
P
os
te
d
on

22
D
ec

20
23

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
70
32
67
84
.4
85
51
76
0/
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Weight Distribution of the Binary Reed-Muller Code R(4,9)

Miroslav Markov1 and Yuri Borissov1

1Affiliation not available

December 22, 2023

1

1

Weight Distribution of the Binary Reed-Muller
Code R(4, 9)

Miroslav Markov and Yuri Borissov

Abstract

We compute the weight distribution of R(4, 9) by combining the approach described in D. V. Sarwate’s Ph.D. thesis from
1973 with knowledge on the affine equivalence classification of Boolean functions. To solve this problem posed, e.g., in the
MacWilliams and Sloane book [12, p. 447], we apply a refined approach based on the classification of Boolean quartic forms in
eight variables due to Ph. Langevin and G. Leander, and recent results on the classification of the quotient space R(4, 7)/R(2, 7)
due to V. Gillot and Ph. Langevin.

Index Terms

code weight distribution, binary Reed-Muller code

I. Introduction

For basic coding theoretical notions, we refer to [12]. All considered codes in this paper are binary, i.e., over the alphabet
F2 = {0, 1}.

The binary Reed-Muller codes form one of the oldest studied families of codes invented in 1950s and have an easy to
implement decoding algorithm based on majority-logic circuits. However, there are few general results about their weight
structure. Namely, the weight distributions is known only for:
• the 1st and 2nd-order codes of that kind [17] (1970);
• arbitrary order when the weight < 2d [7] (1970), and later on (in 1976) had been extended for weights < 2.5d where d

is the minimum weight [8];
• weight divisibility: the McEliece theorem [13].
For information about the weight distributions of binary Reed-Muller codes of particular lengths and orders, the reader is

directed to [16]. In particular, it is worth pointing out the works concerning the third and fourth order Reed-Muller codes [15],
[8], [18] - [20], as well as, the very recent work on the weight spectrum of some families of binary Reed-Muller codes [2].

This paper is organized as follows. In the next section we give some necessary preliminaries. In Section III a refined approach
to the problem under consideration enabling to save computational efforts is exposed. Some conclusions are drawn in the last
section.

II. PRELIMINARIES

For basic knowledge on Boolean functions and their applications in Cryptography and Coding Theory, we direct the reader
to [1] and [3]. Herein, for the sake of completeness, we recall the classical definition of the binary Reed-Muller code.

Definition 1: The r−th order binary Reed-Muller (or RM) code R(r,m) of length n = 2m, for 0 ≤ r ≤ m, is the set of
all binary vectors f of length n which are truth tables of Boolean functions f(x),x = (x1, . . . , xm), having algebraic normal
forms of degree at most r.
Henceforth the binary vector f of length 2m will be identified with corresponding Boolean function f in m variables.

In order to present our results we need to remind the definitions of weight distribution/enumerator of a code, i.e., an arbitrary
set C of vectors with fixed length n (these definitions hold in particular for cosets of binary linear codes).

Definition 2: The weight distribution of a code C of length n is the vector W (C) = (W0, . . . ,Wn), where Wi denotes the
number of codewords with Hamming weight i.

Definition 3: Weight enumerator of a code C with weight distribution W (C) = (W0, . . . ,Wn) is defined as the following
polynomial in the indeterminate z: W[z;C] =

∑n
i=0 Wiz

i.

In this paper, we make use of two facts claimed in the next two theorems for the first time exposed in [15]. (For 0 ≤ r ≤ m, the
set of all homogeneous polynomials on m binary variables of algebraic degree r adjoined with the 0 is denoted by H(r)(m).)

The authors are with the Department of Mathematical Foundations of Informatics, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,
G. Bonchev Str. 8, 1113 Sofia, Bulgaria, e-mail: miro@math.bas.bg; youri@math.bas.bg

This work was supported, in part, by the Ministry of Education and Science of Bulgaria under the Grant No. DO1-168/28.07.2022 ”National Centre for
High-performance and Distributed Computing” (NCHDC). The authors acknowledge the provided access to the e-infrastructure of NCHDC. We are grateful
to Vladimir D. Tonchev for his stimulating discussions and providing a copy of [15].

Theorem 1: ([15, 5.12]) For 0 ≤ r ≤ m, it holds:

W[z;R(r + 2,m + 2)] =
∑

p∈H(r+2)(m+1)

W2[z; p +R(r + 1,m + 1)].

Theorem 2: ([15, 5.13]) Let p = e+ fxm+1, with given e ∈ H(r+2)(m) and f ∈ H(r+1)(m). Then the weight enumerator
of the coset C(p) = p +R(r + 1,m + 1) equals to:

(∗)
∑

g∈H(r+1)(m)

W[z; e + g +R(r,m)] · W[z; e + g + f +R(r,m)].

For definition of the general affine group GA(m) and its subgroup the general linear group GL(m, 2), we refer to [12,
Ch.13.9]. The action of A ∈ GA(m) on a Boolean function f(x) will be denoted by f ◦ A, i.e., f ◦ A = f(Ax). Another
necessary definition is that of affine equivalence of two cosets of Reed-Muller code:

Definition 4: The cosets C1 and C2 of R(r,m) with representatives f1 ∈ C1, f2 ∈ C2, respectively, are called affine
equivalent if there exist a transformation A ∈ GA(m) such that f1 ◦A = f2.
In this article, we extensively make use of the following apparent property:
Property P. The weight enumerators of two affine equivalent cosets of each Reed-Muller code coincide.

Affine equivalence classification of the cosets of RM codes is useful in studying important coding theoretical and crypto-
graphic properties of Boolean functions comprising them. A strategy how to compute the complete classification of Boolean
quartic forms in eight variables, i.e., the classification of the quotient space R(4, 8)/R(3, 8) under the action of GL(8, 2),
is presented in [11]. Here, just as an extract of this result, we point out that the Boolean quartic forms of eight variables
can be classified in 999 (see, as well [6]) linear equivalence classes listed in [9]. Recently, the interest in that topic has been
renewed by [4] which (among other things) provides affine equivalence classification of the quotient space R(4, 7)/R(2, 7).
The authors of [4] and [11] have also outlined applications of their results concerning the covering radii of some RM codes,
and Boolean functions in the family of bent ones. In Section III, we point out yet another application, namely, computing the
weight distribution of R(4, 9).

III. THE REFINED APPROACH

A. Rationale

Now, we describe a strategy following which makes feasible the computation of W[z;R(4, 9)].
In what follows, by n(k,m) is denoted the number of linearly inequivalent classes of the quotient space R∗(k,m) =

R(k,m)/R(k − 1,m), i.e. the number of orbits to which R∗(k,m) is partitioned under the action of GL(m, 2).
First, let us state a corollary from Theorem 1 enabling its computationally efficient usage.
Corollary 1: Let pi ∈ H(r+2)(m + 1) and Li be a representative and size, respectively, of the i−th class under the action

of GL(m + 1, 2) over R∗(r + 2,m + 1) . Then, it holds:

W[z;R(r + 2,m + 2)] =

n(r+2,m+1)∑
i=1

LiW2[z; pi +R(r + 1,m + 1)]. (1)

Proof: The claim is an immediate consequence of Theorem 1 and property P .
The above corollary reduces the number of needed weight enumerator computations to the class number n(r + 2,m + 1)

significantly smaller than the straightforward |H(r+2)(m + 1)| = 2(m+1
r+2) in Theorem 1. For instance, as it has been already

mentioned, n(4, 8) = 999 which should be compared with 270.
Second, we can state yet another statement which enables extra reducing of computational cost.
Corollary 2: For given e ∈ H(r+2)(m), let H(r+1)(m) be partitioned into blocks (subsets) Gi, 1 ≤ i ≤ s with the property

that whenever g ∈ Gi the enumerator W[z; e + g +R(r,m)] is a (distinct) constant polynomial wi(z). Then it holds:
a) the weight enumerator of the coset C(p) = p + R(r + 1,m + 1), p = e + fxm+1 for fixed f ∈ H(r+1)(m), can be

expressed by
s∑

i=1

wi(z)(
∑
g∈Gi

W[z; e + g + f +R(r,m)]).

b) the number of polynomial multiplications for computing the aforesaid weight enumerator equals to s, i.e. the number of
distinct weight enumerators W[z; e + g +R(r,m)], g ∈ H(r+1)(m), while that of polynomial additions is 2(m

r+1) − s.
Proof: Rearranging the summands in (*) from Theorem 2 and putting outside of brackets the common multipliers wi(z)

proves a). The claim b) is an immediate consequence of a.
The affine equivalence classification of R(r + 2,m)/R(r,m) enables to substantiate the usage of Corollary 2. To see this, let
us recall the following definition:

2

Definition 5: The subgroup St(e) of GA(m) that fixes e ∈ H(r+2)(m), i.e. for each A ∈ St(e) it holds: e ◦ A ∈
e +R(r + 1,m), is called stabilizer of e in GA(m).
For given e ∈ H(r+2)(m), the stabilizer St(e) partitions the cosets of the form e + g +R(r,m) where g ∈ H(r+1)(m) into
disjoint orbits. Denote this partition by ∆(e). Furthermore, Property P implies that the enumerator W[z; e + g +R(r,m)] is
preserved when g runs over an orbit of ∆(e). The latter permits to constitute efficiently the coarse partition {Gi, 1 ≤ i ≤ s} of
H(r+1)(m) (see, Corollary 2) by merging those orbits possessing identical weight enumerators (the latter ones being computed
in advance on chosen orbit representatives).

B. Computing W[z;R(4, 9)]

Our computational work is divided into two main phases: a pre-computing and an actual computing.
The aim of pre-computing is to provide tools for efficient computation of the expression (*) in Theorem 2 given a specific

e and f , and is carried out following Corollary 2 and the subsequent considerations from the previous subsection.
Let E(4, 7) be the set of representatives of the twelve linear equivalence classes of R∗(4, 7) given in [10]. For fixed e ∈ E(4, 7),
the pre-computing involves the following three tasks:
• T 1: Constitute and store the orbits of the partition ∆(e);
• T 2: Compute the weight enumerators of the cosets e+ g +R(2, 7) when g varies over a set of representatives of ∆(e)’s

orbits;
• T 3: Merge the orbits with identical weight enumerators to obtain the coarse partition ∆′(e), and make data arrangement

permitting for given f ∈ H(3)(7) to look up the identifier of a block in ∆′(e) containing e + f +R(2, 7) (respectively,
to have direct access to the common weight enumerator).

For all e ∈ E(4, 7), we present in Table 1. of the Appendix A the sizes of partitions ∆(e) and ∆′(e), respectively.
Remark 1: It is worth pointing out that:
• the task T 1 is efficiently performed based on the so-called ”orbit algorithm” [5] using the set of generators of the stabilizer
St(e) provided by [10];

• the task T 2 can be carried out simultaneously for all representatives by exhaustive generation of the codewords of R(2, 7)
based on some Gray code.

Now, following the strategy described in subsection III-A, we present an algorithm for computing the weight enumerator
W[z;C(p)] of the coset C(p) = p +R(3, 8) where p = e + fx8 for fixed e ∈ E(4, 7) and a given input f ∈ H(3)(7). Note
that it can be implemented as a subroutine. Recall also that the common weight enumerator wi(z) corresponding to the block
Gi in ∆′(e) has been already computed in the pre-computing task T 2 where 1 ≤ i ≤ |∆′(e)| = s(e).

Algorithm 1: Returning the weight enumerator W[z;C(p)] where p = e+ fx8 for fixed e and a given f ∈ H(3)(7)

1 U[z] := 0;
2 for i in [1,s(e)] do
3 UU(z) := 0;
4 for g in G[i] do
5 j := FindBlock(g+f);
6 UU(z) := UU(z) + w[j](z);

7 U(z) := U(z) + w[i](z) * UU(z);

8 W[z; C(p)] := U(z);

In the actual computing, we apply formula (1) supposing that a set S of pairs: (representative pi, orbit size Li) for the
i−th class Oi, 1 ≤ i ≤ 999, of the classification of R∗(4, 8) is available. W.l.o.g., we may assume each pi is of the form
e+ fix8 for some e ∈ E(4, 7) and fi ∈ H(3)(7), so the set of classes is naturally partitioned into subsets O(e) of cardinalities
n(e), e ∈ E(4, 7). (The values n(e) are given in the first column of Table 2. of the Appendix A.) Bellow, we present an
algorithm for computing the sum in formula (1) and thus W[z;R(4, 9)]. (Note that we call the subroutine W[z;C(p)].)

Algorithm 2: Computing W[z;R(4, 9)]

1 V(z) := 0;
2 for e ∈ E(4, 7) do
3 for j in [1,n(e)] do
4 p := Representative(O(e)[j]);
5 L := Size(O(e)[j]);
6 V(z) := V(z) + L * W2[z;C(p)];

7 W[z;R(4, 9)] = V (z);

Remark 2: The purpose of programming functions FindBlock(·), Representative(·) and Size(·) is self-explanatory by their
names.

3

The data present in [9] contains information to form a set S ′ of kind similar to S. However, the representatives p′i there are
of the form e′ + f ′ix8 where e′s constitute different set of representatives of the twelve classes of R∗(4, 7), say E ′(4, 7). For
some elements of E(4, 7) and E ′(4, 7), their linear equivalence is evident by eye inspection. For the remaining, we determined
those which are linearly equivalent by computing the vectors of invariants of their duals (see, for details [6, pp. 115-117]).
The matching found is represented in the rows of Table 2. where E(4, 7) and E ′(4, 7) are the sets consisting of dual forms of
those in E(4, 7) and E ′(4, 7), respectively. To find out a nonsingular (7× 7) matrix A with property that e′ ◦A ∈ e+R(3, 7)
for thus determined pairs (e′, e), we wrote a simple program in C which generates at random such a nonsingular square matrix
and then checks the imposed condition. This technique is sufficiently efficient (due to relatively large stabilizers sizes, see,
[11, Table 2.]) and the program finished successfully its work in reasonable time. For similar technique to exploring affine
equivalence of Boolean functions, we refer the reader to [14]. The obtained results are presented in the last column of Table
2. of the Appendix A. Finally, acting on corresponding f ′i , 1 ≤ i ≤ 999 by the linear transformations got (of course, ignoring
the terms of degree less than 3), we are yielded with type of a set requested by the Algorithm 2. The weight distribution
obtained is presented in the Appendix B.

C. Evaluating the computational costs
For details about computational costs of task T 1 of the pre-computing, we refer to [4] and [5]. The computational complexity

of task T 2 is in total proportional to the product 68443 × 229 ≈ 245.06 with the first factor being the number of classes of
R(4, 7)/R(2, 7) and the second being the size of R(2, 7). Task T 3 can be carried out by applying some sorting technique.
In summary, the pre-computing in case r = 2 and m = 7 is efficiently performed. In addition, we note that the compressed
storing of orbit and data arrangement into RAM needs at most 124 GB of memory.

In the actual computing, for every e ∈ E(4, 7), Algorithm 1 requires |∆′(e)| multiplications and about 235 additions of
degree 128 polynomials with nonnegative integer coefficients. Therefore, Algorithm 2 requires

∑
e∈E(4,7) n(e) × |∆′(e)| =

1827252 ≈ 220.8 multiplications and about 999×235 ≈ 245 additions of polynomials of that kind, and 999 squarings of degree
256 polynomials and 999 additions of degree 512 polynomials, of course.

IV. CONCLUSION

In concluding remarks of his Ph.D. thesis [15], Dilip V. Sarwate has discussed the applicability of methods developed there
to longer Reed-Muller codes, say of lengths 512 and above. He has estimated and come into conclusion that there are too
many equivalence classes of cosets of the R(2, 7) in R(4, 7) in order to be useful in enumerating the R(4, 9). However, as it is
shown in this paper, due to the recent advancements in classification of Boolean functions [4], [11] and utilization of modern
powerful computers, the solution of that long-standing problem is obtained successfully. Nevertheless, it seems likely that the
method has almost reached its limits of utility as far as further enumerations are considered. Lately, we observed on Philippe
Langevin’s numerical project page an announcement that the classification of Boolean cubic forms in 9 variables enabled him
(together with Eric Brier) to compute the weight distribution of the R(3, 10). Finally, we would like to note that a sort of a
refined approach as this one presented in our paper can be also applicable to the latter code.

REFERENCES

[1] C. Carlet, Boolean Functions for Cryptography and Coding Theory, Cambridge University Press, Cambridge, 2021.
[2] C. Carlet and P. Solé, ”The weight spectrum of two families of Reed-Muller codes”, Discrete Mathematics, 346(10), 113568, 2023.
[3] Th. W. Cusick and P. Stănică, Cryptographic Boolean functions and Applications, Academic Press, Amsterdam,. . . , Tokyo, 2009.
[4] V. Gillot and Ph. Langevin, ”Classification of some cosets of the Reed-Muller code”, Cryptogr. Commun. (2023),

available at https://doi.org/10.1007/s12095-023-00652-4.
[5] A. Hulpke, ”Computing with group orbits”, available at https://www.math.colostate.edu/
[6] X. -D. Hou, ”GL(m, 2) acting on R(r,m)/R(r − 1,m)”, Discrete Mathematics, 149, 99-122, 1996.
[7] T. Kasami and N. Tokura, ”On the weight structure of Reed-Muller codes”, IEEE Trans. Info. Theory, 16 , 752-759, 1970.
[8] T. Kasami, N. Tokura, S. Azumi, ”On the weight enumeration of weights less than 2.5d of Reed-Muller codes”, Information and Control, 30, 380-395,

1976.
[9] Ph. Langevin, ”Classification of Boolean quartic forms in eight variables”,

available at https://langevin.univ-tln.fr/project/quartics/quartics.html, 2007.
[10] Ph. Langevin, ”Classification of RM(4, 7)/RM(2, 7)”,

available at https://langevin.univ-tln.fr/project/rm742/rm742.html, 2012.
[11] Ph. Langevin and G. Leander, ”Classification of Boolean quartic forms in eight variables”, in Boolean Functions in Cryptology and Information Security,

B. Preneel and O. A. Logachev (Eds.), IOS Press, 139-147, 2008.
[12] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publishing Company, Amsterdam, New York, Oxford,

1977.
[13] R. J. McEliece, ”On periodic sequences from GF (q)”, J. Combin. Theory Ser. A, 10, 80-91, 1971.
[14] Q. Meng et al., ”Analysis of affinely equivalent Boolean functions”, Science in China Series F: Information Sciences., vol. 50, no. 3, pp. 299-306, 2007.
[15] D. V. Sarwate, Weight Enumeration of Reed-Muller Codes and Cosets, Ph.D., Dep. Elec. Eng., Princeton Univ., Princeton, N.J., Sept. 1973, Advisors:

E. R. Berlekamp and J. D. Ullman.
[16] N. J. A. Sloane, ”On-line Encyclopedia of Integer Sequences”. available at https://oeis.org/wiki/List of weight distributions
[17] N. J. A. Sloane, E. R. Berlekamp, ”Weight enumerator for second-order Reed-Muller codes”, IEEE Trans. Info. Theory, 16, 745-751, 1970.
[18] Ts. Sugita, T. Kasami, and T. Fujiwara, ”The weight distribution of the third-order Reed-Muller code of length 512”, IEEE Trans. Info. Theory, 42, No.

5, 1622-1625, 1996.
[19] M. Sugino, Y. Tokura and T. Kasami, ”Weight distribution of (128,64) Reed-Muller Code”, IEEE Trans. Info. Theory, 17, 627-628, 1971.
[20] H. C. A. van Tilborg, ”Weights in the third-order Reed-Muller codes”, JPL Technical Report 32-1526, vol.IV, 86-92, 1971.

4

APPENDIX A

TABLE I
SIZES OF PARTITIONS ∆(e) AND ∆′(e)

e ∈ E(4, 7): ANF’s according to ([10]) |∆(e)| |∆′(e)|
0 12 12
4567 63 52
1235+1345+1356+1456+2346+2356+2456 130 112
2367+4567 289 182
1237+4567 480 306
1257+1367+4567 730 395
1237+1247+1357+2367+4567 204 157
1236+1257+1345+1467+2347+2456+3567 1098 675
1236+1356+1567+2357+2467+2567+3456 1340 811
1367+2345+2356+3456+4567 6449 2170
1234+1237+1267+1567+2345+3456+4567 23988 3377
1236+1367+1567+2345+3456+3457+3467 33660 4636

TABLE II
THE MATCHING BETWEEN E ′(4, 7) AND E(4, 7)

Distribution of n(e) E ′(4, 7) E(4, 7) Transition linear transform
3 0 0 [1000000 0100000 0010000 0001000 0000100 0000010 0000001]
2 123 123 [1000000 0100000 0010000 0001000 0000100 0000010 0000001]

21 127+136+145 137+147+157+237+247+267+467 [0011001 0011110 0100110 1011000 1111010 1001100 0001100]
15 125+134 123+145 [1000000 0100000 0001000 0000100 0010000 0000010 0000001]
89 126+345 123+456 [1000000 0100000 0001000 0000100 0000010 0010000 0000001]
56 126+135+234 123+245+346 [0100000 0010000 0001000 0000010 0000100 1000000 0000001]
10 135+146+235+236+245 123+145+246+356+456 [1000000 0000010 0001000 0010000 0000100 0100000 0000001]
7 127+136+145+234 124+137+156+235+267+346+457 [0110001 1011001 0110011 0111010 1100101 0010111 1001011]

502 125+134+135+167+247+357 127+134+135+146+234+247+457 [0001000 0010000 0000001 0000100 0100000 0000010 1100110]
1 123+247+356 123+127+147+167+245 [0010000 0110011 1010000 0001110 0000001 0010011 0000100]
1 147+156+237+246+345 123+127+167+234+345+456+567 [0101010 1001010 1001001 1111111 0011000 0100010 1001011]

292 127+146+236+345 125+126+127+167+234+245+457 [0100111 0001110 0110110 1011000 0000010 0000100 0010110]

5

APPENDIX B

TABLE III
WEIGHT DISTRIBUTION OF THE [512,256,32] REED-MULLER CODE

Weight Number of codewords

0 512 1
32 480 52955952
48 464 919315326720
56 456 271767121346560
60 452 860689275027456
64 448 89163020044002040
68 444 1777323352931696640
72 440 64959328938397057024
76 436 2094952122987829002240
80 432 86129855718211879936768
84 428 3718387228743293604986880
88 424 216407674400647746861465600
92 420 15958945395035022932054114304
96 416 1570964763114053055495174389136

100 412 207755244457303752035637154283520
104 408 34164336816436357675455725024378880
108 404 5992987676360073735151889707696128000
112 400 983217921810034263357552475089021004288
116 396 140881159168600922710983130625456163782656
120 392 17178463264607761296016540993629780705771520
124 388 1770270551281316280504947079180771901717872640
128 384 154198773988541804525321284585063483246993999900
132 380 11380437366712812474455950864177326068447989202944
136 376 713793445298874211607839796879716106185715280216064
140 372 38161660034401312989486264769054124765959796671119360
144 368 1744077996406613042017016863461234839306732612077058560
148 364 68320936493023612641136928149296775084064365913214812160
152 360 2299744204800465802453316637595783829108912802028206751744
156 356 66674424868716978552789375387240003239187186349775851094016
160 352 1668559700964160587350805664583122924498928358151715733007408
164 348 36117082274027891545154187373048131661136552390031364702863360
168 344 677483598989547107793615101247739514269621184741356041461104640
172 340 11032441933713096201663286389373184730113421621201515757397082112
176 336 156225095497619813307679231937780861426835567156776476525084177664
180 332 1926667532217097161576702991776654344250440175688196887457279508480
184 328 20723534026876536792281002394151796205045793736436788802938336133120
188 324 194671442741837852939975553363771856234841259238404365556287065292800
192 320 1599044990181340998819270766161596605692512085057170791477694075282632
196 316 11498415685246302189888474222781442491860129957714864173250891967627264
200 312 72459467570743603819378812718772497540870770484626494838959726267809792
204 308 400549932263936554220342987258224499780564121712827465674395223861493760
208 304 1944071611978423909059426198144849863064608675044397429548995177751732480
212 300 8291211853278378544436157221213736835450108801042695204524353086973542400
216 296 31095502600701130763682713427899390240950550846409105550583369693522427904
220 292 102622652435510219354959437959897900434480615845926142166854426192158654464
224 288 298206281302110726623000750445450132512881810629607123478473554095237810960
228 284 763396919631666688676755106996803883003881847438728311891109384630797598720
232 280 1722452776176219896357452486934573175804665343735169479919087899582551687168
236 276 3426750460257305904470547641506642175867699465315478403354123631366508642304
240 272 6013163599489683999312799935491777179772724247998877953378442920501417933824
244 268 9309551320248854051332692772889245412495562988894547412532818045057116405760
248 264 12718986044129514620716674156341900030463015021774940408815989741288144568320
252 260 15336997499945305387056357527918950456934399969250231086077675815418680311808

256 16324199909251682000435577287934368523097397692548071777837483832108326674502

6

