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Abstract

Ad hoc teamwork is a research topic in multi-agent systems whereby an agent (the “ad hoc agent”) must successfully collaborate

with a set of unknown agents (the “teammates”) without any prior coordination or communication protocol. However, research

in ad hoc teamwork is predominantly focused on agent-only teams, but not in agent-human teams, which we believe is an

exciting research avenue and has enormous application potential in human-robot teams. This paper will tap into this potential

by proposing HOTSPOT, the first framework for ad hoc teamwork in human-robot teams. Our framework comprises two

main modules, addressing the two key challenges in the interaction between a robot acting as the ad hoc agent and human

teammates. First, a decision-theoretic module that is responsible for all task-related decision making (task identification,

teammate identification, and planning). Second, a communication module that uses natural language processing in order to

parse all communication between the robot and the human. To evaluate our framework, we use a task where a mobile robot

and a human cooperatively collect objects in an open space, illustrating the main features of our framework in a real-world

task.

1



1

HOTSPOT: An Ad Hoc Teamwork Platform for
Mixed Human-Robot Teams

João G. Ribeiro, Luis Müller Henriques, Sérgio Colcher, Julio Cesar Duarte, Francisco S. Melo,
Ruy Luiz Milidiú, and Alberto Sardinha

Abstract—Ad hoc teamwork is a research topic in multi-agent
systems whereby an agent (the “ad hoc agent”) must successfully
collaborate with a set of unknown agents (the “teammates”) with-
out any prior coordination or communication protocol. However,
research in ad hoc teamwork is predominantly focused on agent-
only teams, but not in agent-human teams, which we believe
is an exciting research avenue and has enormous application
potential in human-robot teams. This paper will tap into this
potential by proposing HOTSPOT, the first framework for ad
hoc teamwork in human-robot teams. Our framework comprises
two main modules, addressing the two key challenges in the
interaction between a robot acting as the ad hoc agent and human
teammates. First, a decision-theoretic module that is responsible
for all task-related decision making (task identification, teammate
identification, and planning). Second, a communication module
that uses natural language processing in order to parse all
communication between the robot and the human. To evaluate
our framework, we use a task where a mobile robot and a human
cooperatively collect objects in an open space, illustrating the
main features of our framework in a real-world task.

Index Terms—Ad Hoc Teamwork, Multi-Agent Systems,
Human-Robot Interaction, Natural Language Processing.

I. INTRODUCTION

RECENT decades have witnessed a significant shift in
the use of robots. While robotic platforms still find

extensive use in industry, advances in hardware and software
have enabled the development of various robotic platforms
for everyday use. For instance, robots are being used in
healthcare [1], assisted living [2], entertainment [3], and even
for mundane tasks such as cleaning [4]. Moreover, as the use
of robots broadens beyond industrial applications, the ability
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of these platforms to naturally interact with users that have no
technical expertise becomes a mandatory requirement. Thus, it
is not surprising that the area of human-robot interaction has
seen impressive growth in the last decades.

In this paper, we are particularly interested in collabora-
tive human-robot interaction. This topic is not novel, and a
significant body of literature has investigated human-robot
collaboration from many different perspectives [5]. However,
very few works focus on the problem of ad hoc teamwork
involving a human and a robot.

Ad hoc teamwork was proposed originally in the multi-
agent systems community [6] and addresses the problem of
an agent (henceforth called the “ad hoc agent”) that must suc-
cessfully cooperate with a group of unknown “teammates”—
i.e., other agents about which the ad hoc agent has little or no
information. This group of agents must now act as a team, even
if they have no prior cooperation or coordination mechanisms.
The role of the ad hoc agent is to understand or infer what is
the task that the other agents are performing, who among the
other agents is doing what, towards the completion of the task,
and then decide how to contribute. These three challenges were
identified in Melo and Sardinha [7] as fundamental sub-tasks
of the ad hoc teamwork problem, dubbed task identification,
teammate identification and planning.

So far, research in ad hoc teamwork has focused primarily
on agent-agent interaction scenarios [8], and rests on strong
assumptions regarding what the ad hoc agent is able to
perceive regarding the environment, the teammates, and/or the
task to be addressed. Dealing with teams of humans and robots
brings forth several critical challenges that current research on
ad hoc teamwork has not considered yet. For example:

• Robots, as embodied agents, have to deal with percep-
tual and actuation challenges that virtual agents seldom
consider. In particular, the robot’s perception of its state
is often imperfect, and its actuation is prone to failures;

• The teammate—being a human—does not behave ac-
cording to a well-defined model (for example, it is not
necessarily optimal or rational);

• Decision-making must be conducted at run-time.

These challenges are common in human-robot interaction
scenarios but rarely considered in the ad hoc teamwork litera-
ture (if at all). Additionally, humans can communicate through
natural language, and such communication channels can be
rich and informative if the robot can take advantage of them.
However, dealing with natural language is another challenge
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for robot developers, although the potential applicability of
ad hoc teamwork in everyday tasks is enormous and mostly
untapped.

This paper’s main contribution is a framework for ad hoc
teamwork between a human and a robot. Our framework,
which we dub HOTSPOT1, instantiates the problem of ad hoc
teamwork in human-robot teams as follows. A human and
a robot co-exist in a shared environment and must perform
a collaborative task that requires them to coordinate their
actions. The human knows the task, but the robot (the ad hoc
agent in our setting) does not. From observations of the human,
the robot must infer the task (among a set of possible tasks),
understand how the human user is performing it, and adapt its
decision process towards completing the task.

In our scenario, we consider tasks in an open space (i.e.,
a lab), where the human and the robot have to move around.
This requirement poses additional challenges to the robot due
to the semi-unstructured interaction, where the robot will not
know the location of the human user most of the time. To
address this ad hoc teamwork problem, we propose a decision-
theoretic approach that extends that of Ribeiro et al. [9] to
account for the perceptual limitations of the ad hoc agent
(the robot). At the same time, to take advantage of the fact
that the human can communicate using natural language, we
endow the robot with the ability to communicate with the
human user. In particular, the robot can communicate through
spoken utterances, querying the user about the task’s current
state, interpreting the human’s response using natural language
processing (NLP), and considering the inherent uncertainty in
that interpretation process.

We evaluate the HOTSPOT framework in a real-world
scenario involving the interaction between a human and a robot
in an open space, evaluating the performance of each module
individually and of the whole framework.

To summarize, the contributions of this work are three-fold:
• We contribute a decision-theoretic model for ad hoc team-

work with limited perception. We describe the decision
problem faced by the ad hoc agent (the robot) as a
partially observable Markov decision problem and use
a standard heuristic solution to compute an adequate
policy for the robot efficiently. Our results show that
our approach can infer and complete the task in a near-
optimal number of steps while still using partial and
imperfect information.

• We contribute a natural language processing model that
allows the robot to understand the utterances issued by
the human, use that information to locate itself in the
environment, and express itself in an easy way that the
human can understand. Our results show that the full NLP
models achieved an accuracy of about 80% in every task
performed.

• We contribute an empirical validation of our approach in
a real-world ad hoc teamwork scenario involving a human
and a mobile robot.

The paper is organized as follows. Section II provides an
overview of related work in both ad hoc teamwork and NLP,

1HOTSPOT stands for “Human-robOt TeamS without PrecoOrdinaTion”.

framing the contributions of this paper in the landscape of
existing research. Section III provides an in-depth description
of the HOTSPOT framework, describing its two main modules
and how they interact. Section IV describes the procedure used
to validate our framework. Finally, section V discusses the
results of our evaluation, and Section VI concludes.

II. RELATED WORK

This section frames our contribution in the context of exist-
ing research both on ad hoc teamwork and natural language
processing, since these are the two areas of research most
relevant for our present work.

Regarding ad hoc teamwork, the problem was originally
proposed in the pioneer work of Stone et al. [6], and has
spanned a significant volume of research [7, 9–11]. Fol-
lowing Melo and Sardinha [7], we can break down the ad
hoc teamwork problem into three main sub-problems: task
identification, teammate identification, and planning.

Early research into ad hoc teamwork focused on the plan-
ning step. For example, Stone and Kraus [12] proposed one
of the first planning algorithms for ad hoc teamwork, by
formulating the problem as a cooperative k-armed bandit with
known teammates. Similarly, Stone et al. [13] and Agmon and
Stone [14] look at ad hoc teamwork as a problem of “leading”
known teammates to perform actions that yield optimal joint
performance.

Barrett et al. [8] introduce the PLASTIC framework to
address ad hoc teamwork when facing both unknown task and
teammates, using a reinforcement learning approach. To this
day, the PLASTIC algorithms remain among the state-of-the-
art in ad hoc teamwork, addressing both task and teammate
identification.

Melo and Sardinha [7] address the three sub-problems of ad
hoc teamwork by proposing two distinct approaches. Specifi-
cally, one approach is based on sequential prediction [15] and
the other one on decision-theoretic planning [16]. The two
approaches consider one-shot problems and, as such, are not
suited for sequential problems. Along the same lines, Ribeiro
et al. [9] extend the previous work to address sequential tasks
under uncertainty.

Most previous works, however, consider only agent-agent
interaction in that they disregard critical difficulties found
when an embodied agent (such as a robot) must interact with
human teammates. A human-robot interaction setting must
consider the limitations of using a robotic platform (such as
unreliable and limited perception, unreliable actuation) and the
interaction with a human user.

Nevertheless, some recent works take important steps to-
wards bringing ad hoc teamwork closer to human-robot inter-
action scenarios. For example, in terms of ad hoc teamwork
involving robots, Genter et al. [17] investigated the use of ad
hoc algorithms in the RoboCup World Championship, in the
context of the Drop-in Player Competition [18].

Fern et al. [19] address the problem of assistance which, al-
though not formulated as an ad hoc teamwork problem, shares
many of its challenges. Specifically, in assistance problems, an
agent (the “assistant”) aims to assist a teammate in solving a
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given sequential task under uncertainty. In a closely related
work, Ribeiro et al. [9] already consider ad hoc teamwork
involving a human teammate. However, both works consider
perfect observability and do not leverage the communicating
capabilities of human users.

The two modules in our proposed architecture extend, on
one hand, the decision-making process of Ribeiro et al. [9]
to accommodate partial observability. On the other hand, the
communication module enables our robot to leverage the
communication capabilities of the human user towards the
completion of the joint task.

Regarding Natural Language Processing (NLP), this is a
field of computer science that enables machines to under-
stand and process human communication [20] by transforming
unstructured data, like audio or text, into structured data,
which are more suitable for machines. It can also work in the
opposite direction by generating communication for humans
to understand easily.

Many works address the use of NLP in interaction with
robots. Scheutz et al. [21] present the challenges of designing
mechanisms that allow robots to develop human dialogues
in interactions between humans and robots. In addition to
building a small survey of the area, its main objective is to
help build better, more flexible robotic architectures that can
enable more natural language dialogues between humans and
robots. Furthermore, the authors briefly propose DIARC, a
Distributed, Integrated, Affective, Reflective, and Cognitive
architecture that allows robotic systems to conduct human
dialogues without providing much detail about the techniques
involved in the process.

Briggs et al. [22] use pragmatic and dialogue-based mecha-
nisms to understand typical human directives and create suit-
able responses. Specifically, utterances are used to represent
the speech act classification, as well as the speaker, robot,
and semantics analysis. Then, rules associate the utterances
with a tuple containing the set of inferred beliefs based
on the intended meaning of the utterance. For instance, a
question inquiring whether some assertive is true or false.
Finally, a dialogue-based mechanism handles and generates the
responses based on expectations generated by the utterances.
Experiments were then conducted to show the viability of the
proposed methodology in identifying indirect speech acts and
coverage of the utterance forms.

Li et al. [23] use natural language processing to infer
human-given commands for robots, by using keyword extrac-
tion, visual object recognition, and similarity computation. Its
main intent is to use visual semantic information to allow
a robot deduce task intents, avoiding simple keywords that
map predefined tasks explicitly. The proposed method uses
rule matching and conditional random fields to analyze and
extract information from the processed sentences.

Despite several works that use natural language processing
in robots, none of them are tailored to the ad hoc teamwork
scenario. Our work thus presents a novel contribution to
the scientific literature, namely an architecture that combines
decision making and natural language processing for human-
robot collaboration within ad hoc teamwork settings.

Robot
(ROS)

Robot internal information

Environment information

Processed
human

information

Queries for
human user

Human
utterances

Task-level
actions

Robot utterances

Decision
module

Communication
module

Sensing

Actuation

HOTSPOT

Fig. 1. Diagram depicting the interaction between the different modules in
HOTSPOT.

III. THE HOTSPOT FRAMEWORK

This section presents the HOTSPOT framework for ad hoc
teamwork involving humans and robots, which is the key
contribution of this paper. Figure 1 presents the two main
modules in the HOTSPOT architecture, namely:
• A decision module that is responsible for ad hoc team-

work decisions with the human. This module receives as
input the robot and environment information from the
sensors and the relevant information from the human
speech (i.e., the information processed by the commu-
nication module). The decision module then uses such
information to reconstruct/estimate the current state of
the environment and the human-robot team. Finally, the
robot uses the state information to estimate the current
task (task identification), to identify how the human is
executing such task (teammate identification), and to act
accordingly (planning).

• A communication module that is responsible for the
communication with the human user. It receives queries
from the decision module and translates them into spoken
utterances that the robot must execute (verbalize and
animate). It is also responsible for processing human
utterances, as perceived by the sensors, providing the
decision module with their relevant information.

In the remainder of this section, we describe both modules in
greater detail.

A. The Decision Module

The decision module is depicted in Fig. 2. The mod-
ule processes the information coming from the sensors and
communication module to estimate the state of the current
task. Specifically, HOTSPOT maintains a distribution over
possible states—a belief—which is updated from the perceived
information using a standard Bayesian update.

The robot then uses information about possible tasks (stored
in a task library) to infer the current task by checking which
tasks in the library are most likely to yield the perceived
information from the environment and the teammate. Finally,
using the belief and task information, the robot plans the
actions to complete the task. It also determines which (if any)
communication actions it should perform towards the human.

In the continuation, we formalize each of these processes
in detail.
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Fig. 2. Decision module in HOTSPOT.

Task description: We build on the works of Ribeiro et al. [9]
and Melo and Sardinha [7] to formalize the possible tasks of
the human-robot team using a decision-theoretic framework
that accommodates the inherent uncertainty in scenarios in-
volving robots in a principled manner.

We represent each possible task in the agent’s library as a
multiagent Markov decision problem (MMDP) [24], consisting
of a tuple Mm = (X ,A0,A−0,Pm, rm, γ), where X is the
set of all possible states, A0 is the set of actions available to
the robot, A−0 is the set of actions available to the teammate
(the human user), Pm describes the dynamics of the task m,
rm is a reward function, describing the goal of task m, and γ
is a discount factor.

The states encode all task-relevant information, i.e., all
information that, at each time step, the agents (the robot and
the human) require to decide the next action. We write Xt to
denote the state at time-step t, and A0,t and A−0,t to denote
the actions of the robot and the human user at time step
t, respectively. The state evolves according to the transition
probabilities in Pm, i.e., if T denotes the (unknown) current
task,

Pm(x′ | x, a0, a−0)

= P [Xt+1 = x′ | Xt = x,A0,t = a0, A−0,t = a−0, T = m] ,

with x, x′ ∈ X , a0 ∈ A, and a−0 ∈ A−0. The transition
probabilities describe the effect that the actions of the robot
and the human user have on the state, given that the current
task is m. Similarly, the reward function rm encodes the goal
of the human-robot team: the value rm(x, a0, a−0) measures
the instant utility of the robot executing action a0 and the
human executing action a−0 in state x, when the task is m.

Together, the human and the robot want to select their
actions to maximize the total sum of rewards which, if T = m,
can be written as

J = E

[ ∞∑
t=0

γtrm(Xt, A0,t, A−0,t)

]
, (1)

where γ ∈ [0, 1) is a discount factor assigning greater value
to rewards arriving earlier than those arriving later. Solving
an MMDP thus consists of computing two individual policies
for the two agents, π0 and π−0, each prescribing an action for
each possible state and so that the prescribed actions jointly
solve the MMDP—i.e., maximize the value in (1). Solving
an MMDP can be done using standard dynamic programming
techniques such as value or policy iteration [25].

In our setting, we consider that there is a set of M
possible tasks, each described as an MMDP Mm =

(X ,A0,A−0,Pm, rm, γ), where all tasks share the state and
action spaces but may have different dynamics and goals. Fur-
thermore, we assume that the robot does not know beforehand
which is the task being performed—henceforth referred to
as the target task T—but the human user does know. Task
identification thus consists in inferring the target task from the
information that the robot can observe during the interaction.

Bayesian state estimator: During the interaction, the robot
can observe the information available through its sensors
and information provided from the communication module
regarding the human spoken utterances. We denote by Zt the
information observed by the agent—which we assume takes
values in a finite set of possible observations, Z . We denote
by O the observation probabilities, which essentially provide
a probabilistic description of the sensing process of the robot.
In particular,

O(z | x, a0) = P [Zt+1 = z | Xt+1 = x,A0,t = a0] ,

with z ∈ Z and x ∈ X . The observation probabilities describe
how likely it is for the robot to observe z in state x, given
that the last action of the robot was a0.

Let bt(x) denote the probability that, at time step t, the
state is x ∈ X , given the history of observations and actions
of the robot up to that time step (henceforth Ht). Let us further
assume that, at time step t, the robot performs action a0, and
the human user performs action a−0. As a consequence, the
environment will transition to state Xt+1 and the robot will
observe Zt+1 = z. Then, if the target task is m, we can update
our belief bt using a standard Bayesian update to have

bt+1(x) = P [Xt+1 = x | Ht+1]

=
1

ρ

∑
x′∈X

Pm(x | x′, a0, a−0) ·O(z | x′, a−0)bt(x
′),

where ρ is a normalization constant.
There are two difficulties with using this update: first, we

do not know which is the action of the human teammate, a−0;
and second, we do not know which is the target task, m.

To address the first difficulty, and since we assume that the
teammate knows the target task, we consider that—if the target
task is m—the action of the teammate can be any optimal
action for the task m. Then, if we average out the action
selection of our human teammate, we get the (task-dependent)
transition probabilities

P̄m(x′ | x, a0) =
1∣∣A∗−0(x)

∣∣ ∑
a−0∈A∗−0(x)

Pm(x′ | x, a0, a−0),

where A∗−0(x) denotes the set of optimal teammate actions in
state x. This yields a task-dependent belief update

bm,t+1(x) = P [Xt+1 = x | Ht+1, T = m]

=
1

ρ

∑
x′∈X

P̄m(x | x′, a0)O(z | x′, a−0)bm,t(x
′),

(2)

where ρ is, again, a normalization constant.
Regarding the second difficulty, since the robot does not

know beforehand the target task, it maintains a distribution pt
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Fig. 3. The communication module, comprising both a sensing pipeline that
converts speech to state information, and a actuation pipeline, converting
communicating actions to text to be then spoken by the robot.

over the set of possible tasks. In other words, we write pt(m)
to denote the probability that the target task is m given the
history of observations and actions of the robot up to time step
t. Then, given the distribution pt, we can write the “average”
belief at time step t as

bt(x) =

M∑
m=1

pt(m)bm,t(x). (3)

Task inference: We now describe how to maintain the
distribution pt, used to perform Bayesian state estimation.
Much like with the state estimation, we adopt a Bayesian
framework. Let T denote the unknown target task. Then, if
the agent observed z at time step t + 1 after executing a0 at
time step t,

pt+1(m) = P [T = m | Ht+1]

=
1

ρ
P [Zt+1 = z | A0,t = a0, T = m,Ht] ·

P [A0,t = a0 | Ht] pt(m),

where, once again, ρ is the necessary normalization constant.
We used the fact that the action selected by the agent at each
moment depends only on the history of observations and not
on the target task T . Then,

P [Zt+1 = z | A0,t = a0, T = m,Ht]

=
∑

x,x′∈X
O(z | x′, a0)Pm(x′ | x, a0)bm,t(x).

Decision-theoretic planning: To decide what action to take,
and given the uncertainty in the robot’s perception of its
state, we adopt as the planning approach a well-established
information-gathering heuristic [26]. In particular, at each time
step t, the robot selects its actions to balance information
gathering and task completion.

Information gathering consists of selecting actions that
decrease the uncertainty in the state estimation, bt. Task
completion actions are selected to solve the target task, T .

To this purpose, we compute the normalized entropy of bt,
given by

H̄(bt) = − 1

log |X |
∑
x∈X

bt(x) log bt(x).

The normalized entropy measures the uncertainty in the
agent’s belief. Let bmax(z, a0) denote the robot’s belief upon

observing z after executing a0 in task m from a belief with
maximum entropy, i.e.,

bm,max(z, a0) =
1

ρ

∑
x∈X

P̄m(x′ | x, a0)O(z | x′, a0)
1

|X |
.

We define the information gain associated with (z, a0) as

∆Hm(z, a0) = 1− H̄(bm,max(z, a0)).

We also define the reward gain associated with (z, a0) as the
maximum reward that the robot can get upon observing z after
executing a0 in task m from a belief with maximum entropy,
i.e.,

∆Rm(z, a0)

= max
a′0∈A0

∑
x,x′∈X

P̄m(x′ | x, a0)O(z | x′, a0)
r̄m(x′, a0)

|X |
,

with

r̄m(x, a0) =
1∣∣A∗−0(x)

∣∣ ∑
a−0∈A∗−0(x)

rm(x, a0, a−0).

Following Melo and Ribeiro [26], we define an information
gathering reward function as

rm,info(x, a) =
∑
z∈Z

P [Zt+1 = z | Xt = x,A0,t = a0, T = m]

·∆Hm(z, a0) ·∆Rm(z, a0).

Then, for each task m, we can now define two standard MDPs,
(X ,A0, P̄m, rm, γ) and (X ,A0, P̄m, rm,info, γ), which can be
solved to yield two optimal Q-functions [25], Q∗m and Q∗m,info.

Finally, the action selected at each step t is given by

a0,t = argmax

M∑
m=1

pt(m)
∑
x∈X

bt(x)

·
[
(1− H̄(bt))Q

∗
m(x, a) + H̄(bt))Q

∗
m,info(x, a)

]
.

When the uncertainty in bt is high (close to 1), the robot
selects an information gathering action, i.e., an action that
maximizes Q∗m,info; when the entropy is low (close to 0),
the robot selects a task competing action, i.e., an action that
maximizes Q∗m(x, a).

B. Communication Module

Figure 3 depicts the communication module, which plays
two roles in the overall HOTSPOT architecture. First, it plays
a sensing role, transforming the human speech (captured
through a microphone) into state information that is then
used by the decision module. Second, it also plays an acting
role, converting the communication actions received from the
decision module into utterances that the robot then speaks
to the human user. Each role corresponds to a well-defined
pipeline, as depicted in Fig. 3.

Concerning the sensing pipeline, the communication be-
tween the robot and the human user occurs through speech,
captured by a microphone and transformed into audio data,
usually in the form of a .wav file containing the recorded hu-
man spoken utterances. Next, the audio data is transcribed by
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a speech-to-text block into a text format that better represents
the audio in the language being spoken. Subsequently, in the
state identification block, the transcribed text is passed into an
NLP processor to extract semantic information, which is then
translated into a partial state description.

The description of the state is then used as one of the several
inputs to the decision module, which returns action(s) based
on the behavior explained in Section III-A. These actions are
mapped both into task-level and communication actions. The
latter actions are passed to the communication module once
again (i.e., the acting pipeline).

On the other hand, the acting pipeline is responsible for
converting the communication actions into a text string, which
is then sent to the robot. Specifically, this is done by the order
parsing module, which provides the utterances to the robot,
thus closing the cycle of communication between HOTSPOT
and the robotic platform.

C. Interaction with the Robot.

The interaction between HOTSPOT and the robot relies on
the robot operating system (ROS) [27], which is responsible
for sensor handling (namely, processing all sensor readings),
robot control, and communication. In other words, ROS super-
vises all sensing and actuation of the robot, and it is through
a ROS interface that HOTSPOT interacts with the robot.

In particular, ROS collects all sensor data, arriving both
from the robot sensors—such as odometry sensors used in
dead-reckoning, lasers, contact sensors, etc—and environment
sensors—such as microphones, cameras, and other sensors that
may exist in the environment. The speech data is sent to the
communication module, while the remaining sensor data is
processed and sent to the decision module.

ROS is also responsible for the actuation of the robot. In
particular, it receives the task-level actions (such as moving)
from the decision module and the text strings (corresponding
to the utterances that the robot should speak) from the com-
munication module and performs these on the robot.

IV. EXPERIMENTAL SETUP

To evaluate the effectiveness of our approach, we created
a controlled environment where a live robot interacts with a
human teammate. In this environment, the robot aims to assist
the human in cleaning up a room, with the interaction being
restricted by a set of rules from the Toxic Waste Domain.

A. The Toxic Waste Domain

The Toxic Waste domain has a two-agent team composed
of a human cleaner and a robot container. The team is in a
building with several rooms and has to clean three rooms with
toxic or radioactive waste. A specific task from this domain
lays out the rooms in a topological map, where the nodes
represent the rooms, and the edges represent the doors that
connect them. In addition, some rooms may contain toxic
material on the ground. Hence, in each time step, both the
human and the robot may choose to move from one room
(node) to another or stay in the same node (i.e., no-op).

Whenever it finds itself in a node containing toxic waste,
the human can pick it up from the ground or release it (if he
is already holding it). When the human picks up toxic waste,
he must remain standing still on his current node and wait for
the robot to get close to dispose of the toxic material into the
robot’s container. The robot also has an additional action to
query the human by location (which the human may or may
not respond to). Finally, in each time step, the robot receives
its current location as an observation, inferred by the dead
reckoning module.

Figure 4 shows the Toxic Waste domain that we created
within our laboratory. Precisely, we recreate two tasks by
dividing our laboratory room into five distinct areas, repre-
senting separate rooms: 0 - door, 1 - open space, 2 - robot
station, 3 - single workbench, and 4 - the double workbench.
To represent the toxic waste that the human can collect, we use
three colored balls placed in three different nodes, as depicted
in Fig. 5. The location of the three balls models each task;
that is, there are two possible tasks, each with the three balls
placed in three respective areas, as shown in Fig. 6.

To represent the human cleaner, we rely on people from a
small focus group who have been told the goal in advance and
know how to act according to the domain’s rules, namely: i)
they may only make one move at a time, ii) they may reply
to the robot’s questions, and iii) they may only move from
one area to the another if they are connected. We rely on
Astro (Fig. 4) to be the robot container. It is a robot from our
laboratory capable of moving around the room and possessing
a front recipient equipped with an RFID sensor to detect when
a ball is placed inside the recipient. For each person of the
focus group, we randomly chose a task from the two possible
tasks, with the human starting in the area of their preference
and the robot always starting at the door.

B. The Decision Module
We instantiate the decision module as a Python 3 ROS node

running on a laptop (connected via wifi to a ROS master
node running on the robot). The implementation of the module
requires only a library of possible tasks, which are then used
by our Bayesian state estimator, task inference, and decision-
making algorithm.

To model the tasks in the Toxic Waste domain in our
framework, we must specify the corresponding MMDPs, as
well as the observation space and probabilities, describing
the sensing process of the robot. Each MMDP is a tuple
(X ,A0,A−0,Pm, rm, γ) with distinct transition probabilities
and reward functions. Together with the specification of the
observation space and observation probabilities for the robot,
they provide all the necessary information required by the
decision-making module.

In our experiments,
• The state space X contains information regarding both

agents’ nodes and the status of the three toxic materials
(i.e., on the ground, picked up, or disposed of). In
particular, a state x ∈ X is a tuple (nr, nh, w1, w2, w3),
where nr and nh represent the node of the robot and
human, respectively, and wi represents the status of the
toxic waste material i.
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Fig. 4. Lab room used to simulate the Toxic Waste domain (left) and respective layout (right). Each area is represented as a node in a topological map.

Fig. 5. The three balls representing the toxic waste materials

Fig. 6. The two task configurations (i.e., locations of the three balls
representing the toxic waste materials)

• The action space for the robot, A0, has five possible
actions available: move the lowest-index node, move the
second lowest-index node, move the third-index node,
stand still, and ask the human for his location. The
human action space, A−0, has similar move actions and,
additionally, a pick waste and drop waste actions.

• The transition probabilities Pm describe how the robot
and human move as a consequence of their movement ac-
tions, and the status of the wast material as a consequence
of the actions of the human user.

• The reward functions rm assign a penalty of −1 for each
toxic waste on the ground, −2 for each toxic waste on
the human’s hands, and 0 for each toxic waste material
disposed.

• We use a discount γ = 0.95.
• The observations describe what the robot can observe

regarding the state of environment and the human user.
Specifically, each observation z ∈ Z corresponds to
a tuple (n̂r, n̂h, rfid), where n̂r represents the robot’s
node (determined via dead reckoning) and n̂h represents
the human’s node (determined from speech). rfid is a
boolean flag indicating that the container detected the

Fig. 7. Communication module’s pipeline confusion matrix

collection/disposal of a toxic waste.
• As for the observation probabilities O, regarding the

location of the robot and RFID sensor, we empirically
assessed that the error in these measurements was negligi-
ble. As for the position of the human (perceived from hu-
man speech), we ran a preliminary study where, for each
possible human node, we script out several phrases from
a small focus group (i.e., 4 different speakers reading
257 different phrases). We then build a confusion matrix
(Fig. 7) using Python’s machine learning library scikit-
learn, which tells, for each true node, the probability of
identifying every other node or even failing to identify
any node. Finally, to handle live errors, we smooth the
probabilities when loading the model using the confusion
matrix to ensure that no entry has an absolute zero.

C. The Communication Module

We implement the communication module as a Python 3
ROS node, and it runs on the same laptop as the decision mod-
ule. In addition, we resort to the SpeechRecognition library2 to
convert human spoken utterances to text and break down the
state identification component into two sub-components. The

2https://pypi.org/project/SpeechRecognition/
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first sub-component is an entity recognition, which performs
named entity recognition (NER) and syntactic parsing to ex-
tract the spoken location from the text string. The second sub-
component is a node identifier, which takes the location found
by NER and finds the correct node (represented by an integer)
and the corresponding state. Finally, the node identification
sub-component takes the location (string) outputted by NER
and searches in a list of possible aliases for a string match.
In other words, if an alias is found, its corresponding index is
returned; otherwise, a symbolic value is then returned (-1).

Next, we describe each of the blocks in the communication
module in further detail.

Speech-to-text: We use Google’s speech-to-text API, pack-
aged into a system’s module, to transcript the human’s inputs
during the interactions with the robot. In these interactions,
the human can send commands to the robot or, when asked,
inform the robot’s or his location. Therefore, the speech-to-text
module is the first step in encoding a speech waveform into
a useful representation of the human’s inputs. The transcribed
text, outputted by the module, is then sent to the state
identification sub-module to extract semantic information, like
the precise location of the involved actors.

State identification: The state identification sub-module
uses NLP techniques, such as NER, to transform the tran-
scribed text into locations from the robot’s audio source. The
primary responsibility of the NER is to extract the minimum
information needed to obtain the location for the robot, which
is the entity of the localization (the robot or the human) and the
localization itself. These can be achieved through two possible
analyses. The first one is by using a customized NER system
with tags that indicate the important entities for the task. The
second one is conducted through a syntactic parser of the
transcribed text whenever the first approach cannot find any
useful information.

Both approaches are implemented with Spacy [28], which
is an open-source NLP Python library that uses Deep Learning
techniques and statistical models, to implement NLP tasks for
several languages, such as NER systems and shallow parsing.

The main advantage of Spacy is that, while having support
for multiple pre-trained models, one can quickly build its
model to evaluate particular entity tags. Spacy already has a
built-in localization entity-tag set for NER that is not useful
in our task because the target localizations are not the same
as the ones trained by Spacy’s module, like states, cities, and
countries. Also, the entity in which the localization is being
referred, the robot or human, may be described by pronouns
(I, you, for instance) which are not classical named entities.
Lastly, we want to build a relationship between tags, indicating
that such localization belongs to a particular entity.

For instance, in the sentence, “você está ao pé da mesa”,
which means “you are by the table”, in English, the word você
(you) means the entity being referenced, in this case, the robot,
the word mesa (table) indicates its position, and the verb está
(are) is used here to indicate the relationship between the two
entities. This same example can be expressed with its NER
tags, as follows:

So, the newly created entity tags are:
• WHO, indicating who is being referenced;
• PLA, indicating the place being referenced;
• POS, indicating that this is indeed a valid relationship.

Note that one sentence may contain both WHO and PLA tags,
but not a POS tag, which indicates that those entities do not
necessarily correspond to a valid localization for this task. This
is better illustrated with the following example:

In this example, which means “you are far from the win-
dow”, no precise localization is informed. Nevertheless, we
can use this example to train the other entities.

The idea behind training a customized NER system in Spacy
is to feed its NLP pipeline with tagged examples of entities
we want to build an extractor. Hence, we used examples
from audio captures of three different Portuguese speakers and
manually tagged them. We also added some counterexamples
of positions that do not indicate a precise localization based on
these examples. Table I presents a small extract of examples
with their corresponding dictionaries used by Spacy.

TABLE I
SOME EXAMPLES FOR THE TRAINING OF THE NER EXTRACTOR

Text example Entities dictionary
você está junto à janela [(0, 4, ’WHO’), (18, 24, ’PLA’),

(5, 9, ’POS’)]
tu estás ao pé do Baxter [(0, 2, ’WHO’), (18, 24, ’PLA’),

(3, 8, ’POS’)]
tu estás longe da bancada dupla [(0, 2, ’WHO’), (17, 30, ’PLA’)]

Our second approach is triggered whenever the system
detects no relation, i.e., the NER extractor fails to find a full
entity set. In this case, the system performs a full morpho-
logical and syntactic analysis, providing a full set of part-of-
speech (POS) and universal dependencies (UD) tags [29] for
the sentences being analyzed. We illustrate this situation with
the example in Fig. 8, where all words and relationships from
the sentence “you are by the door” (in English) are tagged.
Note that the word “você” (you) is tagged as a pronoun (POS
tag PRON) and the subject of the sentence (UD tag nsubj).

Você está junto à porta.

PRON VERB ADV DET NOUN

nsubj

cop

obl

case

Fig. 8. Example of the morphological and syntactic analysis for the NER
Module.

We can also see the analysis as a tree, as shown in Fig. 8,
where, for instance, the root is the word junto (“by”) since está
(“is”) is a copular verb3 (UD tag cop). We can then traverse
the tree to find the entities for the localization. In this case,
the word você (“you”) is the subject of the sentence, the word
está (“are”) is the copular verb, and, finally, the word porta
(“door”) is the object (UD tag obj) of the verb.

3A copular verb has the main function of joining the sentence’s subject to
its complement, like the verb “to be”, for instance.
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Fig. 9. Accuracies for all entities in the training data set.

By using both approaches in sequence (when needed), we
achieve the performance depicted in Fig. 9, which shows
that the module achieves excellent performance with the most
common errors coming from the WHO tag, with an accuracy
of 91.80%. This result is indeed true, mainly because there
are a lot of possible examples in the training set that contains
hidden subjects, such as: estás ao pé da porta. In this particular
example, which means “(you) are by the door”, although
there is no explicit tag, one can evaluate that “who” is the
robot. These hidden subjects are common, especially because
they are usually answers to robot questions about a particular
localization.

On the other hand, we achieve an accuracy of 100.0% when
classifying 1, 112 entities with the PLA tag. Usually, places
are easier to identify because of the use of prepositions right
before them. Finally, we obtain an accuracy of 91.80% when
classifying the whole aggregate (full entities set) with 528
examples in the dataset.

Order Parsing Module: Whenever the decision module
returns an action identifier representing a query for the human
user, the system feeds this identifier into a module called the
order parsing module. Specifically, it has the responsibility of
mapping each possible action to a given utterance. However,
to avoid repetition, a bank of possible utterances is associated
with each action. The module then outputs one of the utter-
ances, which turns into an input to the robot’s actuators (the
text-to-speech engine connected to the speakers).

D. Metrics

Given that our approach has several independent modules,
we evaluate the system with the following metrics: i) the
number of steps it takes for a team to solve a task, ii) the
accuracy in identifying the correct task, iii) the belief vector’s
entropy in each step, iv) the accuracy in recognizing the
human’s spoken utterances, and v) the accuracy in identifying
the correct nodes.

E. Procedure

Given a focus group of 7 individuals, we performed a total
of 9 independent trials. For every trial, we randomly pick
a target task from the two possible, place the three balls
on their respective nodes, and randomly select the robot’s

starting node. Then, we freely let the human teammate select
its initial node. For each time step t, we run the interaction
and record the following: i) the decision module’s beliefs
over all possible tasks, ii) the robot’s action, iii) the human’s
action, iv) the human’s spoken speech, v) whether the human’s
speech was informative enough to infer its node, vi) the speech
recognition’s output string, vii) the communication module’s
identified location, and viii) the observation zt (comprised
of the robot’s node observation, inferred via dead-reckoning
and the human’s node observation, identified via speech-to-
text and state identification). We also register the initial state
x0 containing the nodes of the two agents: the robot and the
human.

To assess the introduced difficulties associated with live
robotic experiments, we tested three agents in a simulated toxic
waste environment, as follows: i) an agent following the same
algorithm as the system used for the live setting; ii) an agent
following the underlying MMDP’s optimal policy, and iii) an
agent following a random policy. We also recorded the number
of steps it took to identify the target task in the simulated
environment. Finally, all interactions start in the same initial
states like the ones in the live setting.

V. RESULTS

To run the experiments in a live environment with a human
teammate and a robot, we explained how two agents interact,
in a discrete-time environment, to each participant in the focus
group. We also informed each participant beforehand that
they could only execute one action at a time. However, two
participants (out of seven) still performed two actions in some
of the steps. Despite this problem, our approach overcame
such obstacles and still identified the task being performed
and assisted the human in completing the task.

Figure 10 shows the average number of steps our approach
took to complete the task assigned to the team. It also plots the
number of steps required for our approach in identifying the
correct task from two possible tasks. In addition, we present
the number of steps it takes for a baseline agent to run in a
simulated environment, namely an agent following an optimal
policy, representing the best possible performance.

From the results in Fig. 10, we observe that our approach
always completed the target task in a near-optimal number
of steps and quickly identified the target task using only
partial observations (without observing the human’s actions).
As expected, the agent following the optimal policy solved the
tasks in the fewest steps. We can also observe that, on average,
our approach can identify the correct task quicker than an
optimal policy. We can look deeper into the task identification
by plotting the average entropy of the beliefs at each time step,
as shown in Fig. 11.

We can first observe in Fig. 11 that the average entropy de-
creases with each passing time step. This is expected because
the agent has more information to infer the correct task as the
agent interacts with the environment. The second observation
is that the average entropy does not reach 0.0, although it has
dropped from 1.0 to almost 0.20. This result shows that our
approach may end a trial without being 100% sure what the
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Fig. 10. The average number of steps to solve and to identify the target
task. The baseline agent followed an optimal policy and ran in a simulated
environment, with all simulated trials starting in the same initial states like
the ones in the live trials.
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Fig. 11. Entropy of the beliefs at each time step, averaged over all nine trials

correct task is. However, this also indicates that our approach
effectively solves the most likely task. Additionally, the fact
that the average entropy is not 0.0 means that it may recover
from task changes.

We also break down the evaluation of the NLP modules
into three parts: i) the speech recognition module, ii) the NER
module and iii) the node identification module. Then, having
recorded all the human’s spoken phrases plus the outputs of
the three modules, in all time steps of the trials, we start
reporting the accuracy of the speech recognition module. We
also recorded, for each sentence, whether or not the sentence
contained the information necessary to identify the human’s
location. Finally, from this set of informative phrases, we
evaluate the accuracy of the NER module and, subsequently,
of the node identification module. Fig. 12 plots the accuracies
for these three modules in a live environment.

From Fig. 12, we observe that perfectly recognizing human
speech is the hardest task of the three, with only a performance
of 58.62%. From the spoken phrases that are informative
enough to infer the correct human location, NER was able
to identify the correct location in 77.77% of them. At last,
the node identification module, which takes as input the NER
location string, was able to correctly output the right human

Speech Recognition NER Node Identification
Sub-Component
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Fig. 12. The accuracies for the three NLP modules - Speech Recognition
(58.62%), NER (77.77%) and Node Identification (74.07%).

nodes 74.07% of the time. Given that the goal of our approach
was to work with partial observability, these accuracies show
that our approach is effective and reliable when working with
imperfect information.

VI. CONCLUSIONS AND FUTURE WORK

Ad hoc teamwork addresses the decision-making problem
of an agent when teamed to work with other unknown agents.
Without any prior coordination or communication protocol, the
agent must infer the cooperative task being performed, identify
the teammates, and act to complete the task effectively.

In this work, we present HOTSPOT, a novel framework
for ad hoc teamwork in human-robot teams. Specifically, our
framework has two main modules, addressing the two key
challenges in the interaction between a robot and a human
teammate within ad hoc teamwork scenarios. The first module
handles all the task-related decision-making challenges (i.e.,
task identification, teammate identification, and planning).
The second module deals with the communication challenge
between robots and humans by employing NLP techniques.

In order to evaluate our framework, we use a task that
involves a mobile robot and a human teammate in a coopera-
tive task of collecting objects in an open space, illustrating
the main features of our framework in a real-world task.
Results presented in Section V show that our approach always
identified and completed the task with a near-optimal number
of steps while using partial and imperfect information. We also
observe that, on average, the proposed approach identified the
task faster than the optimal policy, showing the potential that
this approach has in a real task environment.

Although our approach has shown excellent results, we
can always incorporate enhancements to further improve the
proposed methods’ performance. For example, one of the
worst-performing components is the speech recognizer, which
currently uses an online recognition service. Such service
is not customized for the restricted vocabulary used in the
human-robot conversation and is not suitable for the noisy
environment of human-robot interactions. Moreover, besides
the low average performance, any instability in the robot’s
Internet connection makes its use unfeasible. In this sense,
developing an offline system customized for our domain,
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would bring enormous advantages, both for the classifier
performance and the response speed of the decision module.

Also, we plan to invest in other types of sensors for the
robot, especially those that capture 360-degree scenes. That
way, independent of the robot’s position and orientation, we
can apply computer vision techniques to enhance the robot’s
observation regarding the environment.
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