation such as SHA-3 RS A .
Impact As before, the attack directly impacts IP confiden-
tiality IIC H , as well as the confidentiality of the hashed
data IOC H . The on device integrity and availability remain
unchanged, as no changes are made to the functionality of the
chip.
CRESS Vector String EP:E/RR:PF/AI:C/AC:L/SI:N/RS:A/
IIC:H/III:N/IOC:H/IOI:N/IOA:N/PIC:N/PII:N/POC:N/POI:N
/POA:N/T:2021-08-09.

V. CONCLUSION & OUTLOOK

The CRESS is a simply applicable, intuitive and easily
extensible evaluation framework. Scenarios involving RE can
be evaluated and future scientific discussions can be conducted
far more efficiently with the help of this scheme. For the first
time, it is possible to conduct analysis of hardware attacks
that involve both the IP and application branches. Advances
in RE, hardware attacks, and countermeasures can easily
be integrated into the framework. This basic system already
allows a coherent rating of all scenarios qualitatively. A web-
based tool is available at the persistent uniform resource
locator (PURL) https://purl.org/cress/thetool.
Users can use the web-tool to score scenarios, to inspect given

https://purl.org/cress/thetool


CRESS vector strings, or to create graphs to compare multiple
scenarios as in Figure 4.

Still, a quantitative assessment was intentionally not con-
ducted in the set-up. A fair and coherent rating will be of
extreme importance when the CRESS Score will be introduced.
Consequently, to achieve a realistic numerical assessment, a
similar strategy is targeted for the score as was done for the
CVSS: the scoring of many RE-involed published scenarios
by experts.
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