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Abstract

This research investigates the application of machine learning for diagnosing COVID-19 from chest X-rays. We
analyze various popular architectures, including efficient neural networks (EfficientNet), multiscale vision transform-
ers (MViT), efficient vision transformers (EfficientViT), and vision transformers (ViT), on a dataset categorized into
COVID, lung opacity, normal, and viral pneumonia. While multiscale models demonstrate a tendency to overfit, our
proposed fine-tuning ViT model achieves significant accuracy, reaching 95.79% in four-class classification, 99.57% in
a clinically relevant three-class grouping, and similarly high performance in binary classification. Validation through
quantitative metrics and visualization solidifies the model’s effectiveness. Comparative analysis showcases the su-
periority of our approach. Overall, these findings showcase the potential of ViT for accurate COVID-19 diagnosis,
contributing to the advancement of medical image analysis.

Keywords: COVID-19, chest X-ray, deep learning, vision transformers (ViT), medical applications

1. Introduction

The current reliance on X-ray scans for diagnosing
illnesses necessitates a significant boost in efficiency,
especially during crises like pandemics. The lag of 1-2
days between scans and diagnoses can critically endan-
ger patients’ lives. Consider the impact of COVID-19,
with its 772 million cases and 7 million fatalities glob-
ally [1]. This pandemic triggered a 3.3 trillion dollar
deficit in 2020 and a 14.7% unemployment rate in the
US [2, 3]. Medical institutions grappled with surging
demand, leading to lengthened wait times and exacer-
bated challenges, including a disturbing 117% increase
in disparities in wait times [3, 4]. To overcome these
obstacles, a critical reevaluation of current diagnostic
approaches is imperative. Embracing innovative solu-
tions and integrating technology are key to enhancing
efficiency, minimizing delays, and optimizing health-
care outcomes.

Driven by the critical need for both speed and accu-
racy in medical diagnosis, researchers have turned to
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harnessing the transformative power of artificial intel-
ligence (AI), particularly advanced deep learning net-
works. This journey began with the implementation of
early but impactful classification models, such as ma-
chine learning (ML) approaches [5, 6, 7] and convo-
lutional neural networks (CNNs) [8]. These pioneer-
ing models laid the groundwork for tackling diagnostic
classification challenges, achieving promising levels of
accuracy in medical image analysis.

The core of this progress lies in translating the hu-
man brain’s neural architecture into mathematical mod-
els called neural networks. These networks go beyond
mere computation, aiming to capture the brain’s remark-
able abilities to learn and generalize, as explored by
Amato [9]. This initial research phase paved the way for
AI applications in healthcare, especially in automating
medical image analysis. However, the field has recently
made rapid strides, exemplified by powerful models like
EfficientNet [10]. This advanced CNN boasts a sophis-
ticated architecture and has achieved an impressive error
rate exceeding 90%. Working with 224x224x3 images,
EfficientNet dynamically adjusts its width, depth, and
resolution through convolutions. This showcases the
field’s commitment to both enhancing diagnostic accu-
racy and tackling the complexities of medical imaging.

AI’s impact on medical diagnostics extends beyond
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CNNs. Vision transformer (ViT) models [11] offer a
revolutionary approach, segmenting images and ana-
lyzing them through “transformer encoders”. Unlike
CNNs, ViT can distribute attention evenly across the
entire image, even comparing any two segments. This
unique ability lets ViT generate powerful feature repre-
sentations, crucial for classifying diverse medical con-
ditions like nuanced lung ailments. This dynamic evolu-
tion reflects the ongoing interdisciplinary effort to har-
ness AI for complex medical challenges. Ultimately,
these advancements aim to redefine healthcare practices
by setting new standards for efficiency and precision in
diagnosing illness.

While powerful models like EfficientNet and ViT ex-
cel in accuracy, their high computational complexity
presents a challenge. Training them on new datasets de-
mands extensive time and resources. To address this,
we propose a novel fine-tuned ViT model designed to
minimize training time while maintaining high accu-
racy. Our key contributions are:

1. We evaluate pre-trained models for the COVID-19
classification based on chest X-ray data.

2. We experimentally compare multiple mod-
els through simulations to identify the best-
performing model for the classification task.

3. We strategically refine and adapt the ViT model to
achieve a delicate balance of processing speed and
classification accuracy.

4. We present a visual comparison of the proposed
model’s predictions alongside those of several re-
cent models to highlight its enhanced effectiveness.

This paper takes a structured, three-pronged approach
to exploring advanced AI models for medical image
analysis. Section 2 meticulously examines existing
models, unveils our groundbreaking proposition, and
explains fine-tuning strategies like weight decay for op-
timal performance. Section 3 lays the groundwork for
a fair comparison by detailing data collection, model
configurations, and a thorough results analysis. Section
4 synthesizes the key takeaways, offering valuable in-
sights into the strengths and limitations of each explored
model, ultimately empowering researchers and health-
care professionals to understand how these innovative
AI tools can revolutionize medical diagnostics.

2. Methodology

This section introduces the model architectures used
in our experiment, as illustrated Fig. 1, and then delves
into the conceptual design and fine-tuning technique of

our novel ViT model, concluding with details of the
chosen evaluation methods.

2.1. Proposed ViT model

The ViT model stands apart from traditional convo-
lutional neural networks (CNNs) with its unique math-
ematical architecture and foundational blocks. It initi-
ates its processing by meticulously partitioning the in-
put image into patches of size P. These patches un-
dergo a rigorous linear projection, followed by flat-
tening, culminating in the formation of patch embed-
dings. To preserve the spatial relationships between
these patches, the model dynamically generates posi-
tional embeddings, Epos, during training, treating them
as learned parameters. The model subsequently merges
the linearly projected patch embeddings with these po-
sitional embeddings, and the resulting sum is diligently
fed into the encoder blocks, preceded by a crucial nor-
malization layer.

Epatches = [xclass, x1
pW, x2

pW, ..., xn
pW] + Epos (1)

where

• W is the linear projection metrics, Epos is the posi-
tion embedding;

• xclass is class token. It is a randomly initialized
array, used for storing accumulated information
across the entire image and also feeding into the
last layer for final classification.

The primary distinction between the ViT structure and
traditional CNN architecture lies in ViT’s extensive
global receptive field. Unlike CNNs, which focus on
local receptive fields by shifting its convolution kernels,
ViT focuses on the global receptive field, which means
ViT is capable of capturing relationships between dis-
tant (non-adjacent) patches within an image. This is
achieved through the linear layer within the encoder
block, which transforms the input into three outputs:
query (Q), key (K), and value (V), by multiplying the
input with three separate matrices: WQ, WK , and WV .
Subsequently, these outputs are processed through a
similarity function, enabling each patch to learn its re-
lation to other patches. This process, known as self-
attention (SA), allows a patch to consider information
from all other patches, thus capturing global dependen-
cies. Furthermore, ViT employs multiple parallel self-
attention mechanisms. These parallel operations are
concatenated and then multiplied by a learnable ma-
trix. This entire procedure is referred to as multi-headed

2



Figure 1: The structure of our proposed model.

self-attention (MSA), which enhances the model’s abil-
ity to focus on various parts of the input simultaneously,
thereby improving its representational power. They are
realized by:

z0 = Epatches (2)

Query (Q) = zn−1 ·WQ (3)
Key (K) = zn−1 ·WK (4)
Value (V) = zn−1 ·WV (5)

SA = softmax(
Q · KT

ES
) · V (6)

MSA = [SA1,SA2,SA3, . . . ,SAn] ·Wmetrics (7)

where zn−1 is the input of the encoder block. ES
stands for embedding size, which is the size of activa-
tions after patches are linearly projected. In the imple-
mented models, its size equals patch size× patch size×
image channels.

At the end of MSA, a residual connection is applied:

z‘ =MSA + zn−1 (8)

After MSA, a multilayer perceptron (MLP) which con-
tains two linear layers is applied to learn the local infor-

mation and the complexity. It also has a residual con-
nection at the output:

zn =MLP(LN(z‘)) (9)

where zn is the output of the encoder block, and LN
stands for layer normalization.

The output of MLP is then fed into the next encoder
block, except the last one. At the bottom, the output of
MLP goes inside a linear layer (also called MLP head)
in the pre-trained model, where the output of the linear
layer is adjusted to the same size or number of predic-
tion classes. The overall view of the ViT is shown in the
Algorithm 1.

2.2. Weight decay

Weight decay, or L2 regularization, is a critical
method that we use for fine-tuning our models. It adds
a penalty to the loss to avoid the weights having an up-
heaval change during updating:

Lossupdated(W) = Lossoriginal(W) + λWTW (10)

whereW is trainable parameters inside the model.
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Algorithm 1: Vision Transformer Workflow.

1 Input: Image I, Epos, xclass, αmlp ratio, n (number
of classes)

2 xpatches ← Flatten(Convolution(I, k, s))
3 x = [xclass; xpatches] + Epos

4 d = ( image size
patch size )2

5 Output: LinearLayer(x[xclass], d, n)
6 for i = 0 to number of encoders do
7 xnorm1 ← Normalize(x)
8 MHA (Attention):
9 q, k, v← LinearProject(xnorm, d, 3 × d)

10 xattn ← softmax(q, k) · v
11 xatten ← LinearProject(xattn, 3 × d, d)
12 Scaling and residual connection:
13 x′ ← LayerScaling(xattn) + x
14 MLP:
15 xnorm2 ← Normalize(x′)
16 x f c1 ←

ActivationGELU(LinearLayer(xnorm2, d, d ×
αmlp ratio))

17 x f c2 ← LinearLayer(x f c1, d × αmlp ratio, d)
18 x← LayerScaling(x f c2) + x′

19 return LinearLayer(x[xclass], d, n)

2.3. Experimented models

In our experiment, we employ four model archi-
tectures with pre-trained weights for transfer learn-
ing on the COVID-19 chest X-ray dataset. These in-
clude EfficientNet [12], enhanced multiscale ViT [13],
EfficientViT [14], and ViT [15]. The EfficientNet,
known for its computational efficiency and robustness,
is constructed using a series of inverted residual blocks
(MBConv blocks) [16], with varying layer configura-
tions. These configurations are optimized through a grid
search, limiting depth, width, and resolution scaling to
a constant factor, alpha. The increasing popularity of
transformer-based models, in time-series analysis has
spurred interest in similar structures in computer vision.
This trend is embodied in the ViT structure, the founda-
tional concept discussed later. In the experiment, we
implement three types of ViT structures: ViT, multi-
scale ViT (MViT), and EfficientViT. MViT realizes mul-
tiscale learning by learning on reduced-resolution ten-
sors in each level of the encoder. It incorporates a pool-
ing layer before the query, key, and value tensors. Ef-
ficientViT, similar to MViT, incorporates a multiscale
learning pyramid structure through the integration of
depthwise convolution, enabling the modification of
tensor resolution. Additionally, EfficientViT replaces

the softmax function in the similarity function with the
ReLU function and employs several MBConv blocks
ahead of its transformer block, significantly improv-
ing hardware computational efficiency. Each of these
state-of-the-art models has demonstrated exceptional
performance in classifying complex datasets, such as
ImageNet-21k.

3. Evaluation Results and Comparison

3.1. Evaluation methodology

To evaluate our model’s performance on the four-
class classification task, we leverage key metrics such
as accuracy, recall, precision, and F1 score, all of which
are grounded in the fundamental concepts of true pos-
itive (TP), true negative (TN), false positive (FP), and
false negative (FN). TP represents instances correctly
predicted as positive, TN indicates instances correctly
predicted as negative, FP signifies instances incorrectly
predicted as positive, and FN represents instances in-
correctly predicted as negative. These metrics collec-
tively offer a comprehensive assessment of a classifica-
tion model’s performance, considering correctness, sen-
sitivity, specificity, and the balance between precision
and recall.

Accuracy (A) =
T P + T N

T P + T N + FP + FN
(11)

Recall (R) =
T P

T P + FN
(12)

Precision (P) =
T P

T P + FP
(13)

F1 Score (F1) =
2 × T P

2 × T P + FP + FN
(14)

3.2. Data collection

The COVID-19 chest X-ray dataset used in this study
is sourced from the COVID-19 Radiography Database
[17, 18], comprises four distinct classes. It includes
3,616 COVID-19 positive cases, 10,192 normal cases,
6,012 lung opacity (non-COVID lung infection) cases,
and 1,345 viral pneumonia images, as illustrated in Fig.
2. For both training and evaluating models, the dataset
is shuffled and split into 80% for training, 10% for vali-
dation, and 10% for testing.
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Figure 2: COVID-19 Chest X-ray Dataset.

3.3. Model configuration
We employ transfer learning with existing pre-trained

models on the COVID-19 chest X-ray dataset. Follow-
ing fine-tuning that involves preprocessing methods, ad-
justments to learning rate, batch size, and weight decay,
our model is trained and tested using the settings out-
lined in Table 1. Additionally, the cross-entropy func-
tion served as the loss function, and AdamW and Adam
are utilized as optimizers for ViT and EfficientNet mod-
els, respectively.

3.4. Result analyzing
3.4.1. Training loss analysis

To assess the training performance of the models, we
conducted recognition simulations on the training and
validation datasets. The results obtained from Fig. 3
indicate that the convergence capability of the models

Table 1: Fine-tuning configurations.

Model Learning Rate Batch Size Weight Decay

EfficientNet-B0 1.00e-03 16 1.00e-05

EfficientNet-B5 1.00e-03 16 1.00e-05

EfficientViT-B3 2.00e-06 32 1.00e-02

MViT2 2.00e-06 16 1.00e-02

ViT-Base-patch8 2.00e-06 16 1.00e-01

ViT-Base-patch16 1.00e-05 64 1.00e-02

ViT-Base-patch32 1.00e-05 64 1.00e-01

Proposed model 1.00e-05 64 5.00e-03

is quite effective, with the minimum value of valida-
tion loss often found in early epochs. Models based on
EfficientNet and ViT show relatively promising results,
with loss values typically fluctuating in the range of 0 to
0.2. However, a notable result is observed with the ViT-
P16 model and our proposed model, which exhibit sig-
nificantly lower validation loss. Moreover, our model
demonstrates lower training loss, indicating higher ac-
curacy achieved during the training process.

3.4.2. Testing performance
After the training process, we proceed with testing on

the test set, evaluating the results based on the specified
criteria, and finally comparing them with existing mod-
els. First, we observe that the training loss accurately
reflects the achieved accuracy when the experimental
models reach a high accuracy score (around 94%) as
shown in Table 2 and Fig. 4. However, this is also
balanced by the training time per epoch; models with
higher accuracy often require more resources to train as
the complexity of the model increases. For our model,
which is based on ViT but with detailed and specific ad-
justments, we remove unnecessary layers, and retained
crucial layers for feature extraction, reducing the model
size. This, coupled with reduced training time (265.79
s), result in our model achieving the highest accuracy of
95.79%. On the other hand, when delving deeper into
the confusion matrix of the proposed model, as depicted
in Fig. 5, we can clearly discern the model’s effective-
ness. The most crucial class, COVID-19, achieves an
accuracy of 98.58% based on T P

FN . However, the class
‘lung opacity’ exhibits suboptimal performance, which
can be attributed to its relatively large image count and
potential challenges posed by image quality in the clas-
sification task.

To provide a more comprehensive understanding of
the advancements made by our proposed model, we un-
dertook a thorough comparison of its accuracy with ex-
isting research studies, as shown in Table 3. A pre-
dominant theme in much of the existing literature has
been the accurate delineation of cases into COVID-19
and non-COVID-19 categories, essentially constituting
a binary classification task. Remarkably, the highest re-
ported accuracy in these studies reached 95.11%. How-
ever, our focus on a specific class within the classifica-
tion spectrum yielded exceptional results. When honing
in on the task of classifying a singular class, our model
demonstrated an outstanding accuracy of 99.57%. This
achievement signifies the model’s remarkable capability
in precisely identifying instances belonging to the criti-
cal class, in this case, COVID-19.

Moreover, a comparative analysis was conducted

5



Figure 3: Train and validation losses during training process.

Table 2: Experimented models comparison.

Model Accuracy (%) Recall (%) Precision (%) F1 score (%) Training time per epoch (s)

EfficientNet-B0 94.18 98.59 98.31 98.45 90.31

EfficientNet-B5 93.94 99.43 97.23 98.32 286.26

EfficientViT-B3 94.51 98.59 98.03 98.31 276.45

MViT2 94.41 96.88 97.71 97.29 492.49

ViT-Base-patch8 95.41 99.15 98.59 98.87 1652.94

ViT-Base-patch16 95.22 98.31 98.86 98.58 313.94

ViT-Base-patch32 93.71 98.29 97.47 97.88 89.77

Proposed model 95.79 98.58 98.87 98.73 264.79

with studies that involved the classification of multiple
classes. In this scenario, our proposed model continued
to exhibit noteworthy performance, achieving an accu-
racy of 95.79%. This result underscores the versatility
and effectiveness of our model in handling more com-
plex classification tasks encompassing multiple classes.

3.4.3. Testing visualization
In addition to evaluating the accuracy, we lever-

age the gradient class activation map (Grad-CAM) to
visually explore our model’s reasoning in classifying
COVID-19 chest X-rays. This technique generates
heatmaps highlighting image regions most influential
for specific class predictions. Grad-CAM meticulously

Table 3: Comparison with existing studies.

Prediction Model Classification Type Accuracy (%)

Basic CNN [19] Binary 93.99

Cycle GAN [20] Binary 93.75

DenseNet201 [17] Binary 95.11

DenseNet121 [21] Three-Class 93.5

Resnet50-BiLSTM [22] Three-Class 98.51

This work
Binary 99.57

Three-Class 99.57

Four-Class 95.79
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analyzes gradients between the target class score and
features extracted by a convolutional layer. Back-
propagating these gradients yields neuron importance
weights, which quantify each feature’s contribution to
the prediction. These weights then guide the creation
of a weighted combination of feature maps, followed
by ReLU activation to emphasize positive influences.
Ultimately, the resulting Grad-CAM heatmap visually
pinpoints areas crucial for the model’s decision. Upon
providing the COVID-19 image and its specified la-
bel, the generated Grad-CAM visualization, as shown
in Fig. 6, offers valuable insights into our model’s rea-
soning. Comparing the original image (left) with the
Grad-CAM heatmap (right) reveals that the model effec-
tively concentrates its attention within the lung region,
pinpointing the area of COVID-19 infection.

Figure 4: Experimented models performance comparison.

Figure 5: Confusion matrix for our proposed model.

Figure 6: Grad-CAM view from our proposed model on the COVID
image.

4. Conclusion

This study explores the effectiveness of AI-based
models for diagnosing COVID-19 from chest X-rays.
We meticulously compare diverse architectures, includ-
ing EfficientNet, MViT, EfficientViT, and ViT-based
models, on a carefully categorized dataset to glean cru-
cial insights. While multiscale models exhibit tenden-
cies towards overfitting, our proposed fine-tuned ViT
model (FT-ViT) emerges as a top performer, achiev-
ing exceptional accuracy rates. Notably, it attains
95.79% accuracy in four-class classification, a strik-
ing 99.57% in a clinically relevant three-class group-
ing, and consistently high performance in binary scenar-
ios. Stringent validation, employing both quantitative
metrics and visualizations, solidifies FT-ViT’s effective-
ness. This comparative analysis across architectures
highlights the superiority of our approach. In conclu-
sion, this study not only showcases FT-ViT’s potential
for accurate COVID-19 diagnosis but also contributes
meaningfully to medical image analysis advancements.
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