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Abstract

The foundations of nonlinear optics are revisited, and the formalism is applied to waveguide modes. The effect of loss and

dispersion are included rigorously along with the vectorial nature of the modes, and a new version of the nonlinear Schrödinger

(NLS) equation is derived. This leads to more general expressions for the group index, for the group-index dispersion (GVD),

and for the Kerr coefficient. These quantities are essential for the design of waveguides suitable for e.g. the generation of optical

frequency combs and all-optical switches. Examples are given using the silicon nitride material platform. Specifically, values are

extracted for the coefficients of the chi-3 tensor based on measurements of Kerr coefficients and mode simulations.
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Abstract: The foundations of nonlinear optics are revisited, and the formalism is applied
to waveguide modes. The effect of loss and dispersion are included rigorously along with the
vectorial nature of the modes, and a new version of nonlinear Schrödinger (NLS) equation
is derived. This leads to more general expressions for the group index, for the group-index
dispersion (GVD), and for the Kerr coefficient. These quantities are essential for the design of
waveguides suitable for e.g. the generation of optical frequency combs and all-optical switches.
Examples are given using the silicon nitride material platform. Specifically, values are extracted
for the coefficients of the chi-3 tensor based on measurements of Kerr coefficients and mode
simulations.

1. Introduction

The nonlinear Schrödinger (NLS) equation has been a fundamental tool in photonics for
decades [1], offering insights into dispersion and the behavior of light in nonlinear optical media.
Its applications, spanning optical communications [2], frequency metrology [3], spectroscopy [4],
ultrafast science [5], and quantum optics [6, 7], underscore its paramount importance in modern
optics. Today, the NLS equation is indispensable for modeling devices like all-optical switches
[8, 9] and optical parametric oscillation (OPO) [10, 11]. These advancements in nonlinear optics
have not only revolutionized chip-scale photonic capabilities but have also paved the path for
breakthroughs in frequency synthesis [12], precision timing for positioning and navigation [13],
frequency conversion of mid-infrared [14] to deep-UV [15] and a myriad of spectroscopic
techniques [16].

Using the NLS equation, one can simulate how dispersion and nonlinearities affect the shape
of an optical pulse as it propagates in a nonlinear medium [17]. The typical formalism to derive
the NLS equation, inherited from bulk optics, makes simplifying assumptions such as lossless
system and purely transverse fields [18, 19]. However, for a guided mode in a material with loss,
these assumptions may not necessarily be valid [20].

The NLS equation is derived from first principles in the special case of degenerate four-wave
mixing [21]. The presented model avoids assumptions about polarization and the plane-wave
approximation while accommodating discontinuities in the permittivity. This makes it universally
applicable to all waveguides, especially well-suited for heterogeneous structures [22–24]. In
addition, the NLS equation is typically derived assuming the existence of the optical Kerr
effect [25], whereas in this work the effect follows directly from the NLS equation. The bright
soliton solution of the NLS equation is presented, from which a more general expression for
the group index is found, which depends on both the dispersion and the mode field patterns.
The presented derivation of the Kerr effect differs from existing literature in that the nonlinear



phase shift is proportional to the optical power instead of the intensity. This is a more relevant
and convenient quantity in integrated photonics, since the optical intensity in waveguides varies
significantly over the cross-section. The presented model leads to a compact expression for the
Kerr coefficient given by the third-order nonlinear tensor and the mode profile. As the waveguide
modes are readily simulated in available software, the presented formalism is a powerful tool for
optical engineers to better design generated nonlinear phase shifts. To provide verification and
an example of how this formalism can be used, examples are provided with silicon nitride Si3N4
based on previous studies.

2. Chief equation and NLS equation

The complex wavenumber is expressed as:

𝑘 = 𝛽 + 𝑖𝛼/2 = 𝑛𝜔/𝑐 , (1)

where 𝛽 is the wavenumber, 𝛼 the attenuation coefficient, 𝑛 is the effective refractive index of the
relevant mode at the carrier frequency 𝜔/(2𝜋) , and 𝑐 is the speed of light in vacuum.

The complex electric field is decomposed as [26]:

®E = 𝑒𝑖𝜑A (𝑧, 𝑡) ®𝔢 (𝑥, 𝑦) , (2)

where 𝜑 = 𝑘𝑧 − 𝜔𝑡. The complex vector ®𝔢 is the electric mode profile, which is independent
of the longitudinal 𝑧-direction. The complex function A is unitless and accounts for coupling
between modes, as well as additional time dependence. This can be modeled through Fourier
decomposition at different Fourier frequencies Ω/2𝜋 . The modes are normalized with the
following parameter [27]:

𝑁 ≡ 1
2

∬
R2

(
®𝔢 × ®𝔥∗

)
· 𝑧 d𝑥 d𝑦 , (3)

where ®𝔥 is the magnetic mode profile and the integration extends over the transverse plane of
the waveguide. The mode profiles and the effective index are found by solving the dispersion
relation [28]. The A function is then found by solving the chief equation, which is introduced
now. It involves the following quantity:

𝐾 (Ω) ≡ 1
4𝜇0𝜔𝑁

∬
R2
𝛾2 (Ω) ®𝔢 · ®𝔢∗ d𝑥 d𝑦 , (4)

where 𝜇0 is the vacuum permeability, and the gamma factor 𝛾 is related to the material refractive
index 𝑛mat via:

𝛾(Ω) = Ω 𝑛mat (Ω)/𝑐 . (5)

The 𝐾 parameter can be Taylor expanded around 𝜔:

𝐾 (Ω) ≈ 𝐾 (𝜔) + (Ω − 𝜔)𝑘1 +
∞∑︁

𝑚=2

(Ω − 𝜔)𝑚
𝑚!

𝑘𝑚, (6)

with:
𝑘1 ≡ d𝐾

dΩ

����
𝜔

, 𝑘𝑚 ≡ d𝑚𝐾
dΩ𝑚

����
𝜔

. (7)

In the presence of dispersion, nonlinearity, and a finite value of attenuation, the A function is
found by solving:

𝜕𝑧A + 𝑘1𝜕𝑡A = 𝑇 + 𝑖
∞∑︁

𝑚=2
𝑘𝑚

(𝑖𝜕𝑡 )2

𝑚!
A. (8)



This chief equation is derived in Supplement 1. In the special case of continuous-wave (cw)
operation, (8) reduces to the equation reported in [29]. The term 𝑇 accounts for the nonlinear
interaction and is defined as:

𝑇 ≡ 𝑖𝑒−𝑖𝜑

4𝜔𝑁

∫ ∞

−∞
Ω2𝑒−𝑖Ω𝑡

∬
R2

[ ®̃P (NL) (Ω) · ®𝔢∗ d𝑥 d𝑦
]

dΩ , (9)

where ®̃P (NL) is the Fourier component of the nonlinear polarization and depends on the nonlinear
effect of interest.

Degenerate four-wave mixing is now considered, for which:

®̃P (3) (Ω) = 3𝜀0𝛿(Ω − 𝜔)𝑒−𝛼𝑧𝑒𝑖𝑘𝑧A |A|2 𝐶®𝑣, (10)

where 𝜀0 is the vacuum permittivity, 𝐶 is the third-order nonlinear tensor that has been reduced
by assuming Kleinmann symmetry [30] and ®𝑣 is a complex 10-row vector that involves the
components of the electric mode profile. These quantities are used in the definition of a unitless
coupling coefficient:

𝜅 ≡ 𝑐𝜀0
4𝑁

∬
R2
(𝐶®𝑣) · ®𝔢∗ d𝑥 d𝑦 . (11)

For amorphous materials, the 𝐶 tensor contains only one independent coefficient (𝑐11), and [31]:

(𝐶®𝑣) · ®𝔢∗ = 𝑐11
3

[ (
®𝔢 · ®𝔢

)2 + 2
(
®𝔢 · ®𝔢∗

)2
]
. (12)

Using (10) and (11) the term (9) simplifies to:

𝑇 = 𝑖Γ𝑒−𝛼𝑧A |A|2 , (13)

where:
Γ ≡ 3

𝜔

𝑐
𝜅. (14)

Inserting (13) into (8):

𝜕𝑧A + 𝑘1𝜕𝑡A = 𝑖Γ𝑒−𝛼𝑧A |A|2 + 𝑖
∞∑︁

𝑚=2
𝑘𝑚

(𝑖𝜕𝑡 )𝑚
𝑚!

A. (15)

Relation (15) is a more general version of the nonlinear Schrödinger equation [32] that rigorously
includes loss and the vectorial nature of the modes. This contrasts with derivations found in
textbooks [25] where the longitudinal component of the electric field is neglected, and where the
system is assumed lossless.

2.1. Temporal solitons

In the case where 𝑘𝑚 = 0 for 𝑚 > 2, the following function is an exact solution to (15):

A(𝑧, 𝑡) = A0𝑒
𝐺𝑧

/
cosh ( 𝜏/𝜏0 ) , (16)

with the retarded time 𝜏 ≡ 𝑡 − 𝑘1𝑧, a complex amplitude A0, a characteristic time 𝜏0 and a
complex phase 𝐺. These parameters must satisfy the following conditions:

|A0 |2 = − 𝑘2

Γ𝜏2
0
, (17)



and:
𝐺 = −𝑖 𝑘2

2𝜏2
0
. (18)

A pulse given by (16) does not vary in shape. This is known as a temporal soliton [33–35].
The group velocity is defined as the speed of a pulse envelope. From (16) and the definition of

𝜏, it is clear that 𝑘1 is related to the group velocity 𝑣g by:

𝑘1 = 1/𝑣g. (19)

From (7), 𝑘2 relates to the group-velocity dispersion (GVD). Equation (17) imposes that the
sign of 𝑘2 should be opposite to the sign of 𝜅 (seen from (14)). For bright solitons, a negative
𝑘2 results in anomalous dispersion, and a positive 𝜅 [36]. If there is zero attenuation, these
conditions also imply that 𝜏0 is real. Hence, 𝜏0 represents the temporal width of the pulse.

2.2. Group index

From (7) and (19), the group index can be found from:

𝑛g ≡ 𝑐/𝑣g = 𝑐
d𝐾
dΩ

����
𝜔

. (20)

This expression seems to be more general than the common expression [37]:

�̄�g = 𝑛 + 𝜔 d𝑛
d𝜔

. (21)

Both expressions (20) and (21) are compared in Fig. 1 by plotting the error:

𝜖 ≡ (�̄�g − 𝑛g)
/
�̄�g . (22)

𝑛g and �̄�g are found from simulations of waveguides made from Si3N4 and GaAs. Both
structures are enclosed in SiO2 cladding. As the waveguide thickness increases, the mode
confinement increases, converging towards a homogeneous waveguide. The simulations are made
with a 2 µm wide waveguide with a varying thickness (the Si3N4 waveguide is not simulated
with a thickness below 100 nm, as the mode becomes highly unconfined). Values found from
(21) are in general higher with a finite difference found in the third digit, showing an excellent
match between the two expressions. The common expression (21) has been found to match well
experimentally [38], giving us confidence in the validity of the presented formalism.

3. Optical Kerr effect

An important implication of the NLS equAn important implication of the NLS equation is the
optical Kerr effect. Under continuous-wave (cw) excitation, the NLS equation (15) reduces to:

𝜕𝑧A = 𝑖Γ𝑒−𝛼𝑧A |A|2 . (23)

The A function can be expressed as:
A = 𝑒𝑖𝜙𝐴, (24)

with a phase 𝜙 and a norm 𝐴, such that:

𝜕𝑧A = 𝑒𝑖𝜙 (𝜕𝑧𝐴 + 𝑖𝐴𝜕𝑧𝜙). (25)

From (23) one deduces that 𝜕𝑧𝐴 = 0. Using the expression for the optical power:

𝑃 = 𝑁𝑒−𝛼𝑧𝐴2, (26)
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Fig. 1. Error (22) between the general expression (20) and the common expression (21)
for the group index. Simulations are performed for a Si3N4 waveguide (in red) and a
GaAs waveguide (in blue) as a function of the core thickness. Dashed lines show the
confinement factor.

one finds:
𝜕𝑧𝜙 =

Γ

𝑁
𝑃, (27)

with Γ from (14). The third-order nonlinearity induces a phase change. This is known as the
optical Kerr effect. One further defines a change of effective index by:

Δ𝑛 ≡ 𝑐

𝜔
𝜕𝑧𝜙 = 𝑛2𝑃, (28)

with the Kerr coefficient:
𝑛2 ≡ 3𝜅/𝑁 . (29)

Notice that (28) is proportional to the power. This contrasts with the classical result from bulk
optics where the optical Kerr effect induces a change of material refractive index proportional to
the intensity.

For a waveguide based on amorphous materials, (12) applies. For waveguides with a negligible
nonlinear contribution from the cladding, the coupling coefficient (11) reduces to:

𝜅 =
𝑐𝜀0
12𝑁

𝑐11𝛴, (30)

where:
𝛴 ≡

∬
R2

(
®𝔢 · ®𝔢

)2 + 2
(
®𝔢 · ®𝔢∗

)2 d𝑥 d𝑦 . (31)

The Kerr coefficient can then be expressed as:

𝑛2 =
𝑐𝜀0

4𝑁2 𝑐11𝛴. (32)

Using the mode profile to calculate a nonlinear effective refractive index has been already
reported, e.g. in Ref. [39]. The present formalism expands on this. Derived directly from the
NLS equation, (29) is more general and works for all material systems.



Table 1. 𝑐11 Calculation.

10−19 �̄�2
[m2/W]

Si3N4 dim.
(𝑤 × ℎ) [nm]

𝜆

[nm]
𝐴eff

[µm2]
10−7 𝑛2
[W−1]

10−21 𝑐11
[m2/V2]

Deposition
method

3.12±0.5 [42] 1650 × 700 1563 0.896 3.482 1.133±0.8 LPCVD
2.4 [41] 1000 × 500 1550 0.802 2.994 0.655 PECVD

2.61 [43] 1600 × 660 1550 0.974 2.680 0.760 LPCVD
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Fig. 2. Fundamental TE mode simulated at 1550 nm for a Si3N4 waveguide embedded in
SiO2. The waveguide core is 1000 nm wide and 500 nm thick, replicating the structure
from [41]. A clear non-zero 𝑧 component is visualized, motivating the derivation of the
NLS equation without assuming this to be 0. The contour lines indicate a drop of 25%.

3.1. Third-order nonlinear coefficient

The usual formalism of the Kerr effect uses an effective area 𝐴eff of the mode profile to have it
represented with respect to intensity [40]. To translate it to the presented formalism, the Kerr
coefficient �̄�2, given in the intensity formalism, can be divided by the effective area 𝐴eff .

This approach is used to find the 𝑐11 tensor element of amorphous Si3N4 from multiple
previous works by using the measured Kerr coefficient reported in the intensity formalism in
Si3N4 waveguides, see Table 1. Si3N4 is chosen as it has a high third-order nonlinearity [41], a
broad transparency range [42], and is an amorphous material for which (32) is applicable. The
waveguide structures in the investigated works are either a Si3N4 waveguide embedded by SiO2
cladding [41, 42] or a substrate of SiO2 with a Si3N4 waveguide embedded and air on top [43].

From these heterogeneous structures, the transverse integral in (11) is split into two parts, one
for the cladding and one for the waveguide. The total effective Kerr coefficient is a sum of the
effective Kerr coefficient stemming from both the waveguide core and the cladding:

𝑛2 =
3𝑐𝜀0

4𝑁2
(
𝛴wg + 𝛴clad

)
, (33)

with:
𝛴wg ≡

∬
wg

(
𝐶wg®𝑣

)
· ®𝔢∗ d𝑥 d𝑦 , (34a)

and:
𝛴clad ≡

∬
clad

(
𝐶clad®𝑣

)
· ®𝔢∗ d𝑥 d𝑦 . (34b)



The electric mode profiles ®𝔢 are obtained from mode simulation, leaving the 𝑐11 tensor element
for each material as the unknown variables. Using existing values of 𝑐11 for SiO2 of 0.389 ×
10−22 m2/V2 [44], 𝑐11 for Si3N4 can be found.

In literature sources where the effective area is not provided [41,42], it is instead found from
mode simulations using the provided waveguide geometries in EMode [45]. All three papers
considered the fundamental TE mode. The simulated mode profiles have waveguide confinement
of 70-90%, with an evanescent field extending into the cladding. As an example, the mode profile
of the waveguide from [41] is plotted in Figure 2. With low waveguide confinement, using a
model that allows for heterogeneous structures becomes necessary.

The 𝑐11 coefficient found from each literature source results in a value for Si3N4:

𝑐11 = 0.849 × 10−21 m2/V2. (35)

Not all sources provided uncertainties for their measurements, preventing error estimation. The
variations in values can be a result of the manufacturing process, as the flow ratio during chemical
vapor deposition (CVD) has been shown to modify the stoichiometry of SiN films [46, 47]. The
high uncertainty on the measurements from [42], and the resulting high uncertainties found for
the nonlinear tensor elements, are also seen in other materials, such as barium borate (BBO) [48].

4. Discussion

The presented NLS equation for integrated photonics differs from the currently accepted
derivations in multiple aspects. In particular, it avoids a series of assumptions such as plane
wave propagation, the magnitude of the longitudinal component along 𝑧, the existence of the
optical Kerr effect, and the magnitude of the nonlinear effects. Lastly, the derivation is conducted
using the complex wavenumber ®𝑘 , which includes a finite value of attenuation through the entire
derivation. By including the attenuation through the entire derivation, the resulting chief equation
and NLS equation give insight into how attenuation affects nonlinear mode coupling. Nonlinear
effects such as two-photon absorption, stimulated Raman scattering, and stimulated Brillouin
scattering are not explicitly included in the derivation on the NLS equation, but could, along
with other nonlinear effects, be included in ®̃P (NL) in the chief equation, (8), or in the attenuation
coefficient.

As the presented explicit formula for the group index, (20), shows good coincidence with the
conventional expression, (21), our confidence in the validity of the presented formalism is very
high. Having an explicit formula for the group index, and therefore GVD, provides more insights
into how to engineer these quantities to desired values, e.g. normal or anomalous dispersion.

The optical Kerr effect given by optical power is optimal for higher-order modes, where the
effective area is a bad representation of the intensity. Two different modes can exhibit the same
effective area, but a non-fundamental mode can achieve a substantially higher peak intensity,
increasing the Kerr effect. Power is also used more in a laboratory setting, and hence a more
convenient quantity for calculations. As the model allows for heterogeneous waveguides, its
strength is apparent when a significant part of the mode profile leaks into the cladding/substrate,
as in thin waveguides, leading to multiple contributions to the generated phase shift. The
contributions are accounted for in (11) by splitting the integral into as many terms as there are
nonlinear contributions, as done in the presented example. Combined with the presented method
for calculating 𝑐11, the expression for the Kerr coefficient given in this paper will allow for
better predictions in the design of devices utilizing the Kerr effect, such as all-optical switches.
The limiting factor for the accuracy of the model now becomes the large uncertainties in the
𝐶 tensor elements, especially for non-amorphous materials with multiple independent tensor
elements [48, 49].



5. Conclusion

This study introduces a novel formalism for describing nonlinear integrated photonics, derived
from a generalized chief equation. The resulting nonlinear Schrödinger equation is applied to the
case of degenerate four-wave mixing, revealing a bright soliton solution. The NLS equation is used
to derive a more general formula for the group index, providing a more accurate representation of
integrated photonics compared to conventional expressions. Moreover, the optical Kerr effect is
expressed in terms of optical power, yielding a Kerr coefficient that depends explicitly on the
waveguide mode and power. The application of this formalism is demonstrated by calculating the
relevant nonlinear tensor coefficient for Si3N4. This study enhances understanding of nonlinear
effects in waveguides and offers practical tools for optical engineers in predicting nonlinear
effects, especially nonlinear phase shifts.
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