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Abstract

Respiratory infectious diseases (e.g., COVID- 19) have brought huge damages to human society, and the accurate prediction of

their transmission trends is essential for both the health system and policymakers. Most related studies concentrate on epidemic

trend forecasting at the macroscopic level, which ignores the microscopic social interactions among individuals. Meanwhile,

current microscopic models are still not able to sufficiently decipher the individual-based spreading process and lack valid

quantitative tests. To tackle these problems, we propose an exposure-risk-based model at the microscopic level, including 4

modules: individual movement, virion-laden droplet movement, individual exposure risk estimation, and prediction of new

cases. First, the front two modules reproduce the movements of individuals and the droplets of infectors’ expiratory activities.

Then, the outputs are fed to the third module for estimating the personal exposure risk. Accordingly, the number of new cases

is predicted in the final module. Our model outperforms 4 existing macroscopic or microscopic models through the forecast

of new cases of COVID-19 in the United States. Specifically, mean absolute error, root mean square error and mean absolute

percentage error by our model are 2454.70, 3170.51, and 3.38% smaller than the minimum results of comparison models,

respectively. In sum, the proposed model successfully describes the scenarios from a microscopic perspective and shows great

potential for predicting the transmission trends with different scenarios and management policies.
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ABSTRACT

Respiratory infectious diseases (e.g., COVID-19) have brought huge damages to human society,
and the accurate prediction of their transmission trends is essential for both the health system and
policymakers. Most related studies focus on epidemic trend forecasting at the macroscopic level,
which ignores the microscopic social interactions among individuals. Meanwhile, current microscopic
models are still not able to sufficiently decipher the individual-based spreading process and lack
valid quantitative tests. To tackle these problems, we propose an exposure-risk-based model at
the microscopic level, including 4 modules: individual movement, virion-laden droplet movement,
individual exposure risk estimation, and prediction of transmission trends. Firstly, the front two
modules reproduce the movements of individuals and the droplets of infectors’ expiratory activities,
respectively. Then, the outputs are fed to the third module to estimate the personal exposure risk.
Finally, the number of new cases is predicted in the final module. By predicting the new COVID-
19 cases in the United States, the performances of our model and 4 other existing macroscopic or
microscopic models are compared. Specifically, the mean absolute error, root mean square error, and
mean absolute percentage error provided by the proposed model are respectively 2,454.70, 3,170.51,
and 3.38% smaller than theminimum results of comparisonmodels. The quantitative results reveal that
our model can accurately predict the transmission trends from a microscopic perspective, and it can
benefit the further investigation of many microscopic disease transmission factors (e.g., non-walkable
areas and facility layouts).

1. Introduction
The unexpected outbreak and rapid spread of Corona

Virus Disease 2019 (COVID-19) have damaged the world
tremendously, and brought a profound influence on various
fields such as medicine, industry, energy (Anand et al., 2021;
Bontempi et al., 2020; Sharifi et al., 2021; Wang et al.,
2020). At present, a growing number of countries have
moved into a post-pandemic phase, i.e., the overall spread
of COVID-19 has been controlled, but intermittent small-
scale outbreaks still occur(Jin et al., 2021). COVID-19 is a
respiratory infectious disease (RID) caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) (Zhang
et al., 2022a). RID poses a huge threat to the population and
public health, and recent studies have found that the loss
of life expectancy due to RID stood at 1.29 years in 2017
globally (Huang and Guo, 2021). To live with the ongoing
challenges by COVID-19 or the re-emergence of other respi-
ratory viral infections, people must raise awareness and take
measures for infection prevention and control in daily life
(Coccia, 2021; Zhu and Zhu, 2021).

∗Corresponding author
cuizw3@mail2.sysu.edu.cn (Z. Cui); caiming@mail.sysu.edu.cn (M.

Cai); xiaoyao9@mail.sysu.edu.cn (Y. Xiao); zhuzheng89@zju.edu.cn (Z.
Zhu); mofeng@umd.edu (M. Yang); chengb36@mail.sysu.edu.cn (G. Chen)

ORCID(s): 0000-0002-9438-7431 (Y. Xiao)

Various factors that affect the transmission of RIDs can
be grouped into 6 main categories (see Table 1): virus-
related factors, population characteristics, economic factors,
scene factors, environmental and geographical factors, pre-
vention and control measures. It is important to examine
the impacts of these factors on transmission, which are
beneficial for disease prevention and control. For example,
non-pharmaceutical interventions (NPIs) (e.g., maintaining
safe social distance (Flaxman et al., 2020; Lai et al., 2020);
entry limitation policy (Xiao et al., 2021)), which are in the
last category, play essential roles in stopping the spread of
respiratory viral infections. NPIs can efficiently respond to
emerging epidemics, and they are long-term approaches that
interfere with people’s social behavior (Duives et al., 2021;
Perra, 2021). In a public place, it is necessary to find the
most critical NPIs, which can effectively reduce the number
of infected cases. Thus, to help evaluate factors’ impacts,
a model that can accurately describe diseases’ transmission
process is necessary (Ren et al., 2020).

Mathematical epidemiological models are helpful to
decipher the complex transmission process of epidemics
(Araya, 2021; Hosseini et al., 2020), which generally in-
cludes macroscopic level and microscopic level models
(Xiao et al., 2021). At the macroscopic level, researchers
focus on the infection and recovery process of disease among
the population (Earn, 2008), and have proposed many com-
partmental models and computational intelligence methods:
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Table 1
There are some factors that affect the transmission of RIDs.

Categories Examples and References

Virus-Related Factors Strains of the Virus (Abu-Hammad et al., 2020)
Population Characteristics Age (Abu-Hammad et al., 2020); Genetic Makeup of Populations Blood Groups

(Abu-Hammad et al., 2020)
Economic Factors Gross Domestic Product (GDP) (Zhang et al., 2021); Commercial Trade (Bontempi,

2022; Bontempi and Coccia, 2021; Bontempi et al., 2021)
Scene Factors Facility Layouts (Xiao et al., 2021); Inter-Provincial Travels (Ahmadi et al., 2021)
Environmental and Geographical Fac-
tors

Air Pollution (Conticini et al., 2020; Lembo et al., 2021; Urrutia-Pereira et al., 2020;
Wu et al., 2021); Solidwaste Generated by Infected Individuals (Al Huraimel et al.,
2020); Sunspot Numbers (Nasirpour et al., 2021)

Prevention and Control Measures NPIs, e.g., Maintaining Safe Social Distance (Flaxman et al., 2020; Lai et al., 2020),
Entry Limitation Policy (Xiao et al., 2021); Vaccines (Daniels et al., 2021; Verma
et al., 2021); Statins and Other Medicines (Davoudi et al., 2021); Virus Detection
Technologies (Li et al., 2021; Zhang et al., 2022b)

in the former, there are susceptible–infected–removed, or re-
covered (SIR) model (Kermack and McKendrick, 1927), the
susceptible–infected–recovered–susceptible (SIRS) model
(Hethcote, 1976), and their extended modifications (Black
and McKane, 2010; Cross et al., 2007; Liu et al., 1987); in
the latter, there are the Long Short-Term Memory (LSTM)
method (Aragão et al., 2021), the hybrid intelligent approach
based on fractal theory and fuzzy logic (Castillo and Melin,
2020), the multiple ensemble neural network model with
fuzzy response aggregation (Melin et al., 2020), and others.
Although the macroscopic models have established the
research discipline of mathematical epidemiology, most of
them need continuously updated data or large amount of
data to obtain optimized system parameters, and they may
ignore details in modeling the social interactions among
individuals. Therefore, macroscopic approaches can be in-
sensitive in evaluating NPIs or require strong assumptions to
overcome the incapability. Fortunately, microscopic models
address these limitations to some extent because they focus
on the disease spreading between individuals. However,
current microscopic models are still not able to sufficiently
decipher the individual-based spreading process and lack
valid quantitative tests.

In this study, an exposure-risk-based model at the micro-
scopic level is developed, and the principal contributions can
be described as follows.

∙ First, the movements of individuals as well as the
dynamics of droplets are separately modeled and cou-
pled to calculate the personal exposure risk. An inte-
grated transmission process of the RID at the individ-
ual level is formulated.

∙ Second, a bridge between the macroscopic epidemic
transmission data and our microscopic model at in-
dividual level is built. As a result, our model can
be quantitatively calibrated and validated through the
macroscopic data, such as the number of new cases.

∙ Third, based on the proposed model, the influences of
factors, that affect the model input values or scenarios

(e.g., non-walkable areas and facility layouts), can be
quantitatively evaluated.

The rest of the paper is organized as follows. Section
2 is the review of previous studies. Section 3 introduces
our model, and Section 4 manifests applications of the
model based on real-world data in the COVID-19 of the
United States. Section 5 presents the comparison of different
models. In Section 6, discussions and future perspectives
are reported. Finally, we summarize this paper and present
suggested directions for future work in Section 7.

2. Literature Review
There are some microscopic models forecasting the

spreading trends of RIDs. For example, previous scholars
have estimated individual-level mobility due to daily activi-
ties (such as work, study, or shopping) (Eubank et al., 2004).
In these models, RIDs can transmit between individuals at
one specific location and spread between locations due to
mobility. It should be noted that the location mentioned
here is a specific area likes a school or shopping mall, not
a physical location of the indivi dual. Unlike these activity-
based models, some studies focus on the transmission of res-
piratory viruses, and they have constructed the Well-Riley
models and aerosol infectious dose-responsemodels (Bazant
and Bush, 2021; Kriegel et al., 2020). These models assume
that infectious particles are distributed homogeneously,
which results in the same infection risks among individuals
regardless of their physical distance from the infector. Re-
cent studies have considered the spatiotemporal distribution
of pathogens in the environment under different transmission
routes, and the personal exposure risk is determined based
on the duration and distance of infectious contacts (Arav
et al., 2021; Gao et al., 2021). Nevertheless, transmission is
modeled as a static event between infectors and susceptible
individuals in the aforementioned models. Thus, they cannot
describe the epidemic spreading process with time-varying
individual physical distances during individual movements.

Cui et al. : Preprint submitted to Elsevier Page 2 of 14
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Fig. 1: The flowchart of our model.

Several studies have integrated pedestrian dynamics into
epidemic spreading models to tackle the issue (Kim and
Quaini, 2020; Ronchi and Lovreglio, 2020). Indeed, pedes-
trian dynamics are suitable for describing individual deci-
sions and actions in mass gathering scenarios. Pedestrian-
based epidemic spreading models are composed of the indi-
vidual movement module (e.g., the social force model (Xiao
et al., 2021), the nomad model (Duives et al., 2021), a social
force model coupled with an Eikonal equation (Abdul Salam
et al., 2021)) and the disease transmission module (e.g.,
the model based on the cut-off distance (Xiao et al., 2021),
the QVEmod (Duives et al., 2021), the non-local SEIS
contagion model (Abdul Salam et al., 2021)). The former
module simulates the general individual crowd movement
and outputs time series of personal positions. Based on the
outputs from the first module, the second module evaluates
the disease transmission risk from the infectors to suscepti-
ble individuals.

However, previous pedestrian-based epidemic spreading
models ignored critical factors for simplification, e.g., the
exposure risk is a fixed term when the individual is exposed
to the infection risk area (Xiao et al., 2021), and they po-
tentially overestimate or underestimate the number of high-
risk people. Besides, only limited situations are analyzed,
such as the cruise (Fang et al., 2020), the supermarket (Parisi
et al., 2020), and the academic building (Romero et al.,
2020). Moreover, different scenarios have various scales
and geometries, e.g., tables, chairs, and other furnish and
decorate in a restaurant (10 m × 9 m) (Duives et al., 2021).
These variable settings affect the virus transmission risks
and bring more model inputs and computation costs. On
the other hand, a general public place can represent all
scenes, e.g., an empty room of 10 m × 9 m represents a
restaurant or store of the same scale without considering
the indoor geometries. Meanwhile, most outputs of existing
microscopic-level models are hard to verify due to the lack
of actual data, such as the personal exposure risk and the
number of high-risk exposed people. Then, these models
are used directly or after the qualitative analysis but lack

quantitative tests. Hence, building a model for a general
public place that can be validated and applied to all scenes
is necessary and practical.

3. Model
To construct the microscopic level exposure-risk-based

model, we should define the exposure risk of individuals.
RIDs are transmitted through viral droplets produced by
respiratory activities such as breathing, talking, coughing,
and sneezing. Here, the typical symptom of most RIDs, i.e.,
coughing, is considered in our model. Thus, we define the
instantaneous personal exposure risk as the maximal mass of
virion-laden droplets produced by a typical cough exposed
to infectors at a certain moment. Then, the personal exposure
risk can be calculated by directly summing up instantaneous
personal exposure risks during the dwell time.

The components of our model are shown in Fig. 1. There
are three important parameters (i.e., number of individuals
C total, number of infectors among individualsC inf, andmean
dwell time of individuals T dwell) as the input. Besides, the
output includes not only the result of existing pedestrian-
based spreading models (i.e., number of high-risk exposed
people C risk), but also the key outcome (i.e., number of new
cases Cnew). In addition, personal exposure risk is obtained
as the intermediate output.

3.1. Individual Movement Simulation
In this part, the movements of individuals are mod-

eled within a general public place. First, we simulate the
space and individuals of the reality. Second, the pedestrian
dynamic model (i.e., the social force model) to reproduce
individuals’ movements is introduced. Finally, time series
of individual positions can be estimated for Section 3.3.

Herein, the simulation space is a general place without
obstacles or other non-walkable areas, but it has boundaries
like an empty indoor room.Whether individuals frommodel
inputs are infected or not, their movement modelings are the
same, as shown in Fig. 2, where each person is represented as
a circle with a radius rped . Thus, when we model the motion
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𝒆𝑖 𝑡

Fig. 2: The sketch map of the individuals moving in the
simulation space.

of one person during the dwell time, the movements of all
others can be determined in the same way.

The social force model is one of the most widely used
microscopic models, and it is also the basic model to simu-
late pedestrian dynamics in commercial software (e.g., PTV-
Vissim, MassMotion) (Bouchnita and Jebrane, 2020a,b).
Hence, the social force model is applied here, and the move-
ment of individual i (with a mass of mi) at time t is driven
by the resultant force f i(t) as

f i(t) = f drv
i (t) +

∑

inear
f ped
i,i near (t) +

∑

w
f obs
i,w(t), (1)

where f drv
i (t) reflects the desire of individual i to maintain

a certain walking speed v0i towards a certain direction in a
relaxation time �i; f

ped
i,i near (t) is the interaction force between

the objective individual i and the neighboring individual
inear; f obs

i,w(t)means the instant interaction force between the
objective individual i and the wall/obstacle w. More details
about the social force model can be found in the literature
(Chraibi et al., 2011; Helbing andMolnar, 1995; Kretz et al.,
2018).

As the motion of individual i is driven under Newton’s
second law with a second-order dynamics function, the
velocity vi(t) and the unit direction vector ei(t) of individual
i is determined in

dvi(t)ei(t)
dt

=
f i(t)
mi

, (2)

based on which the location pi(t) of individual i is finally
obtained as

dpi(t)
dt

= vi(t)ei(t). (3)

In addition, to simulate the crowd movements, a ran-
dom walking process is set by adjusting the desired initial
direction e0i . Then, when individual i is close to hitting the
boundary, the model will force the person to change the
desired direction to any direction ebi that is away from the
boundary.

3.2. Cough Droplet Movement Simulation
Virion-laden droplet transmission of a typical cough

is modeled through Computational Fluid Dynamics (CFD)

Height

Tall 1.7 m

Mouth 1.5 m

Tall 1.4 m

Tall 2.0 m

0.6 m

3.0 m

Floor

Susceptible 

manikin A

Susceptible 

manikin B

Source 

manikin

𝑦

𝑧

(a)

𝑦
𝑧

𝑥

0
.3

 m

Inlet

(b)

Fig. 3: Schematic diagram of (a) the computational domain
with source and susceptible manikins, and (b) the numerical
simulation computational domain.

simulations within a closed environment. First, the compu-
tational domain and grids are simulated. Second, we choose
the appropriate methods and parameter settings from litera-
tures for the numerical simulation. Finally, after completing
the simulation with the commercial CFD solver ANSYS
Fluent release 2020 R2, time series of positions and masses
of each cough droplet can be determined for Section 3.3.

An infector is represented by a source manikin 1.70 m
tall, representing an average-sized human as Fig. 3(a) (Liu
et al., 2017). The mouth of the infector is 1.50 m from the
ground, and the mouth outflow is roughly horizontal. For
susceptible people whose height ranges from 1.40 m to 2.00
m, we take 1.20 m to 1.80 m as the breathing height area,
as shown in the blue area of Fig. 3(a). The computational
domain is in a cuboid shape and is illustrated by Fig. 3(b),
in which “x”, “y”, and “z” axes represent the lateral, ax-
ial (streamwise), and vertical directions, respectively. The
length of the computational domain in the “y” axis is set
to be 3.00 m to consider the scope of a cough fully. Now,
the blue area of Fig. 3(a) is the view of Fig. 3(b) along the
“x” axis. The inlet is a square with an area of 3.70×10−4
m2, representing the human mouth (Borro et al., 2021). The
center of the inlet is denoted by (0, 0, 0), which is also the
origin of the coordinate system. The computational domain
and grids are generated by using Gambit 2.4.6. The grid
resolution is 0.01 m, and the total number of computational
cells is approximately 1.80 million.
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To accurately estimate the consequences of the coughing
event, reliable modeling methods and settings of numer-
ical simulation are important. The transmission medium
of the cough is modeled as an incompressible ideal gas
with constant properties calculated at ambient conditions.
The flow field evolution of coughing is time-dependent, so
the simulations are conducted under a transient condition.
The gravitational acceleration is -9.81 m∕s2 along the “z”
axis, and the energy equation is required. Since the droplet
volume fraction is very low in the cough flow, the Eulerian-
Lagrangian method is used in this study (Gupta et al., 2010;
Zhu et al., 2006). According to previous study (Borro et al.,
2021), a time step size of 0.01 s is used, with 10 sub-
iterations. The total flow time of the transient simulation
is 15.00 s, which is enough to investigate the dynamic
characteristics of the droplets produced by coughing. More
detailed settings are determined based on literature (Aliabadi
et al., 2010; Bi, 2018; Chao et al., 2009; Duguid, 1946; Gao
and Niu, 2006; Zhang and Li, 2012; Zhang et al., 2017).

The droplet dispersion process in the computational
domain is obtained after the simulation. The results show
that the drop velocity increases with a larger diameter, and
the droplet can be suspended for a longer period when the
diameter is less than or equal to 1.00×10−5 m, as the same
in (Borro et al., 2021).

3.3. Individual Exposure Risk Estimation
In this part, we first give the mathematical presentation

of the instantaneous personal exposure risk. As mentioned
above, when the person and the cough droplets meet in the
same simulation place, the instantaneous exposure risk is
defined as the possible maximal mass of droplets suffered.
Then, based on the numerical simulation results of the
typical cough, we count the mass of droplets vary with the
time at several fixed distances planes, and analyze the data
distribution to determine the model function, which is the
final formula of the instantaneous exposure risk. Finally, the
total exposure risk during the visiting time for each person
is estimated.

It should be noted that, according to a few studies that
analyze the dispersion of cough-generated droplets in the
wake of a walking person (Li et al., 2020), the situation
can be more complicated when there are more individuals.
Besides, the direction of the cough is likely to be different
from that of the individual’s movement, so the impact of
walking on cough transmission is unpredictable. Therefore,
in this model, we assume that the infector j is stationary
when he/she starts the g-th cough in the position pstartj,g at time
tstartj,g . Then, cough droplets’ movements are only determined
by the physical distance from pstartj,g and the time interval from
tstartj,g .

All positions needed here can be determined based on
the crow simulation in Section 3.1. When individual i in the
position pi(t) at time t(≥ tstartj,g ), the instant distance from
the position pstartj,g is di,j,g(t) and the time interval from tstartj,g
is tintervalj,g = t − tstartj,g . If di,j,g(t) and tintervalj,g are both in

𝑠=0.1 m
𝑠=0.3 m

𝑠=0.5 m
𝑠=0.7 m

𝑠=0.9 m
𝑠=1.1 m
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𝑠=1.5 m

𝑠=1.7 m
𝑠=1.9 m

𝑠=2.1 m
𝑠=2.3 m

𝑠=2.5 m
𝑠=2.7 m

𝑠=2.9 m

𝑦𝑧

𝑥

Inlet

Fig. 4: 15 representative x-z planes in the three-dimensional
schematic diagram of the computational domain.

the cough infectious distance Dinf and infectious time T inf
respectively, based on the definition, we have

Ei,j,g(t) =Mj,g

(

di,j,g(t), tintervalj,g

)

, (4)

where Ei,j,g(t) is the instantaneous exposure risk of the
individual i exposed to individual j′s g-th cough, and
Mj,g

(

di,j,g(t), tintervalj,g

)

is the maximal mass of droplets
generated from individual j′s g-th cough when spreading
to the distance di,j,g(t) after tintervalj,g .

On the assumption that all coughs are typical, to get the
deterministicmathematical formula ofMj,g

(

di,j,g(t), tintervalj,g

)

,
it is sufficient to analyze the change of droplet mass during
the transmission of one typical cough. Since the density of
all droplets in Section 3.2 is set to the same value, the larger
the diameter, the greater the droplet mass. Droplets with
a large mass fall quickly, and their destinations are always
close to the injector. In contrast, others with small mass
exist in the computation region for a long time, and their
physical distances from the injector are random. Hence, it is
hard to find a suitable deterministic formula to describe the
change of droplet mass with the time-varying distance. To
solve this problem, we select representative x-z planes and
model the arriving droplet mass varies with time for each
plane. For a typical cough, the mass of droplets Ms (tcg)
passing through the x-z plane along “y” axis in distance s
m at time tcg(≤ T inf ) can be counted. Since the individual
is represented as a circle (i.e., rped = 0.2 m) (Xiao et al.,
2021), the calculation domain in the simulation is divided
with a length of 0.20 m along the “y” axis, and the x-z plane
at the center of each segment is taken as the representative
of each region. More exactly, the value of s starts from 0.10
m to 2.90 m with an interval of 0.20 m, and there are 15
representative x-z planes Φ =

{

�1, �2,… , �s,… , �15
}

as
shown in Fig. 4.

Moreover, to avoid reducing the counted droplet mass
caused by the setting of timestep T step in pedestrian dynam-
ics simulation, the module uses the total mass of droplets
passing through �s during

⌈

tcg

T step

⌉

timesteps asMs (tcg). As
settings in the second module (Section 3.2), the simulation
time step size of cough droplet transmission is 0.01 s. There-
fore, the simulation time step size of pedestrian dynamics
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Fig. 5: Ms (tcg) versus tcg at different times: (a) T step = 0.02s;
(b) T step = 0.03s; (c) T step = 0.04s; (d) T step = 0.05s.

T step should be bigger than 0.01 s. When we set T step=0.02
s, 0.03 s, 0.04 s, 0.05 s, respectively, the statistical results
show that the distribution of Ms (tcg) varies with tcg and it
conforms to the Gaussian distribution (see Fig. 5). Thus, for
the �s,Ms (tcg) is obtained by

Ms
(

tcg
)

= as ∗ exp

(

−
(

tcg − bs
cs

)2
)

, (5)

where as, bs and cs are parameters of the fitted Gaussian
distribution function for specific �s.

After determining the function of theMs (tcg) for a typi-
cal cough, since tcg in the typical cough is the same as tintervalj,g
of individual j′s g-th cough, if di,j,g(t) ∈ [s − 0.1, s + 0.1)
and tintervalj,g ≤ T inf , the formular of Mj,g

(

di,j,g(t), tintervalj,g

)

is represented by

Mj,g

(

di,j,g(t), tintervalj,g

)

=as ∗exp
⎛

⎜

⎜

⎝

−

(

tintervalj,g −bs
cs

)2
⎞

⎟

⎟

⎠

. (6)

As a consequence, if di,j,g(t) ∈ [s − 0.1, s + 0.1) and
t ≤ tstartj,g + T inf, there is

Ei,j,g(t) = as ∗ exp
⎛

⎜

⎜

⎝

−

(

t − tstartj,g − bs
cs

)2
⎞

⎟

⎟

⎠

. (7)

Then, the exposure risk of individual i during the visit
follows

Ei =
tenteri +T dwell

i
∑

t=tenteri

J (t)
∑

j=1

JG(t)
∑

g=1
Ei,j,g(t), (8)

where tenteri and T dwell
i respectively denotes the place enter

time and the dwell time of individual i, J (t)(≤ C inf) indi-
cates the number of infectors in the simulation place at time
t, and JG(t) is the number of infectious coughs of the infector
j at time t.

3.4. Prediction of Transmission Trends
In this part, we first determine the number of high-risk

exposed people C risk during the simulation horizon. Then,
based on C risk, we present a novel method to predict the
number of new cases Cnew.

Individual i whose Ei > � is defined as the high-risk
exposed individual, where � is the cut-line of high exposure
risk. When the number of total individuals for the simulation
is C total, the value of C risk changes with the � and we have

C risk(�)=
C total
∑

i=1
 
(

Ei, �
)

,where 
(

Ei, �
)

=
{

1,ifEi > �
0,otherwise . (9)

Admittedly, Cnew always increases with the growth of C risk,
i.e., there is a positive correlation between the Cnew and the
C risk. From the viewpoint of mathematics, Cnew can be set
as a function F of C risk quantitatively as

Cnew = F
(

C risk ) . (10)

We consider the simplest relationship to determine the
function F

(

C risk) by assuming that F
(

C risk) is a linear
equation. Moreover, in an extreme case, when there are no
infectious diseases, there are no high-risk exposed people
and new cases, i.e., Cnew = C risk = 0. Based on these
analyses, the function F

(

C risk) passes through the origin
and be defined as

Cnew = F
(

C risk ) = � ∗ C risk (�), (11)

where � is the proportionality coefficient.
To determine the values of parameters � and � in dif-

ferent scenes, the actual historical numbers of new cases are
needed. When Cnew

v and C real
v are the predicted and actual

values of the v(= 1, 2,… , V )-th historical observation,
respectively, indexes such as mean absolute error (MAE) can
be used to describe the error betweenCnew

v andC real
v . Herein,

we select MAE as the index, and the appropriate values of �
and � can be estimated as

�∗, �∗ = argmin
�,�

(

1
V

V
∑

v=1

|

|

|

Cnew
v − C real

v
|

|

|

)

. (12)

Finally, the Cnew in the future can be predicted with the
�∗ and �∗ via Equations (9-11).

4. Applications in the COVID-19 of the
United States

4.1. Data Sources
To estimate RID transmission based on the actual situa-

tion, we used data from all 50 states and Washington, D.C.
in the United States (U.S.) during the spreading of COVID-
19. FromMay 1st to July 25th in 2020, 79 days with complete
national-level data were utilized, and statistics of public data
were made based on days.

There were 3 inputs in our model, as shown in Fig. 1,
and they were introduced as follows: 1) The number of
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Fig. 6: Schematic diagram of data relations used in this case.

individuals C total each day was approximated as the daily
population traveling out of home, which was collected from
the U.S. Department of Transportation’s Bureau of Trans-
portation Statistics Trips byDistance –National data product
(Maryland Transportation Institute and Center for Advanced
Transportation Technology Laboratory at the University of
Maryland, 2021; Zhang et al., 2020). 2) The number of in-
fectors among individualsC inf was not available from public
data because whether each infector had a trip in a single day
was unknown. As there were some undiagnosed cases in the
travel crowd, we presented a reasonable assumption, i.e., the
ratio of infectors to individuals was equal to the ratio of the
total number of cases to the population traveling out of home.
The total number of cases in each day was found from the
U.S. Centers for Disease Control and Prevention (Centers for
Disease Control and Preventions (CDC), 2021a). 3) Mean
dwell time T dwell of individuals represented the average time
spent for each person in the public space. We collected this
data from the University of Maryland COVID-19 Impact
Analysis Platform (Xiao et al., 2021; Zhang et al., 2020).

The study period (79 days selected from May 1st to July
25th) was divided into a training set (the first 60 days, i.e.,
selected from May 1st to July 6th) and a testing set (the
rest 19 days, i.e., from July 7th to July 25th), as shown
in Fig. 6. Besides, to reduce the computational cost, the
number of individuals C total and the number of infectors
among individuals C inf were scaled down with a proportion
� for the simulation in both the training and testing sets.
Consequently, the main outputs of the simulation, i.e., the
number of high-risk exposed people C risk and the number

of daily new cases Cnew, should be expanded with the same
proportion � after the simulation. We used the first day in
the study period (May 1st, 2020) as the benchmark, then
245,469,060 individuals who had at least one trip at that
day could be scaled down to 10,000 individuals for the
simulation, thus the proportion � = 10,000

245,469,060 = 4.07 ×
10−5. The values of �∗ and �∗ could be estimated in the
training set, and then be adopted in the testing set to evaluate
the model.

In the model validation, the model’s outcome (i.e., num-
ber of new cases Cnew) was compared with the actual (i.e.,
number of daily new cases C real), and the evaluation in-
dexes were mean absolute error (MAE), root mean square
error (RMSE), andmean absolute percentage error (MAPE).
Besides, the real number of daily new cases C real was
obtained from the U.S. Centers for Disease Control and
Prevention (Centers for Disease Control and Preventions
(CDC), 2021a).

4.2. Simulation Setups
In fact, there are various indoor scenes (e.g., restaurant,

cinema, and subway hub), and their specific geometry or
activity may impact the transmission process, which can be
captured by our microscopic model. Even so, paying too
much attention to the heterogeneous settings is unneces-
sary, since considering all specific settings is not applicable,
and a more practical way is to formulate a general public
space. Accordingly, a 22m × 22m indoor room without non-
walkable areas was formulated, and there was an entrance
on one side of the room and an exit on the opposite side (see
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Entrance Exit

Simulation Space 

Infectors Susceptible Individuals         Boundaries  

Fig. 7: The sketch map of the simulation space in this case.

Fig. 7). The red and blue dots represented the infectors and
the susceptible individuals, respectively.

In the simulations, the specific individual number, the
infector number and the mean dwell time were determined
according the realistic data introduced in Section 4.1. Ini-
tially, no individual existed in the room, and the crowd were
designed to enter the indoor room through the entrance in
sequence. The individual followed a randomwalking pattern
in the room during the dwell time and leave the room through
the exit. The individual was represented by a circle (i.e.,
rped = 0.2 m), and the relaxation time and the desired
speed were �i =0.50 s and v0i =1.34 m/s, respectively.
The infector averagely coughed every 15 s after entering the
room, and the infectious time of a cough followed a uniform
distribution from 0 to 15 s. The infectious distance Dinf of a
typical coughwas set at 1.70m sinceMs (tcg) equaled almost
0 at a greater distance according to Fig. 5(c).

4.3. Simulation Outputs
4.3.1. Individual Exposure Risk Estimation

The exposure risk of each person in a single day is
obtained from the simulation. Picking 4 days (May 1st, May
17th, July 10th, July 25th) as examples, the inputs of the
simulation (i.e., C total, C inf , and T dwell) and the statistical
results of simulation outputs (i.e., the number of susceptible
individualsCsus withEi = 0 orEi > 0) are shown in Table 2
and Fig. 8.

Simulation results show that Csus with Ei ∈ (0.00, 0.50]
�g onMay 1st is 2,722 more than that on July 25th. However,
Csus with Ei > 13.00 �g on May 1st is 1,652 less than
that on July 25th. In other words, with the increase of
virus transmission time, more and more individuals have
higher exposure risks. This trend is consistent with existing
cognition and in line with the reality, which demonstrates the
validity of our model.

4.3.2. Prediction of New Cases
In order to analyze the contributions of 2 parameters (�

and �) to the model results, Sobol method is adopted and
the total-effect index is used as the evaluation measurement.
According to the previous results of personal exposure risk,
the variation range of � is between 0.50 �g and 100.00 �g.
Besides, � is set to change from 1.00 × 10−5 to 2.00 ×
10−3 through numerous tests. Saltelli’s sampling scheme
generates 6,000 samples for each training day. Thus, the

Table 2
These are examples of simulation inputs and statistical results.

Date
Inputs Results

Ctotal C inf T dwell

/minutes
Csus

with Ei=0
Csus

with Ei>0

05/01 10,000 39 26 1,092 8,869
05/17 10,210 55 24 724 9,431
07/10 10,210 128 25 225 9,857
07/25 9,844 169 23 138 9,537
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Fig. 9: The average total-effect of parameters � and � in each
training day.

average total-effect of parameters � and � in each training
day are shown in Fig. 9, and all days’ average total-effect
of � and � are 0.986 and 0.269, respectively, where the
confidence interval level is 95.00%. Results illustrate that the
output Cnew of our model depends on parameters � and �.
Parameter � makes more contributions as expected because
it is the cut-line of high exposure risk, which is the key to
determining both the C risk and Cnew.
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To predict the daily new cases Cnew in the testing set,
parameters �∗ and �∗ are estimated first. After expanding
the predicted results with the proportion � (4.07 × 10−5 in
Section 4.1), MAE varies with � and � can be seen from
Fig. 10. Herein, we find �∗ = 7.00 �g and �∗ = 6.20 × 10−4
(corresponding MAE is 6,080.89) based on the training set
according to Equation (12). Note that the dark blue curve in
Fig. 10(a) indicates that � increases with the growth of � as
expected.

Then, with parameters �∗ and �∗, the prediction Cnew

in the testing set can be calculated and expanded with
the proportion �. As a result, our model achieves a good
prediction effect under different evaluation indexes: MAE is
8,140.00, RMSE is 9,598.17, and MAPE is 12.01%.

For some machine learning models, the number of train-
ing samples with only 60 days is small, which cannot reflect
the optimal performance of the model (Zhang and Jiang,
2021). To verify whether 60 days are enough for training
our model, we randomly select several days (e.g., 1 day,
2 days, . . . , 59 days) from 60 days as new training sets,
and analyze the changes of prediction effects in the same
testing set (i.e., the rest 19 days). We estimate �∗ and �∗
in the same way as before for different new training sets,
and the evaluation results on the testing set are shown in
Fig. 11. The values of MAE, RMSE, and MAPE decrease
with the increase of the number of days in training sets, and
each of the indexes converges to a stable value within 60
days. Hence, 60 days are sufficient to be the training set,
based on which the parameters obtained are reliable, and the
corresponding prediction results can represent the best effect
of our model.

5. Comparison with Other Models
In this section, following the study region and period in

Section 4, we predict transmission trends via our model and
several existing models from macroscopic or microscopic
levels and then compare their performances.

5.1. Microscopic-Level Models
Since the proposed model focuses on the general place

and determines the personal exposure risk at themicroscopic
level, comparison methods should have the same central
points, thus Xiao’s model (Xiao et al., 2021) and Hernández-
Orallo’s model (Hernández-Orallo and Armero-Martínez,
2021) are adopted. Besides, as there is no direct prediction
of daily new cases in these two compared models, we fol-
low Section 3.4 to make the forecast after determining the
personal exposure risk by these two models, respectively.

The input data fields required by the two models are the
same as our proposedmodel, and they have the same training
and testing sets as Section 4. For the contact approach and
cough approach of Xiao’s model, the cut-off distance of
the exposure is 1.00 m and 2.50 m, respectively, as the
same settings in (Xiao et al., 2021). In Hernández-Orallo’s
model, the contact cut-off distance is also 1.00 m, and the
parameter for adjusting the model is set at the same value
1/30 as in (Hernández-Orallo and Armero-Martínez, 2021).

The simulation place is an indoor room, as shown in Fig. 7,
which has low air renewal, high temperatures, and low solar
radiation, so the value of the quality of the medium in
Hernández-Orallo’s model is 7/9 = (1+1/3+1)/3. Based on
the training set, we follow Equation (12) to find the �∗ and
�∗ for each model: �∗ =10.00 s and �∗ =1.19×10−4 in
Xiao’s Model (corresponding MAE is 7,205.67); �∗ =0.60
MEMs and �∗ =1.41×10−4 in Hernández-Orallo’s Model
(corresponding MAE is 7,172.78). Hence, based on Equa-
tions (9-11), the prediction results of the testing set by the
two microscopic-level models are reported in Fig. 12 and
Table 3.

5.2. Macroscopic-Level Models
The typical SIR model (Kermack and McKendrick,

1927; Maier and Brockmann, 2020) and grey model (Luo
et al., 2021; Zhang and Jiang, 2021) are adopted as com-
parison macroscopic-level models. The SIR model is a
traditional infectious disease model, and it works with the
assumption that the population NPL in the study region
is uniform and homogeneously mixed. In the SIR model,
the population is divided into three classes, namely, N sus:
susceptible, C inf: infected, andN rem: removed (by recovery
and death) (Maier and Brockmann, 2020). The time-varying
number of cases in each class is governed by the infectivity
rate �i and the removal rate �r (Zamiri et al., 2014). Thus,
when we know the initialN sus, C inf,N rem, and the constant
values of �i and �r, we can predict the number of infectors
in the future, based on which the number of daily new cases
Cnew are calculated. The grey model, favored for its “simple
model, strong adaptability, and easy parameter changes”, has
been widely used in the field of infectious diseases (Zhang
and Jiang, 2021). Unlike the neural network methods that
need a substantial number of datasets for training system
parameters, the grey model can predict the trend of the
COVID-19 well with limited information. Specifically, only
the historical daily new infected cases are needed to forecast
the Cnew in the following days.

In Section 4, only 60 days (selected from May 1st to
July 6th) are used as the training set due to the lack of
data. Fortunately, data required by the SIR model and grey
model in 67 days (from May 1st to July 6th) are available
from the public datasets. Thus, the time-series data from
May 1st to July 6th at the national level of the U.S. are
adopted as the training set here. The testing set is the same
as Section 4, i.e., 19 days from July 7th to July 25th. Besides,
the parameters of the SIR model and grey model are set
based on the national dataset. In SIR model, the population
size of the U.S. is NPL =327,167,434, which comes from
the U.S. Department of Transportation’s Bureau of Trans-
portation Statistics Trips byDistance –National data product
(Maryland Transportation Institute and Center for Advanced
Transportation Technology Laboratory at the University of
Maryland, 2021; Zhang et al., 2020). The cumulative num-
ber of infected cases C inf is obtained from the U.S. Centers
for Disease Control and Prevention (Centers for Disease
Control and Preventions (CDC), 2021a). The number of
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change with the date.

Table 3
These are MAE, RMSE, and MAPE between actual and
predicted results by different models.

Model MAE RMSE MAPE

SIR Model 11,589.07 13,638.09 16.84%
Grey Model 10,594.70 12,768.68 15.39%
Xiao’s Model 38,965.99 39,468.87 58.46%
Hernández-Orallo’s
Model

34,989.95 35,537.92 52.41%

Our Model 8,140.00 9,598.17 12.01%

NOTE. MAE, mean absolute error; RMSE, root mean square
error; MAPE, mean absolute percentage error.

removed cases (by recovery and death) N rem is provided
by the record COVID-19 DATA HUB1 (Guidotti and Ardia,
2020). The number of susceptible individuals is getting as
N sus = NPL−C inf−N rem. After fitting the training set with
the ordinary least squares, we get parameters that minimize
the sum of squares of errors: �i = 0.024 and �r = 0.007.
Besides, the basic reproduction number R0 =

�i

�r = 3.43
is reasonable with existing research (Centers for Disease
Control and Preventions (CDC), 2021b), and it is in line
with the situation when no epidemic prevention and control
policies were implemented in the U.S.. For the grey model,
the cumulative number of infected casesC inf is adopted from
theU.S. Centers for Disease Control and Prevention (Centers
for Disease Control and Preventions (CDC), 2021a), and
there are no other parameters to be set. Thus, the prediction
results of the testing set by the twomacroscopic-levelmodels
are reported in Fig. 12 and Table 3.

5.3. Comparison of Results
The time series numbers of daily new cases Cnew in the

testing set estimated by the proposed model, macroscopic
models, microscopicmodels, and obtained via the real-world

1See websites https://covid19datahub.io for more details about
COVID-19 DATA HUB.

dataset are shown in Fig. 12 and Table 3. Based on these, the
proposed model achieves the best prediction performance
when compared with the four existing models.

The SIR model and grey model at the macroscopic level
cannot determine the personal exposure risk and the number
of high-risk exposed people, but these can be estimated by
microscopic-level models such as ours. Meanwhile, even
though time series data are used for training the SIR model
and grey model, the number of samples in the training set
may still be too small to guarantee the best performance.
However, based on the analyses of Fig. 11, the number
of samples, in this case, is enough to show the good per-
formance of our proposed model, thus our model is more
suitable for small sample data. We admit that these two
models are classical and traditional, and now there are many
improved ones based on them, which may have better pre-
diction ability than our model.

The personal exposure risk is defined differently in vari-
ousmicroscopic levelmodels, e.g., Xiao’smodel, Hernández-
Orallo’s model, and ours. In Xiao’s model, the exposure risk
in the influence area is set to a constant value that cannot
change with the physical distances. Hernández-Orallo’s
model has proposed the exposure risk based on the distance
and time between individuals and the quality of the medium.
Our model considers the cough droplet dispersion processes
and the time-varying individuals’ physical distances, and
determines the exposure risk as the total maximum droplet
mass that the individual may suffer. Results in Fig. 12 and
Table 3 show that our model’s definition of exposure risk
is more appropriate than the other 2 models to forecast the
transmission trends of RIDs.

6. Discussions and Future Perspectives
In the construction of the proposed model, to forecast

the number of new cases, the assumption that F
(

C risk) is
a linear equation has been illustrated, and other functional
forms (e.g., exponential function, power function) can be
further studied.

In the simulation setups (Section 4), due to the lack of
real-word scene and human activities data, a general indoor
space without non-walkable areas and a random walking
pattern of individuals are formulated for the reproduction of
microscopic epidemic transmission, and by this means, the
simulation results of our model can be compared with the
macroscopic epidemic transmission data. Fortunately, the
potential drawbacks due to ideal assumptions on the model
comparison results is minimized since the involved models
here are all applied in the same scene. It should be noted
that our model can be used to simulate scenes with different
obstacles, activities, and other settings, once we have the
specific scene setting data.

The proposed model can predict transmission trends
under different model inputs or scenes. Hence, for factors
as Table 1 shows, if they affect the model inputs or scenes,
the model outputs change accordingly, then the transmission
trends caused by factors can be quantitatively explored.
For example, GDP is an economic indicator (Zhang et al.,
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2021). Generally, there are more people and more advanced
transportation systems in areas with high-level GDP, where
people have more activities in the public space. Therefore,
for the inputs of our model, the number of individuals C total

and the mean dwell time T dwell in high-level GDP areas
will be larger than that in regions with low-level GDP,
resulting in different prediction results based on the proposed
model. Similarly, in the scene with a large number of visits,
the NPI named entry limitation policy (Xiao et al., 2021),
which means the maximum number of visitors inside the
indoor place is limited, can change the number of individuals
C total definitely, and its contributions can be captured by
our model. However, we must admit that the influence of
several factors (e.g., sunspot numbers (Nasirpour et al.,
2021)) cannot be considered in our model because they have
limited effect on the model inputs or scenarios. Besides,
for several prevention and control measures that block the
spread of cough droplets directly near the mouth, such as
facemask wearing, the transmission of droplets is different
from a typical cough droplet transmission. Since the virion-
laden droplet transmission of a typical cough is set as a
deterministic model in Section 3, it is necessary to improve
the model to evaluate these NPIs’ contributions. Moreover,
the direct and indirect effects of influence factors on the pre-
diction results can be further determined with methods such
as structural equation modeling (Ma and Bennett, 2021).
In fact, policy-makers and political communicators should
consider not only the influences of factors, but also the social
acceptance and effects of different rules, and these can be
further studied (Bontempi, 2021; Gollwitzer et al., 2021;
Smith et al., 2021).

7. Conclusions
In this paper, we developed amicroscopic level exposure-

risk-based model to predict the transmission trends of RIDs
in a general public place. Specifically, to determine the
personal exposure risk, our model coupled the motions of
individuals and the time-varying cough droplet dispersion
process. Then, the number of new cases was predicted
based on the assumption that it was suitable for a linear
function with the number of high-risk exposed people, and
the prediction could be tested quantitatively when compared
with actual values. Based on COVID-19 data collected in the
U.S., we constructed real-world simulations and compared
the prediction effect of our model with those of several
existing models. Our model achieves superior performance
in forecasting the transmission trends of RIDs, and brings
guiding significance to control and prevention.
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Supplementary Material

1. Parameter Settings for the Simulation of a Typical Cough
The transmission medium of the cough is modeled as an incompressible ideal gas with constant properties calculated

at ambient conditions. The flow field evolution of coughing is time-dependent, so the simulations are conducted under a
transient condition. Since the droplet volume fraction is very low in the cough flow, the Eulerian-Lagrangian method is used
in this paper: 1) The continuous phase (the flow field) is modeled by the Eulerian method, which is to solve the Navier-Stokes
equations; 2) The discrete phase (the droplet) is modeled by the Lagrangian method, i.e., by tracking the motion of the
droplets; 3) The discrete phase can exchange mass, momentum, and energy with the continuous phase, thus fully considering
the influence of the flow field on particle diffusion.

The renormalization group (RNG) k-" model with scalable wall functions is selected as the turbulence model, and the
discrete phase model is used for the droplet diffusion (Aliabadi et al., 2010; Gao and Niu, 2006; Zhang and Li, 2012; Zhang
et al., 2017). Meanwhile, the transport model between components is used. In the discrete phase model, unsteady particle
tracking is selected, and the particle time step size is 1×10−3 s. For tracking parameters, themax number of steps is 50,000, and
the step length factor is 5. In physical methods, two-way turbulence coupling, stochastic collision, break-up, and coalescence
are picked.

Due to the differences in measurement methods and the physiological variability of different volunteers, the size
distribution of the droplets discharged from a cough is not unique (Chao et al., 2009).We use the droplet size distribution from
(Chao et al., 2009; Duguid, 1946), and the population is modeled by fitting the data with a Rosin-Rammler distribution. The
droplet group is injected in the time range of 4.20 ×10−2 s to 1.36 ×10−1 s with a temperature of 35 ºC. The injection speed
is zero, and all droplets are driven initially by the flow field from the mouth (Borro et al., 2021). We pick the spherical drag
model and consider the effect of secondary break-up through a Taylor Analogy Breakup model. Then, the Discrete Random
Walk model is used to consider the effects of the turbulent flow on the droplets (Bi, 2018). Moreover, each droplet consists
of multi-components (Aliabadi et al., 2010): 1) 94% volume fraction of the pure water which can be evaporated during the
transmission, and 2) 6% volume fraction of the pure water but non-evaporative, which represents the mucus and physiological
electrolytes that carry infectious agents. The boundary condition of the inlet is defined to be a velocity-inlet, and the velocity
direction is set as normal to the boundary. The fluid injected from the inlet consists of air and water vapor at 35 ºC, with
the mole fraction 93.80% and 6.20%, respectively (Bi, 2018). The velocity imposed at the inlet is a function of time during
a cough, and the flow field has the peak velocity vip (around 22.06 m/s) occurring at 6.60 ×10−2 s (Chao et al., 2009). The
“trap” boundary condition is applied for all surfaces, i.e., the droplet will stay at the surface when it collides with the surface
and then eliminate from the domain (Borro et al., 2021).

The pressure-based solver is employed as it is suitable for incompressible flows. The Semi-Implicit Method for Pressure-
Linked Equations (SIMPLE) algorithm is carried out as the pressure-velocity coupling method. We select first-order upwind
for turbulence-related variables and second-order for other variables (such as pressure). The bounded second-order implicit
formulation is the transient formulation, since it can bring a higher accuracy and better stability than others.

In the numerical simulation of a typical cough, when all droplets are integrated on the y-z plane, the positions of droplets
at eight different times on the y-z plane (x = 0) are shown in Fig. 1. Different colors of droplets represent different diameters,
which can be determined with the legend.

2. Sensitivity Analysis of � and �
Sensitivity analysis can identify the importance of input parameters in determining the value of an assigned output

variable. There are mainly two approaches to analyzing sensitivity: Local Sensitivity Analysis, and Global Sensitivity
Analysis. The former only focuses on the impact of one parameter on the calculation results, ignoring the interaction between
parameters. However, the latter considers the influence of the whole parameter space on the results, and it can be further
divided into qualitative (or screening) methods and quantitative methods. Qualitative sensitivity measures explore the relative
importance of input variables affecting the output variable (e.g., Morris method), and quantitative analysis methods can obtain
the quantified contribution of input parameters to the output parameter (e.g., Sobol method).

In general, when there are multiple parameters, qualitative measures are first used to conduct qualitative analysis on the
parameters. Then, based on the results, parameters with high sensitivity are selected for further quantitative analysis. Here,
only 2 parameters (� and �) need to be considered in the sensitivity analysis process, so the quantitative analysis methods are
used directly. The widely used Sobol method is adopted here, which is a variance-based measure (Sobol, 2001). It can deal
with nonlinear responses, and measure the effect of interactions in non-additive systems.

The total-effect index is used here as the evaluation identification, which measures the contribution to the output variance
of the input variable, including all variance caused by its interactions, of any order, with any other input variables. The higher
the value of total-effect, the higher contribution of the input parameter. Note that the sum of each parameters’ total-effect will
be greater than or equal to 1.00.

According to the previous results of personal exposure risk, the variation range of � is between 0.50 �g and 100.00 �g.
Besides, � is set to change from 1.00 × 10−5 to 2.00 × 10−3 through numerous tests. Saltelli’s sampling scheme generates
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Fig. 1: Evolutions of the cough droplets’ diameters in the computational domain on the y-z plane at different times: (a) 0.05 s;
(b) 0.15 s; (c) 0.30 s; (d) 0.50 s; (e) 1.00 s; (f) 5.00 s; (g) 10.00 s; (h) 15.00 s.

6,000 samples for each training day. Based on the training set, all days’ average total-effect of � and � are 0.986 and 0.269,
respectively, where the confidence interval level is 95.00%. Results illustrate that the output Cnew of our model depends on
parameters � and �. Parameter � makes more contributions as expected because it is the cut-line of high exposure risk, which
is the key to determining both the C risk and Cnew.

3. MAE Varies with � and � in Comparison Microscopic-level Models
In Xiao’s model and Hernández-Orallo’s model, MAE varies with � and � can be seen from Fig. 2 and Fig. 3. Following

Equation (12) in themanuscript, there are �∗ =10.00s and �∗ =1.19×10−4 in Xiao’sModel (correspondingMAE is 7,205.67),
and �∗ =0.60 MEMs and �∗ =1.41×10−4 in Hernández-Orallo’s Model (corresponding MAE is 7,172.78). Then, based on
Equations (9-11) in the manuscript, the prediction results of the testing set by the two microscopic-level models are obtained.
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Fig. 2: MAE varies with � and � in Xiao’s model: (a) the side view of � − � when � ∈ [1.00, 200.00] s and � ∈ [1× 10−6, 2× 10−4];
(b-d) the front view and 2 side views when MAE are less than 7,320.
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Fig. 3: MAE varies with � and � in Hernández-Orallo’s model: (a) the side view of � − � when � ∈ [0.10, 20.00] MEMs and
� ∈ [1 × 10−6, 2 × 10−4]; (b-d) the front view and 2 side views MAE are less than 7,400.

Cui et al. : Preprint submitted to Elsevier Page 4 of 3


