Weight Distribution of the Binary Reed-Muller Code $\mathrm{R}(4,9)$

Miroslav Markov ${ }^{1}$ and Yuri Borissov ${ }^{1}$
${ }^{1}$ Affiliation not available
December 22, 2023

Weight Distribution of the Binary Reed-Muller Code $\mathcal{R}(4,9)$

Miroslav Markov and Yuri Borissov

Abstract

We compute the weight distribution of $\mathcal{R}(4,9)$ by combining the approach described in D. V. Sarwate's Ph.D. thesis from 1973 with knowledge on the affine equivalence classification of Boolean functions. To solve this problem posed, e.g., in the MacWilliams and Sloane book [12, p. 447], we apply a refined approach based on the classification of Boolean quartic forms in eight variables due to Ph . Langevin and G. Leander, and recent results on the classification of the quotient space $\mathcal{R}(4,7) / \mathcal{R}(2,7)$ due to V. Gillot and Ph. Langevin.

Index Terms

code weight distribution, binary Reed-Muller code

I. Introduction

For basic coding theoretical notions, we refer to [12]. All considered codes in this paper are binary, i.e., over the alphabet $\mathbb{F}_{2}=\{0,1\}$.

The binary Reed-Muller codes form one of the oldest studied families of codes invented in 1950s and have an easy to implement decoding algorithm based on majority-logic circuits. However, there are few general results about their weight structure. Namely, the weight distributions is known only for:

- the 1st and 2nd-order codes of that kind [17] (1970);
- arbitrary order when the weight $<2 d$ [7] (1970), and later on (in 1976) had been extended for weights $<2.5 d$ where d is the minimum weight [8];
- weight divisibility: the McEliece theorem [13].

For information about the weight distributions of binary Reed-Muller codes of particular lengths and orders, the reader is directed to [16]. In particular, it is worth pointing out the works concerning the third and fourth order Reed-Muller codes [15], [8], [18] - [20], as well as, the very recent work on the weight spectrum of some families of binary Reed-Muller codes [2].

This paper is organized as follows. In the next section we give some necessary preliminaries. In Section III a refined approach to the problem under consideration enabling to save computational efforts is exposed. Some conclusions are drawn in the last section.

II. Preliminaries

For basic knowledge on Boolean functions and their applications in Cryptography and Coding Theory, we direct the reader to [1] and [3]. Herein, for the sake of completeness, we recall the classical definition of the binary Reed-Muller code.

Definition 1: The r-th order binary Reed-Muller (or RM) code $\mathcal{R}(r, m)$ of length $n=2^{m}$, for $0 \leq r \leq m$, is the set of all binary vectors \mathbf{f} of length n which are truth tables of Boolean functions $f(\mathbf{x}), \mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)$, having algebraic normal forms of degree at most r.
Henceforth the binary vector \mathbf{f} of length 2^{m} will be identified with corresponding Boolean function f in m variables.
In order to present our results we need to remind the definitions of weight distribution/enumerator of a code, i.e., an arbitrary set \mathbf{C} of vectors with fixed length n (these definitions hold in particular for cosets of binary linear codes).

Definition 2: The weight distribution of a code \mathbf{C} of length n is the vector $W(\mathbf{C})=\left(W_{0}, \ldots, W_{n}\right)$, where W_{i} denotes the number of codewords with Hamming weight i.

Definition 3: Weight enumerator of a code \mathbf{C} with weight distribution $W(\mathbf{C})=\left(W_{0}, \ldots, W_{n}\right)$ is defined as the following polynomial in the indeterminate $z: \mathcal{W}[z ; \mathbf{C}]=\sum_{i=0}^{n} W_{i} z^{i}$.

In this paper, we make use of two facts claimed in the next two theorems for the first time exposed in [15]. (For $0 \leq r \leq m$, the set of all homogeneous polynomials on m binary variables of algebraic degree r adjoined with the 0 is denoted by $\mathcal{H}^{(r)}(m)$.)

[^0]Theorem 1: $([15,5.12])$ For $0 \leq r \leq m$, it holds:

$$
\mathcal{W}[z ; \mathcal{R}(r+2, m+2)]=\sum_{p \in \mathcal{H}^{(r+2)}(m+1)} \mathcal{W}^{2}[z ; p+\mathcal{R}(r+1, m+1)]
$$

Theorem 2: $([15,5.13])$ Let $p=e+f x_{m+1}$, with given $e \in \mathcal{H}^{(r+2)}(m)$ and $f \in \mathcal{H}^{(r+1)}(m)$. Then the weight enumerator of the $\operatorname{coset} \mathcal{C}(p)=p+\mathcal{R}(r+1, m+1)$ equals to:

$$
\text { (*) } \sum_{g \in \mathcal{H}^{(r+1)}(m)} \mathcal{W}[z ; e+g+\mathcal{R}(r, m)] \cdot \mathcal{W}[z ; e+g+f+\mathcal{R}(r, m)]
$$

For definition of the general affine group $G A(m)$ and its subgroup the general linear group $G L(m, 2)$, we refer to [12, Ch.13.9]. The action of $A \in G A(m)$ on a Boolean function $f(\mathbf{x})$ will be denoted by $f \circ A$, i.e., $f \circ A=f(A \mathbf{x})$. Another necessary definition is that of affine equivalence of two cosets of Reed-Muller code:

Definition 4: The cosets C_{1} and C_{2} of $\mathcal{R}(r, m)$ with representatives $f_{1} \in C_{1}, f_{2} \in C_{2}$, respectively, are called affine equivalent if there exist a transformation $A \in G A(m)$ such that $f_{1} \circ A=f_{2}$.
In this article, we extensively make use of the following apparent property:
Property \mathcal{P}. The weight enumerators of two affine equivalent cosets of each Reed-Muller code coincide.
Affine equivalence classification of the cosets of RM codes is useful in studying important coding theoretical and cryptographic properties of Boolean functions comprising them. A strategy how to compute the complete classification of Boolean quartic forms in eight variables, i.e., the classification of the quotient space $\mathcal{R}(4,8) / \mathcal{R}(3,8)$ under the action of $G L(8,2)$, is presented in [11]. Here, just as an extract of this result, we point out that the Boolean quartic forms of eight variables can be classified in 999 (see, as well [6]) linear equivalence classes listed in [9]. Recently, the interest in that topic has been renewed by [4] which (among other things) provides affine equivalence classification of the quotient space $\mathcal{R}(4,7) / \mathcal{R}(2,7)$. The authors of [4] and [11] have also outlined applications of their results concerning the covering radii of some RM codes, and Boolean functions in the family of bent ones. In Section III, we point out yet another application, namely, computing the weight distribution of $\mathcal{R}(4,9)$.

III. THE REFINED APPROACH

A. Rationale

Now, we describe a strategy following which makes feasible the computation of $\mathcal{W}[z ; \mathcal{R}(4,9)]$.
In what follows, by $n(k, m)$ is denoted the number of linearly inequivalent classes of the quotient space $\mathcal{R}^{*}(k, m)=$ $\mathcal{R}(k, m) / \mathcal{R}(k-1, m)$, i.e. the number of orbits to which $\mathcal{R}^{*}(k, m)$ is partitioned under the action of $G L(m, 2)$.

First, let us state a corollary from Theorem 1 enabling its computationally efficient usage.
Corollary 1: Let $p_{i} \in \mathcal{H}^{(r+2)}(m+1)$ and L_{i} be a representative and size, respectively, of the $i-$ th class under the action of $G L(m+1,2)$ over $\mathcal{R}^{*}(r+2, m+1)$. Then, it holds:

$$
\begin{equation*}
\mathcal{W}[z ; \mathcal{R}(r+2, m+2)]=\sum_{i=1}^{n(r+2, m+1)} L_{i} \mathcal{W}^{2}\left[z ; p_{i}+\mathcal{R}(r+1, m+1)\right] \tag{1}
\end{equation*}
$$

Proof: The claim is an immediate consequence of Theorem 1 and property \mathcal{P}.
The above corollary reduces the number of needed weight enumerator computations to the class number $n(r+2, m+1)$ significantly smaller than the straightforward $\left|\mathcal{H}^{(r+2)}(m+1)\right|=2^{\binom{m+1}{r+2}}$ in Theorem 1. For instance, as it has been already mentioned, $n(4,8)=999$ which should be compared with 2^{70}.

Second, we can state yet another statement which enables extra reducing of computational cost.
Corollary 2: For given $e \in \mathcal{H}^{(r+2)}(m)$, let $\mathcal{H}^{(r+1)}(m)$ be partitioned into blocks (subsets) $G_{i}, 1 \leq i \leq s$ with the property that whenever $g \in G_{i}$ the enumerator $\mathcal{W}[z ; e+g+\mathcal{R}(r, m)]$ is a (distinct) constant polynomial $w_{i}(z)$. Then it holds:
a) the weight enumerator of the coset $\mathcal{C}(p)=p+\mathcal{R}(r+1, m+1), p=e+f x_{m+1}$ for fixed $f \in \mathcal{H}^{(r+1)}(m)$, can be expressed by

$$
\sum_{i=1}^{s} w_{i}(z)\left(\sum_{g \in G_{i}} \mathcal{W}[z ; e+g+f+\mathcal{R}(r, m)]\right)
$$

b) the number of polynomial multiplications for computing the aforesaid weight enumerator equals to s, i.e. the number of distinct weight enumerators $\mathcal{W}[z ; e+g+\mathcal{R}(r, m)], g \in \mathcal{H}^{(r+1)}(m)$, while that of polynomial additions is $2^{\left({ }_{r+1}^{m}\right)}-s$.

Proof: Rearranging the summands in $\left(^{*}\right.$) from Theorem 2 and putting outside of brackets the common multipliers $w_{i}(z)$ proves \mathbf{a}). The claim \mathbf{b}) is an immediate consequence of \mathbf{a}.
The affine equivalence classification of $\mathcal{R}(r+2, m) / \mathcal{R}(r, m)$ enables to substantiate the usage of Corollary 2 . To see this, let us recall the following definition:

Definition 5: The subgroup $\mathcal{S t}(e)$ of $G A(m)$ that fixes $e \in \mathcal{H}^{(r+2)}(m)$, i.e. for each $A \in \mathcal{S t}(e)$ it holds: $e \circ A \in$ $e+\mathcal{R}(r+1, m)$, is called stabilizer of e in $G A(m)$.
For given $e \in \mathcal{H}^{(r+2)}(m)$, the stabilizer $\mathcal{S} t(e)$ partitions the cosets of the form $e+g+\mathcal{R}(r, m)$ where $g \in \mathcal{H}^{(r+1)}(m)$ into disjoint orbits. Denote this partition by $\Delta(e)$. Furthermore, Property \mathcal{P} implies that the enumerator $\mathcal{W}[z ; e+g+\mathcal{R}(r, m)]$ is preserved when g runs over an orbit of $\Delta(e)$. The latter permits to constitute efficiently the coarse partition $\left\{G_{i}, 1 \leq i \leq s\right\}$ of $\mathcal{H}^{(r+1)}(m)$ (see, Corollary 2) by merging those orbits possessing identical weight enumerators (the latter ones being computed in advance on chosen orbit representatives).

B. Computing $\mathcal{W}[z ; \mathcal{R}(4,9)]$

Our computational work is divided into two main phases: a pre-computing and an actual computing.
The aim of pre-computing is to provide tools for efficient computation of the expression $(*)$ in Theorem 2 given a specific e and f, and is carried out following Corollary 2 and the subsequent considerations from the previous subsection.
Let $\mathcal{E}(4,7)$ be the set of representatives of the twelve linear equivalence classes of $\mathcal{R}^{*}(4,7)$ given in [10]. For fixed $e \in \mathcal{E}(4,7)$, the pre-computing involves the following three tasks:

- \mathcal{T} 1: Constitute and store the orbits of the partition $\Delta(e)$;
- \mathcal{T} 2: Compute the weight enumerators of the cosets $e+g+\mathcal{R}(2,7)$ when g varies over a set of representatives of $\Delta(e)$'s orbits;
- $\mathcal{T} 3$: Merge the orbits with identical weight enumerators to obtain the coarse partition $\Delta^{\prime}(e)$, and make data arrangement permitting for given $f \in \mathcal{H}^{(3)}(7)$ to look up the identifier of a block in $\Delta^{\prime}(e)$ containing $e+f+\mathcal{R}(2,7)$ (respectively, to have direct access to the common weight enumerator).
For all $e \in \mathcal{E}(4,7)$, we present in Table 1. of the Appendix \mathbf{A} the sizes of partitions $\Delta(e)$ and $\Delta^{\prime}(e)$, respectively.
Remark 1: It is worth pointing out that:
- the task $\mathcal{T} 1$ is efficiently performed based on the so-called "orbit algorithm" [5] using the set of generators of the stabilizer $\mathcal{S} t(e)$ provided by [10];
- the task $\mathcal{T} 2$ can be carried out simultaneously for all representatives by exhaustive generation of the codewords of $\mathcal{R}(2,7)$ based on some Gray code.
Now, following the strategy described in subsection III-A, we present an algorithm for computing the weight enumerator $\mathcal{W}[z ; C(p)]$ of the $\operatorname{coset} C(p)=p+\mathcal{R}(3,8)$ where $p=e+f x_{8}$ for fixed $e \in \mathcal{E}(4,7)$ and a given input $f \in \mathcal{H}^{(3)}(7)$. Note that it can be implemented as a subroutine. Recall also that the common weight enumerator $w_{i}(z)$ corresponding to the block G_{i} in $\Delta^{\prime}(e)$ has been already computed in the pre-computing task $\mathcal{T} 2$ where $1 \leq i \leq\left|\Delta^{\prime}(e)\right|=s(e)$.

```
Algorithm 1: Returning the weight enumerator \(\mathcal{W}[z ; C(p)]\) where \(p=e+f x_{8}\) for fixed \(e\) and a given \(f \in \mathcal{H}^{(3)}(7)\)
\(\mathrm{U}[\mathrm{z}]:=0\);
for \(i\) in \([1, s(e)]\) do
        \(\mathrm{UU}(\mathrm{z}):=0\);
        for \(g\) in \(G[i]\) do
            \(\mathrm{j}:=\) FindBlock(g+f);
            \(\mathrm{UU}(\mathrm{z}):=\mathrm{UU}(\mathrm{z})+\mathrm{w}[\mathrm{j}](\mathrm{z})\);
        \(\mathrm{U}(\mathrm{z}):=\mathrm{U}(\mathrm{z})+\mathrm{w}[\mathrm{i}](\mathrm{z}) * \mathrm{UU}(\mathrm{z}) ;\)
\(3 \mathrm{~W}[z ; C(p)]:=\mathrm{U}(\mathrm{z})\);
```

In the actual computing, we apply formula (1) supposing that a set \mathcal{S} of pairs: (representative p_{i}, orbit size L_{i}) for the $i-$ th class $O_{i}, 1 \leq i \leq 999$, of the classification of $\mathcal{R}^{*}(4,8)$ is available. W.l.o.g., we may assume each p_{i} is of the form $e+f_{i} x_{8}$ for some $e \in \mathcal{E}(4,7)$ and $f_{i} \in \mathcal{H}^{(3)}(7)$, so the set of classes is naturally partitioned into subsets $\mathcal{O}(e)$ of cardinalities $n(e), e \in \mathcal{E}(4,7)$. (The values $n(e)$ are given in the first column of Table 2. of the Appendix A.) Bellow, we present an algorithm for computing the sum in formula (1) and thus $\mathcal{W}[z ; \mathcal{R}(4,9)]$. (Note that we call the subroutine $\mathcal{W}[z ; C(p)]$.)

```
Algorithm 2: Computing \mathcal{W}[z;\mathcal{R}(4,9)]
    V(z) := 0;
    for }e\in\mathcal{E}(4,7)\mathrm{ do
        for j in [1,n(e)] do
            p:= Representative(O)}(e)[j])
            L := Size(O(e)[j]);
            V(z):= V(z)+L * \mathcal{W}}\mp@subsup{}{2}{[z;C(p)];
7\mathcal{W}[z;\mathcal{R}(4,9)]=V(z);
```

Remark 2: The purpose of programming functions FindBlock (\cdot), Representative (\cdot) and $\operatorname{Size}(\cdot)$ is self-explanatory by their names.

The data present in [9] contains information to form a set \mathcal{S}^{\prime} of kind similar to \mathcal{S}. However, the representatives p_{i}^{\prime} there are of the form $e^{\prime}+f_{i}^{\prime} x_{8}$ where e^{\prime} s constitute different set of representatives of the twelve classes of $\mathcal{R}^{*}(4,7)$, say $\mathcal{E}^{\prime}(4,7)$. For some elements of $\mathcal{E}(4,7)$ and $\mathcal{E}^{\prime}(4,7)$, their linear equivalence is evident by eye inspection. For the remaining, we determined those which are linearly equivalent by computing the vectors of invariants of their duals (see, for details [6, pp. 115-117]). The matching found is represented in the rows of Table 2. where $\overline{\mathcal{E}}(4,7)$ and $\overline{\mathcal{E}}^{\prime}(4,7)$ are the sets consisting of dual forms of those in $\mathcal{E}(4,7)$ and $\mathcal{E}^{\prime}(4,7)$, respectively. To find out a nonsingular (7×7) matrix \mathbf{A} with property that $e^{\prime} \circ \mathbf{A} \in e+\mathcal{R}(3,7)$ for thus determined pairs $\left(e^{\prime}, e\right)$, we wrote a simple program in C which generates at random such a nonsingular square matrix and then checks the imposed condition. This technique is sufficiently efficient (due to relatively large stabilizers sizes, see, [11, Table 2.]) and the program finished successfully its work in reasonable time. For similar technique to exploring affine equivalence of Boolean functions, we refer the reader to [14]. The obtained results are presented in the last column of Table 2. of the Appendix A. Finally, acting on corresponding $f_{i}^{\prime}, 1 \leq i \leq 999$ by the linear transformations got (of course, ignoring the terms of degree less than 3), we are yielded with type of a set requested by the Algorithm 2 . The weight distribution obtained is presented in the Appendix B.

C. Evaluating the computational costs

For details about computational costs of task $\mathcal{T} 1$ of the pre-computing, we refer to [4] and [5]. The computational complexity of task $\mathcal{T} 2$ is in total proportional to the product $68443 \times 2^{29} \approx 2^{45.06}$ with the first factor being the number of classes of $\mathcal{R}(4,7) / \mathcal{R}(2,7)$ and the second being the size of $\mathcal{R}(2,7)$. Task $\mathcal{T} 3$ can be carried out by applying some sorting technique. In summary, the pre-computing in case $r=2$ and $m=7$ is efficiently performed. In addition, we note that the compressed storing of orbit and data arrangement into RAM needs at most 124 GB of memory.

In the actual computing, for every $e \in \mathcal{E}(4,7)$, Algorithm 1 requires $\left|\Delta^{\prime}(e)\right|$ multiplications and about 2^{35} additions of degree 128 polynomials with nonnegative integer coefficients. Therefore, Algorithm 2 requires $\sum_{e \in \mathcal{E}(4,7)} n(e) \times\left|\Delta^{\prime}(e)\right|=$ $1827252 \approx 2^{20.8}$ multiplications and about $999 \times 2^{35} \approx 2^{45}$ additions of polynomials of that kind, and 999 squarings of degree 256 polynomials and 999 additions of degree 512 polynomials, of course.

IV. Conclusion

In concluding remarks of his Ph.D. thesis [15], Dilip V. Sarwate has discussed the applicability of methods developed there to longer Reed-Muller codes, say of lengths 512 and above. He has estimated and come into conclusion that there are too many equivalence classes of cosets of the $\mathcal{R}(2,7)$ in $\mathcal{R}(4,7)$ in order to be useful in enumerating the $\mathcal{R}(4,9)$. However, as it is shown in this paper, due to the recent advancements in classification of Boolean functions [4], [11] and utilization of modern powerful computers, the solution of that long-standing problem is obtained successfully. Nevertheless, it seems likely that the method has almost reached its limits of utility as far as further enumerations are considered. Lately, we observed on Philippe Langevin's numerical project page an announcement that the classification of Boolean cubic forms in 9 variables enabled him (together with Eric Brier) to compute the weight distribution of the $\mathcal{R}(3,10)$. Finally, we would like to note that a sort of a refined approach as this one presented in our paper can be also applicable to the latter code.

References

[1] C. Carlet, Boolean Functions for Cryptography and Coding Theory, Cambridge University Press, Cambridge, 2021.
[2] C. Carlet and P. Solé, 'The weight spectrum of two families of Reed-Muller codes", Discrete Mathematics, 346(10), $113568,2023$.
[3] Th. W. Cusick and P. Stănică, Cryptographic Boolean functions and Applications, Academic Press, Amsterdam,..., Tokyo, 2009.
[4] V. Gillot and Ph. Langevin, "Classification of some cosets of the Reed-Muller code", Cryptogr. Commun. (2023), available at https://doi.org/10.1007/s12095-023-00652-4.
[5] A. Hulpke, "Computing with group orbits", available at https://www.math.colostate.edu/
[6] X. -D. Hou, " $G L(m, 2)$ acting on $\mathcal{R}(r, m) / \mathcal{R}(r-1, m) "$, Discrete Mathematics, 149, 99-122, 1996.
[7] T. Kasami and N. Tokura, "On the weight structure of Reed-Muller codes", IEEE Trans. Info. Theory, 16, 752-759, 1970.
[8] T. Kasami, N. Tokura, S. Azumi, "On the weight enumeration of weights less than 2.5d of Reed-Muller codes", Information and Control, 30, 380-395, 1976.
[9] Ph. Langevin, "Classification of Boolean quartic forms in eight variables", available at https://langevin.univ-tll.fr/project/quartics/quartics.html, 2007.
[10] Ph. Langevin, "Classification of $R M(4,7) / R M(2,7)$ ", available at https://langevin.univ-tln.fr/project/rm742/rm742.html, 2012.
[11] Ph. Langevin and G. Leander, "Classification of Boolean quartic forms in eight variables", in Boolean Functions in Cryptology and Information Security, B. Preneel and O. A. Logachev (Eds.), IOS Press, 139-147, 2008.
[12] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1977.
[13] R. J. McEliece, "On periodic sequences from GF (q)", J. Combin. Theory Ser. A, 10, 80-91, 1971.
[14] Q. Meng et al., "Analysis of affinely equivalent Boolean functions", Science in China Series F: Information Sciences., vol. 50, no. 3, pp. 299-306, 2007.
[15] D. V. Sarwate, Weight Enumeration of Reed-Muller Codes and Cosets, Ph.D., Dep. Elec. Eng., Princeton Univ., Princeton, N.J., Sept. 1973, Advisors: E. R. Berlekamp and J. D. Ullman.
[16] N. J. A. Sloane, "On-line Encyclopedia of Integer Sequences". available at https://oeis.org/wiki/List of weight distributions
[17] N. J. A. Sloane, E. R. Berlekamp, "Weight enumerator for second-order Reed-Muller codes", IEEE Trans. Info. Theory, 16, 745-751, 1970.
[18] Ts. Sugita, T. Kasami, and T. Fujiwara, "The weight distribution of the third-order Reed-Muller code of length 512", IEEE Trans. Info. Theory, 42, No. 5, 1622-1625, 1996.
[19] M. Sugino, Y. Tokura and T. Kasami, "Weight distribution of $(128,64)$ Reed-Muller Code", IEEE Trans. Info. Theory, 17, 627-628, 1971.
[20] H. C. A. van Tilborg, "Weights in the third-order Reed-Muller codes", JPL Technical Report 32-1526, vol.IV, 86-92, 1971.

Appendix A

TABLE I
Sizes of partitions $\Delta(e)$ AND $\Delta^{\prime}(e)$

$e \in \mathcal{E}(4,7):$ ANF's according to $([10])$	$\|\Delta(e)\|$	$\left\|\Delta^{\prime}(e)\right\|$
0	163	12
4567	63	52
$1235+1345+1356+1456+2346+2356+2456$	130	112
$2367+4567$	289	182
$1237+4567$	480	306
$1257+1367+4567$	730	395
$1237+1247+1357+2367+4567$	204	157
$1236+1257+1345+1467+2347+2456+3567$	1098	675
$1236+1356+1567+2357+2467+2567+3456$	1340	811
$1367+2345+2356+3456+4567$	6449	2170
$1234+1237+1267+1567+2345+3456+4567$	23988	3377
$1236+1367+1567+2345+3456+3457+3467$	33660	4636

TABLE II
The matching between $\mathcal{E}^{\prime}(4,7)$ and $\mathcal{E}(4,7)$

Distribution of $n(e)$	$\overline{\mathcal{E}}^{\prime}(4,7)$	$\overline{\mathcal{E}}(4,7)$	Transition linear transform
3	0	0	$[10000000100000001000000010000000100000000100000001]$
2	123	123	$[1000000010000000100000001000000010000000100000001]$
21	$127+136+145$	$137+147+157+237+247+267+467$	$[0011001001111001001101011000111101010011000001100]$
15	$125+134$	$123+145$	$[1000000010000000010000000100001000000000100000001]$
89	$126+345$	$123+245+346$	$[000000010000000010000000100000001000100000000001]$
56	$126+135+234$	$123+145+246+356+456$	$[1000000001000000010000000010000010010000000000001]$
10	$135+146+235+236+245$	$127+136+145+234$	$124+137+156+235+267+346+457$
7	$[0110001101100000010000010000000010001000000000001]$		
502	$125+134+135+167+247+357$	$127+134+135+146+234+247+457$	$[000100000100000000001000001010110010100101111001011]$
1	$123+247+356$	$123+127+147+167+245$	$[001000001100111010000000111000000000000101100110]$
1	$147+156+237+246+345$	$123+127+167+234+345+456+567$	$[010101010010101001001111111001100000100110000100]$
292	$127+146+236+345$	$125+126+127+167+234+245+457$	$[010011100011100110110101100000000100000101001011]$

Appendix B

TABLE III
Weight Distribution of the [512,256,32] Reed-Muller code

[^0]: The authors are with the Department of Mathematical Foundations of Informatics, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, G. Bonchev Str. 8, 1113 Sofia, Bulgaria, e-mail: miro@math.bas.bg; youri@math.bas.bg

 This work was supported, in part, by the Ministry of Education and Science of Bulgaria under the Grant No. DO1-168/28.07.2022 "National Centre for High-performance and Distributed Computing" (NCHDC). The authors acknowledge the provided access to the e-infrastructure of NCHDC. We are grateful to Vladimir D. Tonchev for his stimulating discussions and providing a copy of [15].

